

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Obsolete
Core Processor	ARM® Cortex®-M4
Core Size	32-Bit Single-Core
Speed	120MHz
Connectivity	CANbus, EBI/EMI, Ethernet, I ² C, LINbus, SPI, UART, USB
Peripherals	DMA, I ² S, LED, POR, PWM, WDT
Number of I/O	91
Program Memory Size	1MB (1M x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	160K x 8
Voltage - Supply (Vcc/Vdd)	3.13V ~ 3.63V
Data Converters	A/D 32x12b; D/A 2x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	144-LQFP Exposed Pad
Supplier Device Package	PG-LQFP-144-18
Purchase URL	https://www.e-xfl.com/product-detail/infineon-technologies/xmc4500f144f1024abxqma1

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

XMC4500 Data Sheet

Revision History: V1 4 2016-01

Previous V	/ersions:
V1.3, 2014	I-03
V1.2, 2013	3-07
V1.1, 2013	B-07
V1.0, 2013	B-01
V0.9, 2012	2-12
V0.8, 2012	2-11
Page	Subjects
43	Added information that PORST Pull-up is identical to the pull-up on standard I/O pins.
42	Added footnote explaining minimum V_{BAT} requirements to start the hibernate domain and/or oscillation of a crystal on RTC_XTAL.
59	Corrected parameter name of of USB pull device (upstream port receiving) definition according to USB standard (referenced to DM instead of DP)
61	Relaxed RTC_XTAL V_{PPX} parameter value and changed it to a system requirement.
115ff	Added PG-LQFP-100-25 and PG-LQFP-144-24 package information.
115	Added tables describing the differences between PG-LQFP-100-11 to PG-LQFP-100-25 as well as PG-LQFP-144-18 to PG-LQFP-144-24 packages.

Trademarks

C166[™], TriCore[™], XMC[™] and DAVE[™] are trademarks of Infineon Technologies AG.

 $\mathsf{ARM}^{\texttt{®}}, \, \mathsf{ARM} \,\, \mathsf{Powered}^{\texttt{®}}, \, \mathsf{Cortex}^{\texttt{®}}, \, \mathsf{Thumb}^{\texttt{B}} \,\, \mathsf{and} \,\, \mathsf{AMBA}^{\texttt{B}} \,\, \mathsf{are} \,\, \mathsf{registered} \,\, \mathsf{trademarks} \,\, \mathsf{of} \,\, \mathsf{ARM}, \, \mathsf{Limited}.$

CoreSight[™], ETM[™], Embedded Trace Macrocell[™] and Embedded Trace Buffer[™] are trademarks of ARM, Limited.

Synopsys[™] is a trademark of Synopsys, Inc.

We Listen to Your Comments

Is there any information in this document that you feel is wrong, unclear or missing? Your feedback will help us to continuously improve the quality of this document. Please send your proposal (including a reference to this document) to: mcdocu.comments@infineon.com

General Device Information

			(
Function	LQFP-144	LFBGA-144	LQFP-100	Pad Type	Notes
VSSO	89	J12	63	Power	
VSS	Exp. Pad	-	Exp. Pad	Power	Exposed Die Pad The exposed die pad is connected internally to VSS. For proper operation, it is mandatory to connect the exposed pad directly to the common ground on the board. For thermal aspects, please refer to the Data Sheet. Board layout examples are given in an application note.

Table 9 Package Pin Mapping (cont'd)

General Device Information

2.2.2 Port I/O Functions

The following general scheme is used to describe each Port pin:

Table 10 Port I/O Function Description

Function	Outputs			Inputs					
	ALT1	ALTn	HWO0	HWI0	Input	Input			
P0.0		MODA.OUT	MODB.OUT	MODB.INA	MODC.INA				
Pn.y	MODA.OUT				MODA.INA	MODC.INB			

Figure 8 Simplified Port Structure

Pn.y is the port pin name, defining the control and data bits/registers associated with it. As GPIO, the port is under software control. Its input value is read via Pn_IN.y, Pn_OUT defines the output value.

Up to four alternate output functions (ALT1/2/3/4) can be mapped to a single port pin, selected by Pn_IOCR.PC. The output value is directly driven by the respective module, with the pin characteristics controlled by the port registers (within the limits of the connected pad).

