

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	ARM® Cortex®-M4
Core Size	32-Bit Single-Core
Speed	120MHz
Connectivity	CANbus, EBI/EMI, Ethernet, I ² C, LINbus, SPI, UART, USB
Peripherals	DMA, I ² S, LED, POR, PWM, WDT
Number of I/O	91
Program Memory Size	1MB (1M x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	160K x 8
Voltage - Supply (Vcc/Vdd)	3.13V ~ 3.63V
Data Converters	A/D 32x12b; D/A 2x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	144-LQFP Exposed Pad
Supplier Device Package	PG-LQFP-144-13
Purchase URL	https://www.e-xfl.com/product-detail/infineon-technologies/xmc4500f144k1024acxqma1

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Edition 2016-01 Published by Infineon Technologies AG 81726 Munich, Germany © 2016 Infineon Technologies AG All Rights Reserved.

Legal Disclaimer

The information given in this document shall in no event be regarded as a guarantee of conditions or characteristics. With respect to any examples or hints given herein, any typical values stated herein and/or any information regarding the application of the device, Infineon Technologies hereby disclaims any and all warranties and liabilities of any kind, including without limitation, warranties of non-infringement of intellectual property rights of any third party.

Information

For further information on technology, delivery terms and conditions and prices, please contact the nearest Infineon Technologies Office (www.infineon.com).

Warnings

Due to technical requirements, components may contain dangerous substances. For information on the types in question, please contact the nearest Infineon Technologies Office.

Infineon Technologies components may be used in life-support devices or systems only with the express written approval of Infineon Technologies, if a failure of such components can reasonably be expected to cause the failure of that life-support device or system or to affect the safety or effectiveness of that device or system. Life support devices or systems are intended to be implanted in the human body or to support and/or maintain and sustain and/or protect human life. If they fail, it is reasonable to assume that the health of the user or other persons may be endangered.

About this Document

About this Document

This Data Sheet is addressed to embedded hardware and software developers. It provides the reader with detailed descriptions about the ordering designations, available features, electrical and physical characteristics of the XMC4500 series devices.

The document describes the characteristics of a superset of the XMC4500 series devices. For simplicity, the various device types are referred to by the collective term XMC4500 throughout this manual.

XMC4000 Family User Documentation

The set of user documentation includes:

- Reference Manual
 - decribes the functionality of the superset of devices.
- Data Sheets
 - list the complete ordering designations, available features and electrical characteristics of derivative devices.
- Errata Sheets
 - list deviations from the specifications given in the related Reference Manual or Data Sheets. Errata Sheets are provided for the superset of devices.

Attention: Please consult all parts of the documentation set to attain consolidated knowledge about your device.

Application related guidance is provided by Users Guides and Application Notes.

Please refer to http://www.infineon.com/xmc4000 to get access to the latest versions of those documents.

XMC4500 XMC4000 Family

General Device Information

Figure 3 XMC4500 Logic Symbol PG-LFBGA-144

XMC4500 XMC4000 Family

General Device Information

Figure 4 XMC4500 Logic Symbol PG-LQFP-100

General Device Information

2.2.1 Package Pin Summary

The following general scheme is used to describe each pin:

Table 8 Package Pin Mapping Description

Function	Package A	Package B	 Pad Type	Notes
Name	Ν	Ax	 A2	

The table is sorted by the "Function" column, starting with the regular Port pins (Px.y), followed by the dedicated pins (i.e. PORST) and supply pins.

The following columns, titled with the supported package variants, lists the package pin number to which the respective function is mapped in that package.

The "Pad Type" indicates the employed pad type (A1, A1+, A2, special=special pad, In=input pad, AN/DIG_IN=analog and digital input, Power=power supply). Details about the pad properties are defined in the Electrical Parameters.

In the "Notes", special information to the respective pin/function is given, i.e. deviations from the default configuration after reset. Per default the regular Port pins are configured as direct input with no internal pull device active.

