

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFl

Details	
Product Status	Active
Core Processor	ARM® Cortex®-M4
Core Size	32-Bit Single-Core
Speed	120MHz
Connectivity	EBI/EMI, I ² C, LINbus, SPI, UART/USART
Peripherals	DMA, I ² S, LED, POR, PWM, WDT
Number of I/O	91
Program Memory Size	512KB (512K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	128K x 8
Voltage - Supply (Vcc/Vdd)	3.13V ~ 3.63V
Data Converters	A/D 32x12b; D/A 2x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	144-LQFP Exposed Pad
Supplier Device Package	PG-LQFP-144-18
Purchase URL	https://www.e-xfl.com/product-detail/infineon-technologies/xmc4504f144k512acxqma1

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Summary of Features

• Flexible CRC Engine (FCE) for multiple bit error detection

On-Chip Memories

- 16 KB on-chip boot ROM
- 64 KB on-chip high-speed program memory
- 64 KB on-chip high speed data memory
- 32 KB on-chip high-speed communication
- 1024 KB on-chip Flash Memory with 4 KB instruction cache

Communication Peripherals

- Ethernet MAC module capable of 10/100 Mbit/s transfer rates
- Universal Serial Bus, USB 2.0 host, Full-Speed OTG, with integrated PHY
- Controller Area Network interface (MultiCAN), Full-CAN/Basic-CAN with 3 nodes, 64 message objects (MO), data rate up to 1MBit/s
- Six Universal Serial Interface Channels (USIC), providing 6 serial channels, usable as UART, double-SPI, quad-SPI, IIC, IIS and LIN interfaces
- LED and Touch-Sense Controller (LEDTS) for Human-Machine interface
- SD and Multi-Media Card interface (SDMMC) for data storage memory cards
- External Bus Interface Unit (EBU) enabling communication with external memories and off-chip peripherals

Analog Frontend Peripherals

- Four Analog-Digital Converters (VADC) of 12-bit resolution, 8 channels each, with input out-of-range comparators
- Delta Sigma Demodulator with four channels, digital input stage for A/D signal conversion
- Digital-Analogue Converter (DAC) with two channels of 12-bit resolution

Industrial Control Peripherals

- Two Capture/Compare Units 8 (CCU8) for motor control and power conversion
- Four Capture/Compare Units 4 (CCU4) for use as general purpose timers
- Two Position Interfaces (POSIF) for servo motor positioning
- Window Watchdog Timer (WDT) for safety sensitive applications
- Die Temperature Sensor (DTS)
- Real Time Clock module with alarm support
- System Control Unit (SCU) for system configuration and control

General Device Information

Table 9	Package F	Package Pin Mapping (cont'd)									
Function	LQFP-144	LFBGA-144	LQFP-100	Pad Type	Notes						
P0.11	139	E5	95	A1+							
P0.12	138	D5	94	A1+							
P0.13	137	C5	-	A1+							
P0.14	136	E6	-	A1+							
P0.15	135	C6	-	A1+							
P1.0	112	D9	79	A1+							
P1.1	111	E9	78	A1+							
P1.2	110	C11	77	A2							
P1.3	109	C12	76	A2							
P1.4	108	C10	75	A1+							
P1.5	107	D10	74	A1+							
P1.6	116	B9	83	A2							
P1.7	115	B10	82	A2							
P1.8	114	A10	81	A2							
P1.9	113	B11	80	A2							
P1.10	106	D12	73	A1+							
P1.11	105	D11	72	A1+							
P1.12	104	E11	71	A2							
P1.13	103	E12	70	A2							
P1.14	102	E10	69	A2							
P1.15	94	G12	68	A2							
P2.0	74	J11	52	A2							
P2.1	73	K12	51	A2	After a system reset, via HWSEL this pin selects the DB.TDO function.						
P2.2	72	K11	50	A2							
P2.3	71	L11	49	A2							
P2.4	70	L10	48	A2							
P2.5	69	M10	47	A2							
P2.6	76	J9	54	A1+							
P2.7	75	K9	53	A1+							
P2.8	68	L9	46	A2							
P2.9	67	M9	45	A2							

