E·XFL

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	8051
Core Size	8-Bit
Speed	48 MIPS
Connectivity	EBI/EMI, I ² C, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, Temp Sensor, WDT
Number of I/O	40
Program Memory Size	64KB (64K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	4.25K x 8
Voltage - Supply (Vcc/Vdd)	2.7V ~ 5.25V
Data Converters	A/D 32x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	48-TQFP
Supplier Device Package	48-TQFP (7x7)
Purchase URL	https://www.e-xfl.com/product-detail/silicon-labs/c8051f388-b-gq

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Name	Pin Nu	mbers	Туре	Description
	48-pin	32-pin		
P3.2	28	_	D I/O or A In	Port 3.2.
P3.3	27	_	D I/O or A In	Port 3.3.
P3.4	26	_	D I/O or A In	Port 3.4.
P3.5	25	_	D I/O or A In	Port 3.5.
P3.6	24	_	D I/O or A In	Port 3.6.
P3.7	23		D I/O or A In	Port 3.7.
P4.0	22	_	D I/O or A In	Port 4.0. See Section 20 for a complete description of Port 4.
P4.1	21	—	D I/O or A In	Port 4.1.
P4.2	20	_	D I/O or A In	Port 4.2.
P4.3	19		D I/O or A In	Port 4.3.
P4.4	18	_	D I/O or A In	Port 4.4.
P4.5	17	_	D I/O or A In	Port 4.5.
P4.6	16	_	D I/O or A In	Port 4.6.
P4.7	15	_	D I/O or A In	Port 4.7.

Table 3.1. Pin Definitions for the C8051F388/9/A/B (Continued)

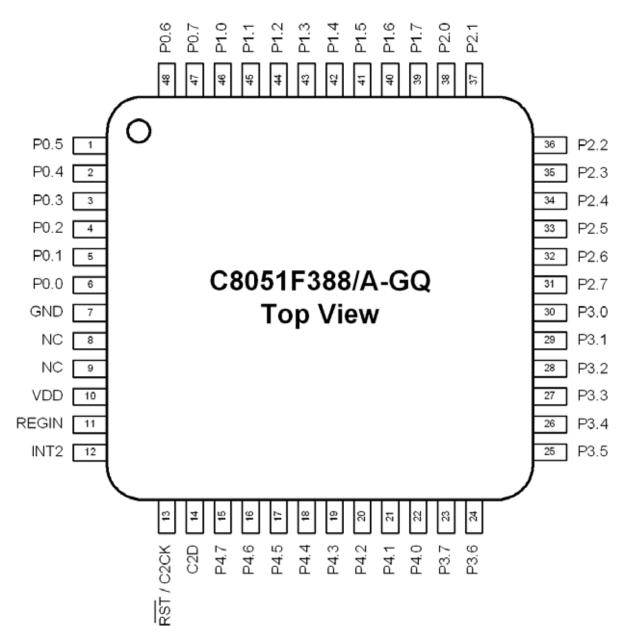


Figure 3.1. TQFP-48 (C8051F388/A) Pinout Diagram (Top View)

Table 5.7. Internal High-Frequency Oscillator Electrical Characteristics

 V_{DD} = 2.7 to 3.6 V; T_A = -40 to +85 °C unless otherwise specified; Using factory-calibrated settings.

Parameter	Test Condition	Min	Тур	Max	Unit
Oscillator Frequency	IFCN = 11b	47.3	48	48.7	MHz
Oscillator Supply Current (from V _{DD})	25 °C, V _{DD} = 3.0 V, OSCICN.7 = 1, OCSICN.5 = 0		900	_	μA
Power Supply Sensitivity	Constant Temperature		110		ppm/V
Temperature Sensitivity	Constant Supply		25		ppm/°C

Table 5.8. Internal Low-Frequency Oscillator Electrical Characteristics

 V_{DD} = 2.7 to 3.6 V; T_A = -40 to +85 °C unless otherwise specified; Using factory-calibrated settings.

Parameter	Test Condition	Min	Тур	Max	Unit
Oscillator Frequency	OSCLD = 11b	75	80	85	kHz
Oscillator Supply Current (from V _{DD})	25 °C, V _{DD} = 3.0 V, OSCLCN.7 = 1	_	4	_	μA
Power Supply Sensitivity	Constant Temperature	_	0.05	—	%/V
Temperature Sensitivity	Constant Supply		65		ppm/°C

Table 5.9. External Oscillator Electrical Characteristics

 V_{DD} = 2.7 to 3.6 V; T_{A} = –40 to +85 °C unless otherwise specified.