Function	LQFP-144	LFBGA-144	LQFP-100	Pad Type	Notes
P0.0	2	C4	2	A1+	
P0.1	1	C3	1	A1+	
P0.2	144	A3	100	A2	
P0.3	143	A4	99	A2	
P0.4	142	B5	98	A2	
P0.5	141	A5	97	A2	
P0.6	140	A6	96	A2	
P0.7	128	B7	89	A2	After a system reset, via HWSEL this pin selects the DB.TDI function.
P0.8	127	A8	88	A2	After a system reset, via HWSEL this pin selects the DB.TRST function, with a weak pull-down active.
P0.9	4	D4	4	A2	
P0.10	3	B4	3	A1+	

Table 9 Package Pin Mapping

Table 11 Port I/O Functions (cont'd)

Function		Outputs Inputs														
	ALT1	ALT2	ALT3	ALT4	HWO0	HWO1	HWIO	HWI1	Input	Input	Input	Input	Input	Input	Input	Input
P15.12												VADC. G3CH4				
P15.13												VADC. G3CH5				
P15.14												VADC. G3CH6				
P15.15												VADC. G3CH7				
USB_DP																
USB_DM																
HIB_IO_0	HIBOUT	WWDT. SERVICE_OUT							WAKEUPA							
HIB_IO_1	HIBOUT	WWDT. SERVICE_OUT							WAKEUPB							
тск							DB.TCK/ SWCLK									
TMS					DB.TMS/ SWDIO											
PORST																
XTAL1									U0C0. DX0F	U0C1. DX0F	U1C0. DX0F	U1C1. DX0F	U2C0. DX0F	U2C1. DX0F		
XTAL2																
RTC_XTAL1											ERU0. 1B1					
RTC_XTAL2																

Data Sheet

Infineon

Figure 10 Absolute Maximum Input Voltage Ranges

3.1.3 Pin Reliability in Overload

When receiving signals from higher voltage devices, low-voltage devices experience overload currents and voltages that go beyond their own IO power supplies specification.

 Table 13 defines overload conditions that will not cause any negative reliability impact if all the following conditions are met:

- full operation life-time is not exceeded
- Operating Conditions are met for
 - pad supply levels (V_{DDP} or V_{DDA})
 - temperature

If a pin current is outside of the **Operating Conditions** but within the overload conditions, then the parameters of this pin as stated in the Operating Conditions can no longer be guaranteed. Operation is still possible in most cases but with relaxed parameters.

Note: An overload condition on one or more pins does not require a reset.

Note: A series resistor at the pin to limit the current to the maximum permitted overload current is sufficient to handle failure situations like short to battery.

38

3.2 DC Parameters

3.2.1 Input/Output Pins

The digital input stage of the shared analog/digital input pins is identical to the input stage of the standard digital input/output pins.

The Pull-up on the PORST pin is identical to the Pull-up on the standard digital input/output pins.

Note: These parameters are not subject to production test, but verified by design and/or characterization.

Parameter	Symbol	Va	lues	Unit	Note / Test Condition	
		Min.	Ma	х.		
Pin capacitance (digital inputs/outputs)	$C_{\rm IO}$ CC	-	10	pF		
Pull-down current	$ I_{\rm PDL} $	150	-	μA	$^{1)}V_{\rm IN} \ge 0.6 \times V_{\rm DDP}$	
	CC	-	10	μA	$^{2)}V_{\mathrm{IN}} \leq 0.36 imes V_{\mathrm{DDP}}$	
Pull-Up current	$ I_{\rm PUH} $	-	10	μA	$^{2)}V_{\mathrm{IN}} \ge 0.6 \times V_{\mathrm{DDP}}$	
	CC	100	-	μA	$^{1)}V_{\mathrm{IN}} \leq 0.36 imes V_{\mathrm{DDP}}$	
Input Hysteresis for pads of all A classes ³⁾	HYSA CC	$0.1 \times V_{\text{DDP}}$	-	V		
PORST spike filter always blocked pulse duration	t _{SF1} CC	-	10	ns		
PORST spike filter pass-through pulse duration	t _{SF2} CC	100	-	ns		
PORST pull-down current	I _{PPD} CC	13	-	mA	V _{IN} = 1.0 V	

Table 19 Standard Pad Parameters

Current required to override the pull device with the opposite logic level ("force current").
 With active pull device, at load currents between force and keep current the input state is undefined.

Load current at which the pull device still maintains the valid logic level ("keep current").
 With active pull device, at load currents between force and keep current the input state is undefined.

 Hysteresis is implemented to avoid metastable states and switching due to internal ground bounce. It can not be guaranteed that it suppresses switching due to external system noise.