The port pin input can be connected to multiple peripherals. Most peripherals have an input multiplexer to select between different possible input sources.

The input path is also active while the pin is configured as output. This allows to feedback an output to on-chip resources without wasting an additional external pin.

By Pn_HWSEL it is possible to select between different hardware "masters" (HWO0/HWI0, HWO1/HWI1). The selected peripheral can take control of the pin(s). Hardware control overrules settings in the respective port pin registers.

27

2.2.2.1 Port I/O Function Table

Data Sheet

Table 11 Port I/O Functions

Function	ion Outputs						Inputs									
	ALT1	ALT2	ALT3	ALT4	HWO0	HWO1	HWIO	HWI1	Input	Input	Input	Input	Input	Input	Input	Input
P0.0		CAN. N0_TXD	CCU80. OUT21	LEDTS0. COL2					U1C1. DX0D	ETH0. CLK_RMIIB	ERU0. 0B0					ETH0. CLKRXB
P0.1	USB. DRIVEVBUS	U1C1. DOUT0	CCU80. OUT11	LEDTS0. COL3						ETH0. CRS_DVB	ERU0. 0A0					ETH0. RXDVB
P0.2		U1C1. SELO1	CCU80. OUT01		U1C0. DOUT3	EBU. AD0	U1C0. HWIN3	EBU. D0	ETH0. RXD0B		ERU0. 3B3					
P0.3			CCU80. OUT20		U1C0. DOUT2	EBU. AD1	U1C0. HWIN2	EBU. D1	ETH0. RXD1B			ERU1. 3B0				
P0.4	ETH0. TX_EN		CCU80. OUT10		U1C0. DOUT1	EBU. AD2	U1C0. HWIN1	EBU. D2		U1C0. DX0A	ERU0. 2B3					
P0.5	ETH0. TXD0	U1C0. DOUT0	CCU80. OUT00		U1C0. DOUT0	EBU. AD3	U1C0. HWIN0	EBU. D3		U1C0. DX0B		ERU1. 3A0				
P0.6	ETH0. TXD1	U1C0. SELO0	CCU80. OUT30			EBU. ADV				U1C0. DX2A	ERU0. 3B2		CCU80. IN2B			
P0.7	WWDT. SERVICE_OUT	U0C0. SELO0				EBU. AD6	DB. TDI	EBU. D6	U0C0. DX2B	DSD. DIN1A	ERU0. 2B1		CCU80. INDA	CCU80. IN1A	CCU80. IN2A	CCU80. IN3A
P0.8	SCU. EXTCLK	U0C0. SCLKOUT				EBU. AD7	DB. TRST	EBU. D7	U0C0. DX1B	DSD. DINOA	ERU0. 2A1		CCU80. IN1B			
P0.9		U1C1. SELO0	CCU80. OUT12	LEDTS0. COL0	ETH0. MDO	EBU. CS1	ETH0. MDIA		U1C1. DX2A	USB. ID	ERU0. 1B0					
P0.10	ETH0. MDC	U1C1. SCLKOUT	CCU80. OUT02	LEDTS0. COL1					U1C1. DX1A		ERU0. 1A0					
P0.11		U1C0. SCLKOUT	CCU80. OUT31		SDMMC. RST	EBU. BREQ			ETH0. RXERB	U1C0. DX1A	ERU0. 3A2					
P0.12		U1C1. SELO0	CCU40. OUT3			EBU. HLDA		EBU. HLDA		U1C1. DX2B	ERU0. 2B2					
P0.13		U1C1. SCLKOUT	CCU40. OUT2							U1C1. DX1B	ERU0. 2A2					
P0.14		U1C0. SELO1	CCU40. OUT1		U1C1. DOUT3		U1C1. HWIN3						CCU42. IN3C			
P0.15		U1C0. SELO2	CCU40. OUT0		U1C1. DOUT2		U1C1. HWIN2						CCU42. IN2C			
P1.0	DSD. CGPWMN	U0C0. SELO0	CCU40. OUT3	ERU1. PDOUT3					U0C0. DX2A		ERU0. 3B0		CCU40. IN3A			
P1.1	DSD. CGPWMP	U0C0. SCLKOUT	CCU40. OUT2	ERU1. PDOUT2			SDMMC. SDWC		U0C0. DX1A	POSIF0. IN2A	ERU0. 3A0		CCU40. IN2A			
P1.2			CCU40. OUT1	ERU1. PDOUT1	U0C0. DOUT3	EBU. AD14	U0C0. HWIN3	EBU. D14		POSIF0. IN1A		ERU1. 2B0	CCU40. IN1A			
P1.3		U0C0. MCLKOUT	CCU40. OUT0	ERU1. PDOUT0	U0C0. DOUT2	EBU. AD15	U0C0. HWIN2	EBU. D15		POSIF0. IN0A		ERU1. 2A0	CCU40. INDA			
P1.4	WWDT. SERVICE_OUT	CAN. N0_TXD	CCU80. OUT33	CCU81. OUT20	U0C0. DOUT1		U0C0. HWIN1		U0C0. DX0B	CAN. N1_RXDD	ERU0. 2B0		CCU41. IN0C			