Data Sheet

General Device Information

Table 9	Package F	Package Pin Mapping (cont'd)									
Function	LQFP-144	LFBGA-144	LQFP-100	Pad Type	Notes						
P2.10	66	L8	44	A2							
P2.11	65	M8	-	A2							
P2.12	64	L7	-	A2							
P2.13	63	M7	-	A2							
P2.14	60	K7	41	A2							
P2.15	59	J6	40	A2							
P3.0	7	C1	7	A2							
P3.1	6	B2	6	A2							
P3.2	5	B3	5	A2							
P3.3	132	F7	93	A1+							
P3.4	131	E7	92	A1+							
P3.5	130	B6	91	A2							
P3.6	129	A7	90	A2							
P3.7	14	E4	-	A1+							
P3.8	13	E3	-	A1+							
P3.9	12	F5	-	A1+							
P3.10	11	F6	-	A1+							
P3.11	10	D3	-	A1+							
P3.12	9	D2	-	A2							
P3.13	8	C2	-	A2							
P3.14	134	D6	-	A1+							
P3.15	133	D7	-	A1+							
P4.0	124	B8	85	A2							
P4.1	123	A9	84	A2							
P4.2	122	E8	-	A1+							
P4.3	121	F8	-	A1+							
P4.4	120	C7	-	A1+							
P4.5	119	D8	-	A1+							
P4.6	118	C8	-	A1+							
P4.7	117	C9	-	A1+							
P5.0	84	H9	58	A1+							
P5.1	83	H8	57	A1+							
P5.2	82	H7	56	A1+							

General Device Information

Function	LQFP-144	LFBGA-144	LQFP-100	Pad Type	Notes
VSSO	89	J12	63	Power	
VSS	Exp. Pad	-	Exp. Pad	Power	Exposed Die Pad The exposed die pad is connected internally to VSS. For proper operation, it is mandatory to connect the exposed pad directly to the common ground on the board. For thermal aspects, please refer to the Data Sheet. Board layout examples are given in an application note.

Table 9 Package Pin Mapping (cont'd)

Table 11 Port I/O Functions (cont'd)