43

Table 20 Standard Pads Class_A1

Parameter	Symbol	Va	lues	Unit	Note /
		Min.	Max.		Test Condition
Input leakage current	I _{OZA1} CC	-500	500	nA	$0 \text{ V} \leq V_{\text{IN}} \leq V_{\text{DDP}}$
Input high voltage	$V_{\rm IHA1}{\rm SR}$	$0.6 \times V_{\rm DDP}$	V_{DDP} + 0.3	V	max. 3.6 V
Input low voltage	$V_{\rm ILA1}~{\rm SR}$	-0.3	$0.36 \times V_{\text{DDP}}$	V	
Output high voltage,	V_{OHA1}	$V_{\rm DDP}$ - 0.4	-	V	$I_{OH} \ge$ -400 μ A
$POD^{1} = weak$	CC	2.4	-	V	<i>I</i> _{OH} ≥ -500 μA
Output high voltage,	-	V _{DDP} - 0.4	-	V	$I_{OH} \ge -1.4 \text{ mA}$
$POD^{1} = medium$		2.4	-	V	I _{OH} ≥ -2 mA
Output low voltage	V _{OLA1} CC	-	0.4	V	$I_{OL} \le 500 \ \mu A;$ POD ¹⁾ = weak
		-	0.4	V	$I_{OL} \le 2 \text{ mA};$ POD ¹⁾ = medium
Fall time	t _{FA1} CC	-	150	ns	$C_{L} = 20 \text{ pF};$ POD ¹⁾ = weak
		-	50	ns	$C_{L} = 50 \text{ pF};$ POD ¹⁾ = medium
Rise time	t _{RA1} CC	-	150	ns	$C_{\rm L}$ = 20 pF; POD ¹⁾ = weak
		-	50	ns	$C_{L} = 50 \text{ pF};$ POD ¹⁾ = medium

1) POD = Pin Out Driver

Table 21 Standard Pads Class_A1+

Parameter	Symbol	Va	alu	ies	Unit	Note /	
		Min.		Max.		Test Condition	
Input leakage current	I _{OZA1+} CC	-1		1	μΑ	$0 \text{ V} \leq V_{\text{IN}} \leq V_{\text{DDP}}$	
Input high voltage	$V_{\rm IHA1+}\rm SR$	$0.6 \times V_{\rm DDP}$		V_{DDP} + 0.3	V	max. 3.6 V	
Input low voltage	$V_{\rm ILA1+}\rm SR$	-0.3		$0.36 \times V_{\rm DDP}$	V		

3.2.2 Analog to Digital Converters (VADC)

Note: These parameters are not subject to production test, but verified by design and/or characterization.

Parameter	Symbol	-	Values	S	Unit	Note /	
		Min.	Тур.	Max.	-	Test Condition	
Analog reference voltage ⁵⁾	V_{AREF} SR	V _{AGND} + 1	-	$V_{\rm DDA}^{}+$ 0.05 ¹⁾	V		
Analog reference ground ⁵⁾	$V_{ m AGND}$ SR	V _{SSM} - 0.05	-	V _{AREF} - 1	V		
Analog reference voltage range ²⁾⁵⁾	V_{AREF} - V_{AGND} SR	1	-	V _{DDA} + 0.1	V		
Analog input voltage	$V_{\rm AIN}~{\rm SR}$	$V_{\rm AGND}$	-	V_{DDA}	V		
Input leakage at analog inputs ³⁾	I _{OZ1} CC	-100	-	200	nA	$\begin{array}{l} 0.03 \times V_{\rm DDA} < \\ V_{\rm AIN} < 0.97 \times V_{\rm DDA} \end{array}$	
		-500	-	100	nA	$\begin{array}{l} 0 \ V \leq V_{AIN} \leq 0.03 \\ \times \ V_{DDA} \end{array}$	
		-100	-	500	nA	$\begin{array}{l} \textbf{0.97} \times V_{DDA} \\ \leq V_{AIN} \leq V_{DDA} \end{array}$	
Input leakage current at VAREF	I _{OZ2} CC	-1	-	1	μA	$0 V \le V_{AREF} \le V_{DDA}$	
Input leakage current at VAGND	I _{OZ3} CC	-1	-	1	μA	$\begin{array}{l} 0 \ V \leq V_{AGND} \\ \leq V_{DDA} \end{array}$	
Internal ADC clock	$f_{\sf ADCI}\sf CC$	2	-	30	MHz	$V_{\rm DDA}$ = 3.3 V	
Switched capacitance at the analog voltage inputs ⁴⁾	C _{AINSW} CC	-	7	20	pF		
Total capacitance of an analog input	C _{AINTOT} CC	-	25	30	pF		
Switched capacitance at the positive reference voltage input ⁵⁾⁶⁾	C_{AREFSW} CC	-	15	30	pF		
Total capacitance of the voltage reference inputs ⁵⁾	C_{AREFTOT} CC	-	20	40	pF		

Table 23	VADC Parameters	(Operating Conditions apply)
----------	-----------------	------------------------------

3.2.3 Digital to Analog Converters (DAC)

Note: These parameters are not subject to production test, but verified by design and/or characterization.