3 Electrical Parameters

3.1 General Parameters

3.1.1 Parameter Interpretation

The parameters listed in this section partly represent the characteristics of the XMC4500 and partly its requirements on the system. To aid interpreting the parameters easily when evaluating them for a design, they are marked with a two-letter abbreviation in column "Symbol":

• CC

Such parameters indicate Controller Characteristics, which are a distinctive feature of the XMC4500 and must be regarded for system design.

• SR

Such parameters indicate **S**ystem **R**equirements, which must be provided by the application system in which the XMC4500 is designed in.

3.1.2 Absolute Maximum Ratings

Stresses above the values listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions may affect device reliability.

Parameter	Symbol			Va	lues	Unit	Note /	
			Min.	Тур.	Max.		Test Con dition	
Storage temperature	$T_{\rm ST}$	SR	-65	-	150	°C	-	
Junction temperature	T_{J}	SR	-40	-	150	°C	-	
Voltage at 3.3 V power supply pins with respect to $V_{\rm SS}$	V_{DDP}	SR	-	-	4.3	V	-	
Voltage on any Class A and dedicated input pin with respect to $V_{\rm SS}$	$V_{\sf IN}$	SR	-1.0	-	V _{DDP} + 1.0 or max. 4.3	V	whichever is lower	
Voltage on any analog input pin with respect to $V_{\rm AGND}$	$\begin{array}{c} V_{AIN} \\ V_{AREF} \end{array}$	SR	-1.0	-	V _{DDP} + 1.0 or max. 4.3	V	whichever is lower	
Input current on any pin during overload condition	I _{IN}	SR	-10	-	+10	mA		
Absolute maximum sum of all input circuit currents for one port group during overload condition ¹⁾	$\Sigma I_{\sf IN}$	SR	-25	-	+25	mA		
Absolute maximum sum of all input circuit currents during overload condition	$\Sigma I_{\rm IN}$	SR	-100	-	+100	mA		

Table 12 Absolute Maximum Rating Parameters

1) The port groups are defined in **Table 16**.

Figure 10 explains the input voltage ranges of $V_{\rm IN}$ and $V_{\rm AIN}$ and its dependency to the supply level of $V_{\rm DDP}$. The input voltage must not exceed 4.3 V, and it must not be more than 1.0 V above $V_{\rm DDP}$. For the range up to $V_{\rm DDP}$ + 1.0 V also see the definition of the overload conditions in Section 3.1.3.

Table 14	PN-Junction Characterisitics for positive Overload					
Pad Type	$I_{\rm OV}$ = 5 mA, $T_{\rm J}$ = -40 °C	I _{ον} = 5 mA, T _J = 150 °C				
A1 / A1+	$V_{\rm IN} = V_{\rm DDP}$ + 1.0 V	$V_{\rm IN}$ = $V_{\rm DDP}$ + 0.75 V				
A2	$V_{\rm IN} = V_{\rm DDP}$ + 0.7 V	$V_{\rm IN} = V_{\rm DDP}$ + 0.6 V				
AN/DIG_IN	$V_{\rm IN} = V_{\rm DDP}$ + 1.0 V	$V_{\rm IN} = V_{\rm DDP}$ + 0.75 V				