Function	Outputs						Inputs									
	ALT1	ALT2	ALT3	ALT4	HWO0	HWO1	HWIO	HWI1	Input	Input	Input	Input	Input	Input	Input	Input
21.5	CAN. N1_TXD	U0C0. DOUTO	CCU80. OUT23	CCU81. OUT10	U0C0. DOUTO		U0C0. HWIN0		UOCO. DXOA	CAN. NO_RXDA	ERU0. 2A0	ERU1. 0A0	CCU41. IN1C	DSD. DIN2B		
1.6		U0C0. SCLKOUT			SDMMC. DATA1_OUT	EBU. AD10	SDMMC. DATA1_IN	EBU. D10	DSD. DIN2A							
1.7		UOCO. DOUTO	DSD. MCLK2		SDMMC. DATA2_OUT	EBU. AD11	SDMMC. DATA2_IN	EBU. D11		DSD. MCLK2A						
1.8		U0C0. SELO1	DSD. MCLK1		SDMMC. DATA4_OUT	EBU. AD12	SDMMC. DATA4_IN	EBU. D12	CAN. N2_RXDA	DSD. MCLK1A						
1.9		CAN. N2_TXD			SDMMC. DATA5_OUT	EBU. AD13	SDMMC. DATA5_IN	EBU. D13		DSD. MCLK0A						
91.10	ETH0. MDC	U0C0. SCLKOUT	CCU81. OUT21				SDMMC. SDCD						CCU41. IN2C			
4.11		U0C0. SELO0	CCU81. OUT11		ETH0. MDO		ETH0. MDIC						CCU41. IN3C			
21.12	ETH0. TX_EN	CAN. N1_TXD	CCU81. OUT01		SDMMC. DATA6_OUT	EBU. AD16	SDMMC. DATA6_IN	EBU. D16								
21.13	ETH0. TXD0	U0C1. SELO3	CCU81. OUT20		SDMMC. DATA7_OUT	EBU. AD17	SDMMC. DATA7_IN	EBU. D17	CAN. N1_RXDC							
21.14	ETH0. TXD1	U0C1. SELO2	CCU81. OUT10			EBU. AD18		EBU. D18								
21.15	SCU. EXTCLK	DSD. MCLK2	CCU81. OUT00			EBU. AD19		EBU. D19		DSD. MCLK2B		ERU1. 1A0				
2.0		CCU81. OUT21	DSD. CGPWMN	LEDTS0. COL1	ETH0. MDO	EBU. AD20	ETH0. MDIB	EBU. D20			ERU0. 0B3		CCU40. IN1C			
2.1		CCU81. OUT11	DSD. CGPWMP	LEDTS0. COL0	DB.TDO/ TRACESWO	EBU. AD21		EBU. D21	ETH0. CLK_RMIIA			ERU1. 0B0	CCU40. IN0C			ETH0. CLKRXA
2.2	VADC. EMUX00	CCU81. OUT01	CCU41. OUT3	LEDTS0. LINE0	LEDTS0. EXTENDED0	EBU. AD22	LEDTS0. TSIN0A	EBU. D22	ETH0. RXD0A	U0C1. DX0A	ERU0. 1B2		CCU41. IN3A			
2.3	VADC. EMUX01	U0C1. SELO0	CCU41. OUT2	LEDTS0. LINE1	LEDTS0. EXTENDED1	EBU. AD23	LEDTS0. TSIN1A	EBU. D23	ETH0. RXD1A	U0C1. DX2A	ERU0. 1A2	POSIF1. IN2A	CCU41. IN2A			
2.4	VADC. EMUX02	U0C1. SCLKOUT	CCU41. OUT1	LEDTS0. LINE2	LEDTS0. EXTENDED2	EBU. AD24	LEDTS0. TSIN2A	EBU. D24	ETH0. RXERA	U0C1. DX1A	ERU0. 0B2	POSIF1. IN1A	CCU41. IN1A			
2.5	ETH0. TX_EN	U0C1. DOUT0	CCU41. OUT0	LEDTS0. LINE3	LEDTS0. EXTENDED3	EBU. AD25	LEDTS0. TSIN3A	EBU. D25	ETH0. RXDVA	U0C1. DX0B	ERU0. 0A2	POSIF1. IN0A	CCU41. INDA			ETH0. CRS_DVA
2.6	U2C0. SELO4		CCU80. OUT13	LEDTS0. COL3	U2C0. DOUT3		U2C0. HWIN3		DSD. DIN1B	CAN. N1_RXDA	ERU0. 1B3		CCU40. IN3C			
2.7	ETH0. MDC	CAN. N1_TXD	CCU80. OUT03	LEDTS0. COL2					DSD. DIN0B			ERU1. 1B0	CCU40. IN2C			
2.8	ETH0. TXD0		CCU80. OUT32	LEDTS0. LINE4	LEDTS0. EXTENDED4	EBU. AD26	LEDTS0. TSIN4A	EBU. D26	DAC. TRIGGER5				CCU40. IN0B	CCU40. IN1B	CCU40. IN2B	CCU40. IN3B
2.9	ETH0. TXD1		CCU80. OUT22	LEDTS0. LINE5	LEDTS0. EXTENDED5	EBU. AD27	LEDTS0. TSIN5A	EBU. D27	DAC. TRIGGER4				CCU41. IN0B	CCU41. IN1B	CCU41. IN2B	CCU41. IN3B
2.10	VADC. EMUX10				DB. ETM_TRACEDA TA3	EBU. AD28		EBU. D28								
2.11	ETH0. TXER		CCU80. OUT22		DB. ETM_TRACEDA TA2	EBU. AD29		EBU. D29								

Infineon

Data Sheet

XMC4500 XMC4000 Family

2.3 Power Connection Scheme

Figure 9. shows a reference power connection scheme for the XMC4500.

Figure 9 Power Connection Scheme

Every power supply pin needs to be connected. Different pins of the same supply need also to be externally connected. As example, all $V_{\rm DDP}$ pins must be connected externally to one $V_{\rm DDP}$ net. In this reference scheme one 100 nF capacitor is connected at each supply pin against $V_{\rm SS}$. An additional 10 µF capacitor is connected to the $V_{\rm DDP}$ nets and an additional 10 µF capacitor to the $V_{\rm DDP}$ nets.

3 Electrical Parameters

3.1 General Parameters

3.1.1 Parameter Interpretation

The parameters listed in this section partly represent the characteristics of the XMC4500 and partly its requirements on the system. To aid interpreting the parameters easily when evaluating them for a design, they are marked with a two-letter abbreviation in column "Symbol":

• CC

Such parameters indicate Controller Characteristics, which are a distinctive feature of the XMC4500 and must be regarded for system design.