Parameter	Symbol		Value	S	Unit	Note /	
		Mi	n. Typ.	Max.	_	Test Condition	
RMS supply current	I _{DD} CC	-	2.5	4	mA	per active DAC channel, without load currents of DAC outputs	
Resolution	RES C	C –	12	-	Bit		
Update rate	f _{URATE_A} CO	C –		2	Msam ple/s	data rate, where DAC can follow 64 LSB code jumps to ± 1LSB accuracy	
Update rate	$f_{URATE_F}C$	C –		5	Msam ple/s	data rate, where DAC can follow 64 LSB code jumps to ± 4 LSB accuracy	
Settling time	t _{settle} Co	C –	1	2	μs	at full scale jump, output voltage reaches target value ± 20 LSB	
Slew rate	SR CC	2	5	-	V/µs		
Minimum output voltage	V _{OUT_MIN} CC	-	0.3	-	V	code value unsigned: 000 _H ; signed: 800 _H	
Maximum output voltage	V _{OUT_MAX} CC	-	2.5	-	V	code value unsigned: FFF _H ; signed: 7FF _H	
Integral non-linearity	INL C	C -4	±2.5	4	LSB	$\begin{array}{l} R_L \geq 5 \text{ kOhm,} \\ C_L \leq 50 \text{ pF} \end{array}$	
Differential non- linearity	DNL C	C -2	±1	2	LSB	$\begin{array}{l} R_L \geq 5 \text{ kOhm}, \\ C_L \leq 50 \text{ pF} \end{array}$	

Table 25	DAC Parameters	(Operating	Conditions	apply)
		(e p e · a	00	~~~/

Parameter	Symbol		Values		Unit	Note /	
		Min.	Тур.	yp. Max.		Test Condition	
Input frequency	$f_{\rm OSC}$ SR	_	32.768	-	kHz		
Oscillator start-up time ¹⁾²⁾³⁾	t _{OSCS} CC	-	-	5	S		
Input voltage at RTC_XTAL1	V _{IX} SR	-0.3	-	V _{BAT} + 0.3	V		
Input amplitude (peak- to-peak) at RTC_XTAL1 ²⁾⁴⁾	$V_{PPX}SR$	0.4	-	_	V		
Input high voltage at RTC_XTAL1 ⁵⁾	$V_{\rm IHBX} {\rm SR}$	$0.6 imes V_{BAT}$	-	V _{BAT} + 0.3	V		
Input low voltage at RTC_XTAL1 ⁵⁾	$V_{\rm ILBX}{\rm SR}$	-0.3	-	$0.36 imes V_{BAT}$	V		
Input Hysteresis for RTC_XTAL1 ⁵⁾⁶⁾	V _{HYSX} CC	$0.1 imes V_{BAT}$		-	V	$3.0 \text{ V} \le V_{\text{BAT}} < 3.6 \text{ V}$	
		$0.03 imes V_{BAT}$		-	V	V _{BAT} < 3.0 V	
Input leakage current at RTC_XTAL1	I _{ILX1} CC	-100	-	100	nA	Oscillator power down $0 \forall \leq V_{VX} \leq V_{DAT}$	

Table 31 RTC_XTAL Parameters

 t_{OSCS} is defined from the moment the oscillator is enabled by the user with SCU_OSCULCTRL.MODE until the oscillations reach an amplitude at RTC_XTAL1 of 400 mV.

 The external oscillator circuitry must be optimized by the customer and checked for negative resistance and amplitude as recommended and specified by crystal suppliers.

- 3) For a reliable start of the oscillation in crystal mode it is required that $V_{BAT} \ge 3.0$ V. A running oscillation is maintained across the full V_{BAT} voltage range.
- 4) If the shaper unit is enabled and not bypassed.
- 5) If the shaper unit is bypassed, dedicated DC-thresholds have to be met.
- 6) Hysteresis is implemented to avoid metastable states and switching due to internal ground bounce. It can not be guaranteed that it suppresses switching due to external system noise.