$AN/DIG_IN \qquad V_{IN} = V_{DDP} + 1.0 V \qquad V_{II}$	$_{\rm N} = V_{\rm DDP} + 0.75$
---	---------------------------------

Table 15	PN-Junction Characterisitics for negative Overload						
Pad Type	$I_{\rm OV}$ = 5 mA, $T_{\rm J}$ = -40 °C	I _{ον} = 5 mA, T _J = 150 °C					
A1 / A1+	$V_{\rm IN} = V_{\rm SS}$ - 1.0 V	$V_{\rm IN} = V_{\rm SS}$ - 0.75 V					
A2	$V_{\rm IN} = V_{\rm SS}$ - 0.7 V	$V_{\rm IN} = V_{\rm SS}$ - 0.6 V					
AN/DIG_IN	$V_{\rm IN} = V_{\rm DDP}$ - 1.0 V	$V_{\rm IN} = V_{\rm DDP}$ - 0.75 V					

Table 16	Port Groups for Overload and Short-Circuit Current Sum
	Parameters

Group	Pins
1	P0.[15:0], P3.[15:0]
2	P14.[15:0], P15.[15:0]
3	P2.[15:0], P5.[11:0]
4	P1.[15:0], P4.[7:0], P6.[6:0]

Figure 13 Pull Device Input Characteristics

Figure 13 visualizes the input characteristics with an active internal pull device:

- in the cases "A" the internal pull device is overridden by a strong external driver;
- in the cases "B" the internal pull device defines the input logical state against a weak external load.

Table 22 Standard Pads Class_A2

Parameter	Symbol	,	Values	Unit	Note /	
		Min.	Max.		Test Condition	
Fall time	t _{FA2} CC	_	150	ns	$C_{\rm L}$ = 20 pF; POD = weak	
		_	50	ns	$C_{L} = 50 \text{ pF};$ POD = medium	
		_	3.7	ns	$C_{L} = 50 \text{ pF};$ POD = strong; edge = sharp	
		_	7	ns	$C_{L} = 50 \text{ pF};$ POD = strong; edge = medium	
		_	16	ns	$C_{L} = 50 \text{ pF};$ POD = strong; edge = soft	
Rise time	t _{RA2} CC	_	150	ns	$C_{L} = 20 \text{ pF};$ POD = weak	
		_	50	ns	$C_{L} = 50 \text{ pF};$ POD = medium	
		_	3.7	ns	$C_{L} = 50 \text{ pF};$ POD = strong; edge = sharp	
		_	7.0	ns	$C_{L} = 50 \text{ pF};$ POD = strong; edge = medium	
		_	16	ns	$C_{L} = 50 \text{ pF};$ POD = strong; edge = soft	

Figure 16 VADC Analog Input Leakage Current

Conversion Time

Table 24	Conversion Time	(Operating	Conditions apply)
----------	------------------------	------------	-------------------

Parameter	Syn	nbol	Values	Unit	Note
Conversion time	t _C	CC	$2 \times T_{ADC}$ + (2 + N + STC + PC +DM) × T_{ADCI}	μS	N = 8, 10, 12 for N-bit conversion $T_{ADC} = 1 / f_{PERIPH}$ $T_{ADCI} = 1 / f_{ADCI}$

- STC defines additional clock cycles to extend the sample time
- · PC adds two cycles if post-calibration is enabled
- DM adds one cycle for an extended conversion time of the MSB

Conversion Time Examples

System assumptions:

 f_{ADC} = 120 MHz i.e. t_{ADC} = 8.33 ns, DIVA = 3, f_{ADCI} = 30 MHz i.e. t_{ADCI} = 33.3 ns

According to the given formulas the following minimum conversion times can be achieved (STC = 0, DM = 0):

12-bit post-calibrated conversion (PC = 2):

 $t_{CN12C} = (2 + 12 + 2) \times t_{ADCI} + 2 \times t_{ADC} = 16 \times 33.3 \text{ ns} + 2 \times 8.33 \text{ ns} = 550 \text{ ns}$

12-bit uncalibrated conversion:

 $t_{CN12} = (2 + 12) \times t_{ADCI} + 2 \times t_{ADC} = 14 \times 33.3 \text{ ns} + 2 \times 8.33 \text{ ns} = 483 \text{ ns}$

10-bit uncalibrated conversion:

 $t_{CN10} = (2 + 10) \times t_{ADCI} + 2 \times t_{ADC} = 12 \times 33.3 \text{ ns} + 2 \times 8.33 \text{ ns} = 417 \text{ ns}$

8-bit uncalibrated:

 $t_{CN8} = (2 + 8) \times t_{ADCI} + 2 \times t_{ADC} = 10 \times 33.3 \text{ ns} + 2 \times 8.33 \text{ ns} = 350 \text{ ns}$

3.2.3 Digital to Analog Converters (DAC)

Note: These parameters are not subject to production test, but verified by design and/or characterization.

Parameter	Symbol		Value	S	Unit	Note /	
		Mi	n. Typ.	Max.	_	Test Condition	
RMS supply current	I _{DD} CC	-	2.5	4	mA	per active DAC channel, without load currents of DAC outputs	
Resolution	RES C	C –	12	-	Bit		
Update rate	f _{URATE_A} CO	C –		2	Msam ple/s	data rate, where DAC can follow 64 LSB code jumps to ± 1LSB accuracy	
Update rate	$f_{URATE_F}C$	C –		5	Msam ple/s	data rate, where DAC can follow 64 LSB code jumps to ± 4 LSB accuracy	
Settling time	t _{settle} Co	C –	1	2	μs	at full scale jump, output voltage reaches target value ± 20 LSB	
Slew rate	SR CC	2	5	-	V/µs		
Minimum output voltage	V _{OUT_MIN} CC	-	0.3	-	V	code value unsigned: 000 _H ; signed: 800 _H	
Maximum output voltage	V _{OUT_MAX} CC	-	2.5	-	V	code value unsigned: FFF _H ; signed: 7FF _H	
Integral non-linearity	INL C	C -4	±2.5	4	LSB	$\begin{array}{l} R_L \geq 5 \text{ kOhm,} \\ C_L \leq 50 \text{ pF} \end{array}$	
Differential non- linearity	DNL C	C -2	±1	2	LSB	$\begin{array}{l} R_L \geq 5 \text{ kOhm}, \\ C_L \leq 50 \text{ pF} \end{array}$	

Table 25	DAC Parameters	(Operating	Conditions	apply)
		(e p e · a	00	~~~/

Table 32 Power Supply Parameters

Parameter	Symbol		Values	5	Unit	Note / Test Condition	
		Min.	Тур.	Max.			
Wake-up time from Deep Sleep to Active mode		_	_	_	ms	Defined by the wake-up of the Flash module, see Section 3.2.9	
Wake-up time from Hibernate mode		-	-	-	ms	Wake-up via power-on reset event, see Section 3.3.2	

- 1) CPU executing code from Flash, all peripherals idle.
- 2) CPU executing code from Flash.
- 3) CPU in sleep, all peripherals idle, Flash in Active mode.
- 4) CPU in sleep, Flash in Active mode.
- 5) CPU in sleep, peripherals disabled, after wake-up code execution from RAM.
- 6) To wake-up the Flash from its Sleep mode, $f_{CPU} \ge 1$ MHz is required.
- 7) OSC_ULP operating with external crystal on RTC_XTAL
- 8) OSC_ULP off, Hibernate domain operating with OSC_SI clock
- 9) Test Power Loop: f_{SYS} = 120 MHz, CPU executing benchmark code from Flash, all CCUs in 100kHz timer mode, all ADC groups in continuous conversion mode, USICs as SPI in internal loop-back mode, CAN in 500kHz internal loop-back mode, interrupt triggered DMA block transfers to parity protected RAMs and FCE, DTS measurements and FPU calculations.

The power consumption of each customer application will most probably be lower than this value, but must be evaluated separately.

- 10) I_{DDP} decreases typically by approximately 6 mA when f_{SYS} decreases by 10 MHz, at constant T_{J}
- 11) Sum of currents of all active converters (ADC and DAC)

3.3.7 Serial Wire Debug Port (SW-DP) Timing

The following parameters are applicable for communication through the SW-DP interface.