• SR

Such parameters indicate **S**ystem **R**equirements, which must be provided by the application system in which the XMC4500 is designed in.

3.1.2 Absolute Maximum Ratings

Stresses above the values listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions may affect device reliability.

Parameter	Symb	loo		Va	lues	Unit	Note /
			Min.	Тур.	Max.		Test Con dition
Storage temperature	$T_{\rm ST}$	SR	-65	-	150	°C	-
Junction temperature	T_{J}	SR	-40	-	150	°C	-
Voltage at 3.3 V power supply pins with respect to $V_{\rm SS}$	V_{DDP}	SR	-	-	4.3	V	-
Voltage on any Class A and dedicated input pin with respect to $V_{\rm SS}$	V _{IN}	SR	-1.0	-	V _{DDP} + 1.0 or max. 4.3	V	whichever is lower
Voltage on any analog input pin with respect to V_{AGND}	V_{AIN} V_{AREF}	SR	-1.0	-	V _{DDP} + 1.0 or max. 4.3	V	whichever is lower
Input current on any pin during overload condition	I _{IN}	SR	-10	-	+10	mA	
Absolute maximum sum of all input circuit currents for one port group during overload condition ¹⁾	$\Sigma I_{\rm IN}$	SR	-25	-	+25	mA	
Absolute maximum sum of all input circuit currents during overload condition	$\Sigma I_{\rm IN}$	SR	-100	-	+100	mA	

Table 12 Absolute Maximum Rating Parameters

1) The port groups are defined in **Table 16**.

Figure 10 explains the input voltage ranges of $V_{\rm IN}$ and $V_{\rm AIN}$ and its dependency to the supply level of $V_{\rm DDP}$. The input voltage must not exceed 4.3 V, and it must not be more than 1.0 V above $V_{\rm DDP}$. For the range up to $V_{\rm DDP}$ + 1.0 V also see the definition of the overload conditions in Section 3.1.3.

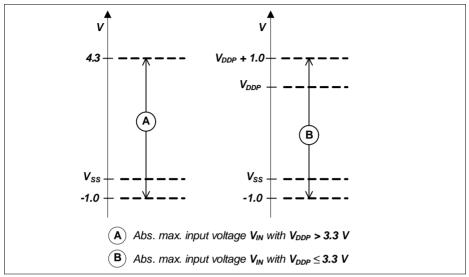


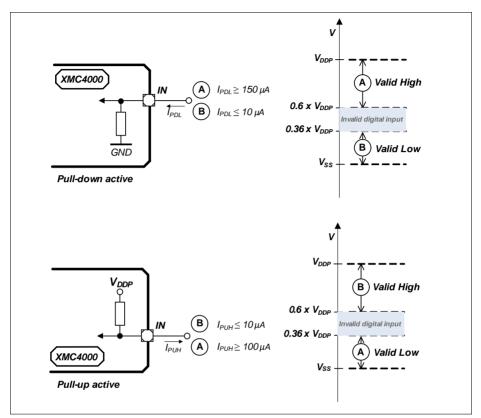
Figure 10 Absolute Maximum Input Voltage Ranges

3.1.3 Pin Reliability in Overload

When receiving signals from higher voltage devices, low-voltage devices experience overload currents and voltages that go beyond their own IO power supplies specification.

 Table 13 defines overload conditions that will not cause any negative reliability impact if all the following conditions are met:

- full operation life-time is not exceeded
- Operating Conditions are met for
 - pad supply levels (V_{DDP} or V_{DDA})
 - temperature


If a pin current is outside of the **Operating Conditions** but within the overload conditions, then the parameters of this pin as stated in the Operating Conditions can no longer be guaranteed. Operation is still possible in most cases but with relaxed parameters.

Note: An overload condition on one or more pins does not require a reset.

Note: A series resistor at the pin to limit the current to the maximum permitted overload current is sufficient to handle failure situations like short to battery.

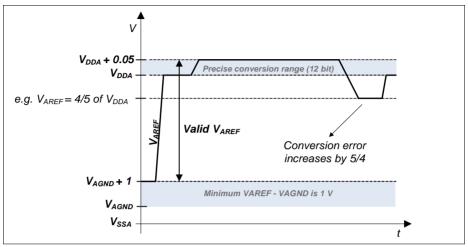
38

Figure 13 Pull Device Input Characteristics

Figure 13 visualizes the input characteristics with an active internal pull device:

- in the cases "A" the internal pull device is overridden by a strong external driver;
- in the cases "B" the internal pull device defines the input logical state against a weak external load.