3.3 AC Parameters

3.3.1 Testing Waveforms

Figure 23 Testing Waveform, Output Delay

Figure 24 Testing Waveform, Output High Impedance

3.3.2 Power-Up and Supply Monitoring

PORST is always asserted when V_{DDP} and/or V_{DDC} violate the respective thresholds.

Note: These parameters are not subject to production test, but verified by design and/or characterization.

Figure 25 PORST Circuit

Table 34	Supply Mo	onitoring	Parameters
----------	-----------	-----------	------------

Parameter	Symbol		Values			Note /	
		Min.	Тур.	Max.		Test Condition	
Digital supply voltage reset threshold	V _{POR} CC	2.79 ¹⁾	-	3.05 ²⁾	V	3)	
Core supply voltage reset threshold	V _{PV} CC	-	-	1.17	V		
V_{DDP} voltage to ensure defined pad states	V _{DDPPA} CC	-	1.0	-	V		
PORST rise time	t _{PR} SR	-	_	2	μS	4)	
Startup time from power-on reset with code execution from Flash	t _{SSW} CC	-	2.5	3.5	ms	Time to the first user code instruction	
$V_{ m DDC}$ ramp up time	t _{VCR} CC	-	550	_	μS	Ramp up after power-on or after a reset triggered by a violation of V _{POR} or V _{PV}	

1) Minimum threshold for reset assertion.

- 2) Maximum threshold for reset deassertion.
- 3) The V_{DDP} monitoring has a typical hysteresis of V_{PORHYS} = 180 mV.
- If t_{PR} is not met, low spikes on PORST may be seen during start up (e.g. reset pulses generated by the supply monitoring due to a slow ramping V_{DDP}).

Figure 26 Power-Up Behavior

3.3.3 Power Sequencing

While starting up and shutting down as well as when switching power modes of the system it is important to limit the current load steps. A typical cause for such load steps is changing the CPU frequency $f_{\rm CPU}$. Load steps exceeding the below defined values may cause a power on reset triggered by the supply monitor.

Note: These parameters are not subject to production test, but verified by design and/or characterization.

3.3.5 Internal Clock Source Characteristics

Fast Internal Clock Source

Parameter	Symbol		Values		Unit	Note / Test Condition	
		Min.	Тур.	Max.			
Nominal frequency	$f_{\rm OFINC}$	-	36.5	-	MHz	not calibrated	
	CC	-	24	-	MHz	calibrated	
Accuracy	∆f _{OFI} CC	-0.5	-	0.5	%	automatic calibration ¹⁾²⁾	
		-15	-	15	%	factory calibration, $V_{\text{DDP}} = 3.3 \text{ V}$	
		-25	-	25	%	no calibration, $V_{\rm DDP}$ = 3.3 V	
		-7	_	7	%	Variation over voltage range ³⁾ $3.13 V \le V_{DDP} \le$ 3.63 V	
Start-up time	t _{OFIS} CC	-	50	-	μS		

Table 37 Fast Internal Clock Parameters

1) Error in addition to the accuracy of the reference clock.

2) Automatic calibration compensates variations of the temperature and in the V_{DDP} supply voltage.

3) Deviations from the nominal V_{DDP} voltage induce an additional error to the uncalibrated and/or factory calibrated oscillator frequency.

Note: These parameters are not subject to production test, but verified by design and/or characterization.

NO CIOCK DEIAY:		(7)
	$t_{ODLY_H} + t_{DATA_DELAY} + t_{TAP_DELAY} + t_{ISU} < t_{WL}$	
With clock delay:		(-)
	$t_{ODLY_H} + t_{DATA_DELAY} + t_{TAP_DELAY} + t_{ISU} < t_{WL} + t_{CLK_DELAY}$	(8)
		(9)
	$t_{DATA_DELAY} + t_{TAP_DELAY} - t_{CLK_DELAY} < t_{WL} - t_{ISU} - t_{ODLY_H}$	
	$t_{DATA_DELAY} - t_{CLK_DELAY} < t_{WL} - t_{ISU} - t_{ODLY_H} - t_{TAP_DELAY}$	
	$t_{DATA_DELAY} - t_{CLK_DELAY} < 10 - 6 - 14 - t_{TAP_DELAY}$	
	$t_{DATA_DELAY} - t_{CLK_DELAY} < -10 - t_{TAP_DELAY}$	

The data delay is less than the clock delay by at least 10 ns in the ideal case where t_{WL} = 10 ns.