Note: These parameters are not subject to production test, but verified by design and/or characterization.

Note: Operating conditions apply.

Table 40	SWD Interface	Timing Parameters (Operating	g Conditions apply)
----------	---------------	---------------------	-----------	---------------------

Parameter		nbol		Values		Unit	Note /	
			Min.	Тур.	Max.		Test Condition	
SWDCLK clock period	t _{SC}	SR	25	-	-	ns	C _L = 30 pF	
			40	-	-	ns	$C_L = 50 \text{ pF}$	
SWDCLK high time	<i>t</i> ₁	SR	10	-	500000	ns		
SWDCLK low time	<i>t</i> ₂	SR	10	-	500000	ns		
SWDIO input setup to SWDCLK rising edge	<i>t</i> ₃	SR	6	-	_	ns		
SWDIO input hold after SWDCLK rising edge	<i>t</i> ₄	SR	6	-	-	ns		
SWDIO output valid time	t_5	СС	-	-	17	ns	C _L = 50 pF	
after SWDCLK rising edge			-	-	13	ns	C _L = 30 pF	
SWDIO output hold time from SWDCLK rising edge	<i>t</i> ₆	СС	3	-	-	ns		

Figure 33 USIC - SSC Master/Slave Mode Timing

Note: This timing diagram shows a standard configuration, for which the slave select signal is low-active, and the serial clock signal is not shifted and not inverted.

3.3.9.5 SDMMC Interface Timing

- Note: These parameters are not subject to production test, but verified by design and/or characterization.
- Note: Operating Conditions apply, total external capacitive load $C_1 = 40 \text{ pF}$.

AC Timing Specifications (Full-Speed Mode)

Parameter	Symbol		Values		Unit	Note/ Test	
			Min.	Max.		Condition	
Clock frequency in full speed transfer mode $(1/t_{pp})$	$f_{\sf pp}$	СС	0	24	MHz		
Clock cycle in full speed transfer mode	t _{pp}	СС	40	_	ns		
Clock low time	t _{WL}	CC	10	-	ns		
Clock high time	t _{WH}	СС	10	-	ns		
Clock rise time	t _{TLH}	СС	-	10	ns		
Clock fall time	t _{THL}	CC	-	10	ns		
Inputs setup to clock rising edge	t _{ISU_F}	SR	2	_	ns		
Inputs hold after clock rising edge	t _{IH_F}	SR	2	-	ns		
Outputs valid time in full speed mode	t _{ODLY_F}	CC	_	10	ns		
Outputs hold time in full speed mode	t _{OH_F}	СС	0	-	ns		

Table 49 SDMMC Timing for Full-Speed Mode

Table 50 SD Card Bus Timing for Full-Speed Mode¹⁾

Parameter	Symbol	Values		Unit	Note/ Test Condition	
		Min.	Max.			
SD card input setup time	t _{ISU}	5	_	ns		
SD card input hold time	t _{IH}	5	-	ns		

NO CIOCK DEIAY:		(7)
	$t_{ODLY_H} + t_{DATA_DELAY} + t_{TAP_DELAY} + t_{ISU} < t_{WL}$	
With clock delay:		
	$t_{ODLY_H} + t_{DATA_DELAY} + t_{TAP_DELAY} + t_{ISU} < t_{WL} + t_{CLK_DELAY}$	(8)
		(9)
	$t_{DATA_DELAY} + t_{TAP_DELAY} - t_{CLK_DELAY} < t_{WL} - t_{ISU} - t_{ODLY_H}$	
	$t_{DATA_DELAY} - t_{CLK_DELAY} < t_{WL} - t_{ISU} - t_{ODLY_H} - t_{TAP_DELAY}$	
	$t_{DATA_DELAY} - t_{CLK_DELAY} < 10 - 6 - 14 - t_{TAP_DELAY}$	
	$t_{DATA_DELAY} - t_{CLK_DELAY} < -10 - t_{TAP_DELAY}$	

The data delay is less than the clock delay by at least 10 ns in the ideal case where t_{WL} = 10 ns.

High-Speed Write Meeting Hold (Minimum Delay)

The following equations show how to calculate the allowed skew range between the SD_CLK and SD_DAT/CMD signals on the PCB.