Parameter	Symbol		Value	S	Unit	Note /	
		Min.	Тур.	Max.		Test Condition	
Total Unadjusted Error	TUE CC	-4	-	4	LSB	12-bit resolution;	
Differential Non-Linearity Error ⁸⁾	EA _{DNL} CC	-3	-	3	LSB	$V_{\text{DDA}} = 3.3 \text{ V};$ $V_{\text{AREF}} = V_{\text{DDA}}^{7)}$	
Gain Error ⁸⁾	EA _{GAIN} CC	-4	-	4	LSB		
Integral Non-Linearity ⁸⁾	EA _{INL} CC	-3	-	3	LSB		
Offset Error ⁸⁾	EA _{OFF} CC	-4	-	4	LSB		
Worst case ADC V_{DDA} power supply current per active converter	I _{DDAA} CC	-	1.5	2	mA	during conversion $V_{\text{DDP}} = 3.6 \text{ V},$ $T_{\text{J}} = 150 \text{ °C}$	
Charge consumption on V_{AREF} per conversion ⁵⁾	$\begin{array}{c} Q_{\rm CONV} \\ { m CC} \end{array}$	-	30	-	рС	$0 V \le V_{AREF} \le V_{DDA}^{9)}$	
ON resistance of the analog input path	R _{AIN} CC	-	700	1 700	Ohm		
ON resistance for the ADC test (pull down for AIN7)	R _{AIN7T} CC	180	550	900	Ohm		
Resistance of the reference voltage input path	R _{AREF} CC	-	700	1 700	Ohm		


Table 23 VADC Parameters (Operating Conditions apply)

1) A running conversion may become imprecise in case the normal conditions are violated (voltage overshoot).

 If the analog reference voltage is below V_{DDA}, then the ADC converter errors increase. If the reference voltage is reduced by the factor k (k<1), TUE, DNL, INL, Gain, and Offset errors increase also by the factor 1/k.

- 3) The leakage current definition is a continuous function, as shown in figure ADCx Analog Inputs Leakage. The numerical values defined determine the characteristic points of the given continuous linear approximation they do not define step function (see Figure 16).
- 4) The sampling capacity of the conversion C-network is pre-charged to V_{AREF}/2 before the sampling moment. Because of the parasitic elements, the voltage measured at AINx can deviate from V_{AREF}/2.
- 5) Applies to AINx, when used as alternate reference input.
- 6) This represents an equivalent switched capacitance. This capacitance is not switched to the reference voltage at once. Instead, smaller capacitances are successively switched to the reference voltage.
- For 10-bit conversions, the errors are reduced to 1/4; for 8-bit conversions, the errors are reduced to 1/16. Never less than ±1 LSB.
- 8) The sum of DNL/INL/GAIN/OFF errors does not exceed the related total unadjusted error TUE.
- 9) The resulting current for a conversion can be calculated with $I_{AREF} = Q_{CONV} / t_c$. The fastest 12-bit post-calibrated conversion of $t_c = 550$ ns results in a typical average current of $I_{AREF} = 54.5 \ \mu$ A.

Figure 14 VADC Reference Voltage Range

The power-up calibration of the VADC requires a maximum number of 4 $352 f_{ADCI}$ cycles.

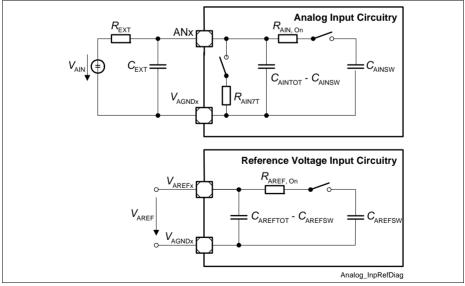
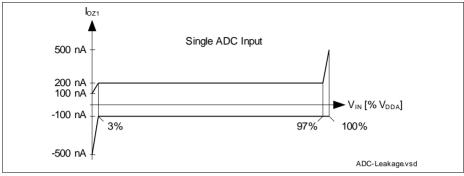



Figure 15 VADC Input Circuits

Figure 16 VADC Analog Input Leakage Current

Conversion Time

Table 24	Conversion Time	(Operating Conditions appl	V)
		Coporating contaitions appl	y /