High-Speed Write Meeting Hold (Minimum Delay)

The following equations show how to calculate the allowed skew range between the SD_CLK and SD_DAT/CMD signals on the PCB.

(10)

 $t_{\mathrm{CLK_DELAY}} < t_{WL} + t_{\mathrm{OH_H}} + t_{\mathrm{DATA_DELAY}} + t_{\mathrm{TAP_DELAY}} - t_{\mathrm{IH}}$

 $t_{\mathrm{CLK_DELAY}} - t_{\mathrm{DATA_DELAY}} < t_{\mathrm{WL}} + t_{\mathrm{OH_H}} + t_{\mathrm{TAP_DELAY}} - t_{\mathrm{IH}}$

 $t_{\mathrm{CLK_DELAY}} - t_{\mathrm{DATA_DELAY}} < 10 + 2 + t_{\mathrm{TAP_DELAY}} - 2$

 $t_{\rm CLK_DELAY} - t_{\rm DATA_DELAY} < 10 + t_{\rm TAP_DELAY}$

The clock can be delayed versus data up to 13.2 ns (external delay line) in ideal case of t_{WL} = 10 ns, with maximum $t_{TAP DELAY}$ = 3.2 ns programmed.

Write Timing

Table 55 Asynchronous Write Timing, Multiplexed and Demultiplexed

Parameter			Symbol	Limit \	Unit	
				Min.	Max.	
A(24:0) output delay	to RD/WR rising	CC	t ₃₀	-2.5	2.5	ns
A(24:0) output delay	edge, deviation from	CC	t ₃₁	-2.5	2.5	
CS rising edge	- the ideal programmed _ value. 	CC	t ₃₂	-2	2	
ADV rising edge		CC	t ₃₃	-2	4.5	
BC rising edge		CC	t ₃₄	-2.5	2	
WAIT input setup		SR	t ₃₅	12	-	
WAIT input hold		SR	t ₃₆	0	-	
Data output delay		CC	t ₃₇	-5.5	2	
Data output delay		CC	t ₃₈	-5.5	2	
RD / WR output delay		CC	t ₃₉	-2.5	1.5	

3.3.10.4 EBU SDRAM Access Timing

- Note: These parameters are not subject to production test, but verified by design and/or characterization.
- Note: Operating Conditions apply, with Class A2 pins and $C_1 = 16 \text{ pF}$.

Table 58 EBU SDRAM Access SDCLKO Signal Timing Parameters

Parameter	Symbol			Values	Unit	Note /	
			Min.	Тур.	Max.		Test Con dition
SDCLKO period	<i>t</i> ₁	CC	12.5	-	-	ns	-
SDCLKO high time	<i>t</i> ₂	SR	5.5	-	-	ns	-
SDCLKO low time	t_3	SR	3.75	-	-	ns	-
SDCLKO rise time	<i>t</i> ₄	SR	-	-	3.0	ns	-
SDCLKO fall time	t_5	SR	-	-	3.0	ns	-

Figure 47 EBU SDRAM Access CLKOUT Timing

3.3.12.4 ETH RMII Parameters

In the following, the parameters of the RMII (Reduced Media Independent Interface) are described.

Table 63	ETH RMII	Signal	Timing	Parameters

Parameter		Symbol		Value	S	Unit	Note /
			Min.	Тур.	Max.		Test Condit ion
ETH_RMII_REF_CL clock period	t ₁₃	SR	20	-	_	ns	C _L = 25 pF; 50 ppm
ETH_RMII_REF_CL clock high time	t ₁₄	SR	7	-	13	ns	C _L = 25 pF
ETH_RMII_REF_CL clock low time	t ₁₅	SR	7	-	13	ns	
ETH_RMII_RXD[1:0], ETH_RMII_CRS setup time	t ₁₆	SR	4	-	_	ns	
ETH_RMII_RXD[1:0], ETH_RMII_CRS hold time	t ₁₇	SR	2	-	_	ns	
ETH_RMII_TXD[1:0], ETH_RMII_TXEN data valid	t ₁₈	СС	4	-	15	ns	

Figure 54 ETH RMII Signal Timing