(10)

 $t_{\mathrm{CLK_DELAY}} < t_{WL} + t_{\mathrm{OH_H}} + t_{\mathrm{DATA_DELAY}} + t_{\mathrm{TAP_DELAY}} - t_{\mathrm{IH}}$

 $t_{\mathrm{CLK_DELAY}} - t_{\mathrm{DATA_DELAY}} < t_{\mathrm{WL}} + t_{\mathrm{OH_H}} + t_{\mathrm{TAP_DELAY}} - t_{\mathrm{IH}}$

 $t_{\mathrm{CLK_DELAY}} - t_{\mathrm{DATA_DELAY}} < 10 + 2 + t_{\mathrm{TAP_DELAY}} - 2$

 $t_{\rm CLK_DELAY} - t_{\rm DATA_DELAY} < 10 + t_{\rm TAP_DELAY}$

The clock can be delayed versus data up to 13.2 ns (external delay line) in ideal case of t_{WL} = 10 ns, with maximum $t_{TAP DELAY}$ = 3.2 ns programmed.

High-Speed Input Path (Read)

Figure 40 High-Speed Input Path

High-Speed Read Meeting Setup (Maximum Delay)

The following equations show how to calculate the allowed combined propagation delay range of the SD_CLK and SD_DAT/CMD signals on the PCB.

(11)

```
t_{\mathrm{CLK\_DELAY}} + t_{\mathrm{DATA\_DELAY}} + t_{\mathrm{TAP\_DELAY}} + t_{\mathrm{ODLY}} + t_{\mathrm{ISU\_H}} < t_{pp}
```

```
t_{\mathrm{CLK\_DELAY}} + t_{\mathrm{DATA\_DELAY}} < t_{pp} - t_{\mathrm{ODLY}} - t_{ISU\_H} - t_{\mathrm{TAP\_DELAY}}
```

 $t_{\mathrm{CLK_DELAY}} + t_{\mathrm{DATA_DELAY}} < 20 - 14 - 2 - t_{\mathrm{TAP_DELAY}}$

 $t_{\mathrm{CLK_DELAY}} + t_{\mathrm{DATA_DELAY}} < 4 - t_{\mathrm{TAP_DELAY}}$

The data + clock delay can be up to 4 ns for a 20 ns clock cycle.

Read Timing

Table 54 Asynchronous Read Timing, Multiplexed and Demultiplexed

Parameter			Symbol	Limit \	Unit	
				Min.	Max.	
A(24:16) output delay	to RD rising edge, deviation from the ideal programmed value.	CC	t ₀	-2.5	2.5	ns
A(24:16) output delay		CC	t ₁	-2.5	2.5	
CS rising edge		CC	<i>t</i> ₂	-2	2.5	
ADV rising edge		CC	t ₃	-1.5	4.5	
BC rising edge		CC	<i>t</i> ₄	-2.5	2.5	
WAIT input setup		SR	<i>t</i> ₅	12	-	
WAIT input hold		SR	t ₆	0	-	
Data input setup	-	SR	<i>t</i> ₇	12	-	
Data input hold		SR	t ₈	0	-	
RD / WR output delay		CC	t ₉	-2.5	1.5	

Multiplexed Write Timing

3.3.10.4 EBU SDRAM Access Timing

- Note: These parameters are not subject to production test, but verified by design and/or characterization.
- Note: Operating Conditions apply, with Class A2 pins and $C_1 = 16 \text{ pF}$.

Table 58 EBU SDRAM Access SDCLKO Signal Timing Parameters

Parameter	Symbol			Values	Unit	Note /	
			Min.	Тур.	Max.		Test Con dition
SDCLKO period	<i>t</i> ₁	CC	12.5	-	-	ns	-
SDCLKO high time	<i>t</i> ₂	SR	5.5	-	-	ns	-
SDCLKO low time	t_3	SR	3.75	-	-	ns	-
SDCLKO rise time	<i>t</i> ₄	SR	-	-	3.0	ns	-
SDCLKO fall time	t_5	SR	-	-	3.0	ns	-

Figure 47 EBU SDRAM Access CLKOUT Timing