Parameter Symbol		nbol	Values	Unit	Note
Conversion time	t _C	CC	$2 \times T_{ADC}$ + (2 + N + STC + PC +DM) × T_{ADCI}		N = 8, 10, 12 for N-bit conversion $T_{ADC} = 1 / f_{PERIPH}$ $T_{ADCI} = 1 / f_{ADCI}$

- STC defines additional clock cycles to extend the sample time
- · PC adds two cycles if post-calibration is enabled
- DM adds one cycle for an extended conversion time of the MSB

Conversion Time Examples

System assumptions:

 f_{ADC} = 120 MHz i.e. t_{ADC} = 8.33 ns, DIVA = 3, f_{ADCI} = 30 MHz i.e. t_{ADCI} = 33.3 ns

According to the given formulas the following minimum conversion times can be achieved (STC = 0, DM = 0):

12-bit post-calibrated conversion (PC = 2):

 $t_{\text{CN12C}} = (2 + 12 + 2) \times t_{\text{ADCI}} + 2 \times t_{\text{ADC}} = 16 \times 33.3 \text{ ns} + 2 \times 8.33 \text{ ns} = 550 \text{ ns}$

12-bit uncalibrated conversion:

 $t_{CN12} = (2 + 12) \times t_{ADCI} + 2 \times t_{ADC} = 14 \times 33.3 \text{ ns} + 2 \times 8.33 \text{ ns} = 483 \text{ ns}$

10-bit uncalibrated conversion:

 $t_{CN10} = (2 + 10) \times t_{ADCI} + 2 \times t_{ADC} = 12 \times 33.3 \text{ ns} + 2 \times 8.33 \text{ ns} = 417 \text{ ns}$

8-bit uncalibrated:

 $t_{CN8} = (2 + 8) \times t_{ADCI} + 2 \times t_{ADC} = 10 \times 33.3 \text{ ns} + 2 \times 8.33 \text{ ns} = 350 \text{ ns}$

3.2.8 Power Supply Current

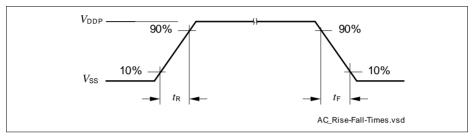
The total power supply current defined below consists of a leakage and a switching component.

Application relevant values are typically lower than those given in the following tables, and depend on the customer's system operating conditions (e.g. thermal connection or used application configurations).

If not stated otherwise, the operating conditions for the parameters in the following table are:

 $V_{\rm DDP}$ = 3.3 V, $T_{\rm A}$ = 25 °C

Parameter	Symb	Symbol		Values	S	Unit	Note /
			Min.	Тур.	Max.		Test Condition
Active supply current ¹⁾¹⁰⁾	$I_{\rm DDPA}$	CC	-	122	-	mA	120 / 120 / 120
Peripherals enabled			-	110	-		120 / 60 / 60
Frequency: $f_{CPU}/f_{PERIPH}/f_{CCU}$ in MHz			-	85	-		60 / 60 / 120
JCPU, JPERIPH, JCCU			-	65	-		24 / 24 / 24
			-	52	-		1/1/1
Active supply current	$I_{\rm DDPA}$	СС	-	98	-	mA	120 / 120 / 120
Code execution from RAM Flash in Sleep mode			-	80	-		120 / 60 / 60
Active supply current ²⁾	$I_{\rm DDPA}$	CC	-	115	-	mA	120 / 120 / 120
Peripherals disabled			-	105	-		120 / 60 / 60
Frequency: $f_{CPU}/f_{PERIPH}/f_{CCU}$ in MHz			-	80	-		60 / 60 / 120
JCPU, JPERIPH, JCCU			-	63	-		24 / 24 / 24
			-	50	-		1/1/1
Sleep supply current ³⁾	$I_{\rm DDPS}$	CC	-	115	-	mA	120 / 120 / 120
Peripherals enabled			-	105	-		120 / 60 / 60
Frequency: $f_{CPU}/f_{PERIPH}/f_{CCU}$ in MHz			-	83	-		60 / 60 / 120
JCPU / JPERIPH / JCCU			-	60	-	-	24 / 24 / 24
			-	48	-		1/1/1
$f_{\rm CPU}/f_{\rm PERIPH}/f_{\rm CCU}$ in kHz	1		-	46	-	1	100 / 100 / 100


Table 32 Power Supply Parameters

Note: These parameters are not subject to production test, but verified by design and/or characterization.

3.3 AC Parameters

3.3.1 Testing Waveforms

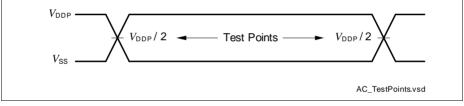


Figure 23 Testing Waveform, Output Delay

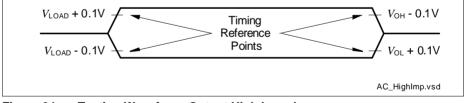


Figure 24 Testing Waveform, Output High Impedance

3.3.9 Peripheral Timing

3.3.9.1 Delta-Sigma Demodulator Digital Interface Timing

The following parameters are applicable for the digital interface of the Delta-Sigma Demodulator (DSD).

The data timing is relative to the active clock edge. Depending on the operation mode of the connected modulator that can be the rising and falling clock edge.

Note: These parameters are not subject to production test, but verified by design and/or characterization.

Parameter	Syr	nbol		Values	5	Unit	t Note /	
			Min.	Тур.	Max.		Test Condition	
MCLK period in master mode	<i>t</i> ₁	CC	33.3	-	-	ns	$t_1 \ge 4 \ge t_{\text{PERIPH}}^{(1)}$	
MCLK high time in master mode	<i>t</i> ₂	CC	9	-	-	ns	$t_2 > t_{\text{PERIPH}}^{1)}$	
MCLK low time in master mode	<i>t</i> ₃	CC	9	-	-	ns	$t_3 > t_{\text{PERIPH}}^{1)}$	
MCLK period in slave mode	<i>t</i> ₁	SR	33.3	-	-	ns	$t_1 \ge 4 \ge t_{\text{PERIPH}}^{(1)}$	
MCLK high time in slave mode	<i>t</i> ₂	SR	t _{PERIPH}	-	-	ns	1)	
MCLK low time in slave mode	<i>t</i> ₃	SR	t _{PERIPH}	-	-	ns	1)	
DIN input setup time to the active clock edge	<i>t</i> ₄	SR	t_{PERIPH} + 4	-	-	ns	1)	
DIN input hold time from the active clock edge	<i>t</i> ₅	SR	t _{PERIPH} + 3	-	-	ns	1)	

Table 42 DSD Interface Timing Parameters

1) $t_{\text{PERIPH}} = 1 / f_{\text{PERIPH}}$


```
With clock delay:

t_{ODLY_F} + t_{DATA\_DELAY} + t_{TAP\_DELAY} + t_{ISU} < t_{WL} + t_{CLK\_DELAY}
t_{DATA\_DELAY} + t_{TAP\_DELAY} + t_{WL} < t_{PP} + t_{CLK\_DELAY} - t_{ISU} - t_{ODLY\_F}
t_{DATA\_DELAY} + t_{TAP\_DELAY} + 20 < 40 + t_{CLK\_DELAY} - 5 - 10
```

 $t_{DATA_DELAY} < 5 + t_{CLK_DELAY} - t_{TAP_DELAY}$

The data can be delayed versus clock up to 5 ns in ideal case of t_{WL} = 20 ns.

Full-Speed Write Meeting Hold (Minimum Delay)

The following equations show how to calculate the allowed skew range between the SD_CLK and SD_DAT/CMD signals on the PCB.

(4)

(2)

(3)

 $t_{\text{CLK_DELAY}} < t_{\text{WL}} + t_{\text{OH_F}} + t_{\text{DATA_DELAY}} + t_{\text{TAP_DELAY}} - t_{\text{IH}}$

 $t_{\rm CLK_DELAY} < 20 + t_{\rm DATA_DELAY} + t_{\rm TAP_DELAY} - 5$

 $t_{DATA_DELAY} < 15 + t_{CLK_DELAY} + t_{TAP_DELAY}$

The clock can be delayed versus data up to 18.2 ns (external delay line) in ideal case of t_{WL} = 20 ns, with maximum $t_{TAP DELAY}$ = 3.2 ns programmed.

No clock delay:		(7)
	$t_{ODLY_H} + t_{DATA_DELAY} + t_{TAP_DELAY} + t_{ISU} < t_{WL}$	
With clock delay:		
	f . f . f . f . f	(8)
	$t_{ODLY_H} + t_{DATA_DELAY} + t_{TAP_DELAY} + t_{ISU} < t_{WL} + t_{CLK_DELAY}$	
		(9)
	$t_{DATA_DELAY} + t_{TAP_DELAY} - t_{CLK_DELAY} < t_{WL} - t_{ISU} - t_{ODLY_H}$	
	$t_{\text{DATA}_\text{DELAY}} - t_{\text{CLK}_\text{DELAY}} < t_{\text{WL}} - t_{\text{ISU}} - t_{\text{ODLY}_H} - t_{\text{TAP}_\text{DELAY}}$	
	$t_{DATA_DELAY} - t_{CLK_DELAY} < 10 - 6 - 14 - t_{TAP_DELAY}$	
	$t_{\text{DATA_DELAY}} - t_{\text{CLK_DELAY}} < -10 - t_{\text{TAP_DELAY}}$	

The data delay is less than the clock delay by at least 10 ns in the ideal case where t_{WL} = 10 ns.

High-Speed Write Meeting Hold (Minimum Delay)

The following equations show how to calculate the allowed skew range between the SD_CLK and SD_DAT/CMD signals on the PCB.

(10)

 $t_{\mathrm{CLK_DELAY}} < t_{\mathrm{WL}} + t_{\mathrm{OH_H}} + t_{\mathrm{DATA_DELAY}} + t_{\mathrm{TAP_DELAY}} - t_{\mathrm{IH}}$

 $t_{\mathrm{CLK_DELAY}} - t_{\mathrm{DATA_DELAY}} < t_{\mathrm{WL}} + t_{\mathrm{OH_H}} + t_{\mathrm{TAP_DELAY}} - t_{\mathrm{IH}}$

 $t_{\mathrm{CLK_DELAY}} - t_{\mathrm{DATA_DELAY}} < 10 + 2 + t_{\mathrm{TAP_DELAY}} - 2$

 $t_{\rm CLK_DELAY} - t_{\rm DATA_DELAY} < 10 + t_{\rm TAP_DELAY}$

The clock can be delayed versus data up to 13.2 ns (external delay line) in ideal case of t_{WL} = 10 ns, with maximum $t_{TAP DELAY}$ = 3.2 ns programmed.

Demultiplexed Read Timing

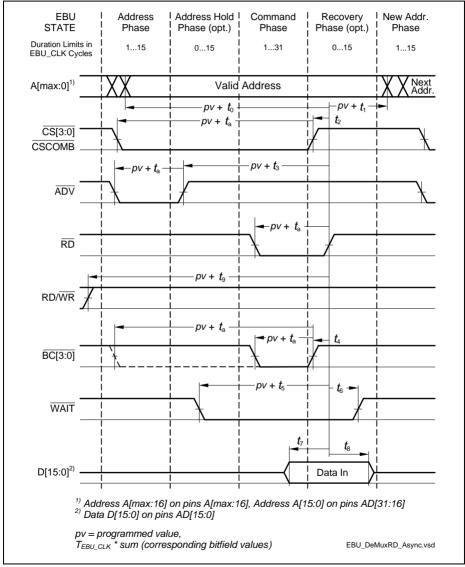


Figure 42 Demultiplexed Read Access

Package and Reliability

power dissipation must be limited so that the average junction temperature does not exceed 150 °C.

The difference between junction temperature and ambient temperature is determined by $\Delta T = (P_{INT} + P_{IOSTAT} + P_{IODYN}) \times R_{\Theta,IA}$

The internal power consumption is defined as

 $P_{\text{INT}} = V_{\text{DDP}} \times I_{\text{DDP}}$ (switching current and leakage current).

The static external power consumption caused by the output drivers is defined as $P_{\text{IOSTAT}} = \Sigma((V_{\text{DDP}}-V_{\text{OH}}) \times I_{\text{OH}}) + \Sigma(V_{\text{OL}} \times I_{\text{OL}})$

The dynamic external power consumption caused by the output drivers (P_{IODYN}) depends on the capacitive load connected to the respective pins and their switching frequencies.

If the total power dissipation for a given system configuration exceeds the defined limit, countermeasures must be taken to ensure proper system operation:

- Reduce V_{DDP} , if possible in the system
- Reduce the system frequency
- Reduce the number of output pins
- Reduce the load on active output drivers