Parameter	Test Condition	Min	Тур	Мах	Unit
External Crystal Frequency		0.02	_	30	MHz
External CMOS Oscillator Frequency		0		48	MHz

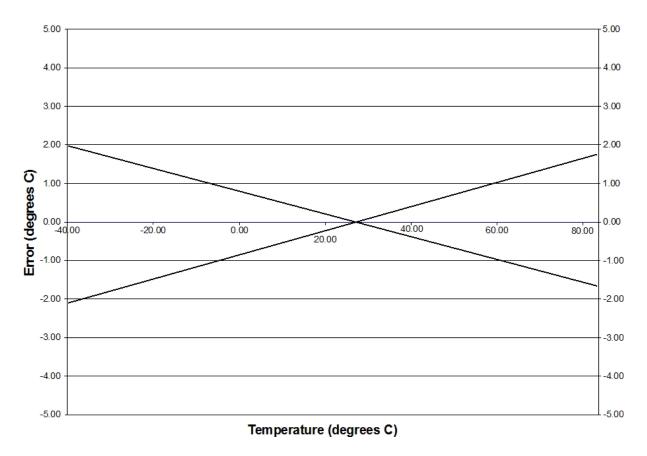


Figure 6.3. Temperature Sensor Error with 1-Point Calibration

11.2. CIP-51 Register Descriptions

Following are descriptions of SFRs related to the operation of the CIP-51 System Controller. Reserved bits should always be written to the value indicated in the SFR description. Future product versions may use these bits to implement new features in which case the reset value of the bit will be the indicated value, selecting the feature's default state. Detailed descriptions of the remaining SFRs are included in the sections of the datasheet associated with their corresponding system function.

SFR Definition 11.1. DPL: Data Pointer Low Byte

Bit	7 6 5 4 3 2 1 0										
Nam	ame DPL[7:0]										
Туре	e R/W										
Rese	et 0	0	0	0	0	0	0	0			
SFR A	Address = 0x8	2; SFR Page	= All Pages	-							
Bit	Name				Function						
7:0	DPL[7:0]	DPL[7:0] Data Pointer Low.									
		The DPL register is the low byte of the 16-bit DPTR.									

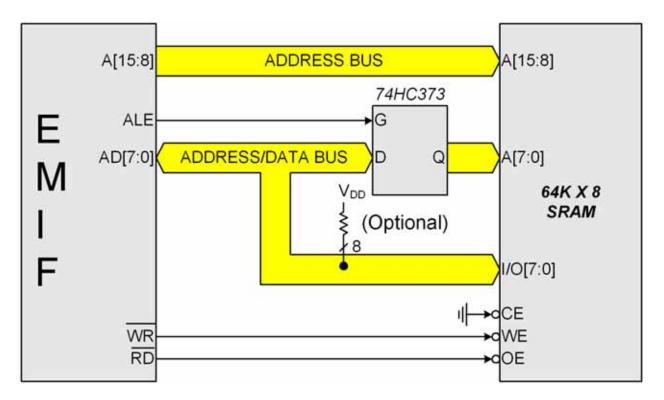
SFR Definition 11.2. DPH: Data Pointer High Byte

Bit	7	6	5	4	3	2	1	0		
Name	DPH[7:0]									
Туре		R/W								
Reset	0	0	0	0	0	0	0	0		
SFR Address = 0x83; SFR Page = All Pages										
Bit	Name									

7:0	DPH[7:0]	Data Pointer High.
		The DPH register is the high byte of the 16-bit DPTR.

SFR Definition 11.6. PSW: Program Status Word

Bit	7	6	5	4	3	2	1	0	
Nam	e CY	AC	F0	RS	[1:0]	OV	F1	PARITY	
Туре	Type R/W R/W R/W R/W			/W	R/W	R/W	R		
Rese	t O	0	0	0	0	0	0	0	
SFR A	ddress = 0	kD0; SFR Page	e = All Pages	; Bit-Addres	sable	1	1	1	
Bit Name Function									
7	CY	Carry Flag.							
		This bit is set row (subtraction						n) or a bor-	
6	AC	Auxiliary Car	ry Flag.						
		This bit is set							
		borrow from (s metic operatio		the high ord	er nibble. It i	s cleared to	logic 0 by al	l other arith-	
5	F0	User Flag 0.							
		This is a bit-ad	ddressable,	general purp	ose flag for	use under so	oftware cont	rol.	
4:3	RS[1:0]	Register Ban							
		These bits sel			s used durir	ng register ac	cesses.		
		00: Bank 0, Ao 01: Bank 1, Ao							
		10: Bank 2, A							
		11: Bank 3, Ac	dresses 0x	18-0x1F					
2	OV	Overflow Flag	g.						
		This bit is set		•					
						n-change ove greater than 2			
				es a divide-by	•	•			
		The OV bit is other cases.	The OV bit is cleared to 0 by the ADD, ADDC, SUBB, MUL, and DIV instructions in all						
1	F1	User Flag 1.							
		This is a bit-ad	ddressable,	general purp	ose flag for	use under so	oftware cont	rol.	
0	PARITY	Parity Flag.							
		This bit is set t if the sum is e	-	ne sum of the	e eight bits ir	the accumu	lator is odd a	and cleared	


14.4. Multiplexed and Non-multiplexed Selection

The External Memory Interface is capable of acting in a Multiplexed mode or a Non-multiplexed mode, depending on the state of the EMD2 (EMI0CF.4) bit.

14.4.1. Multiplexed Configuration

In Multiplexed mode, the Data Bus and the lower 8-bits of the Address Bus share the same Port pins: AD[7:0]. In this mode, an external latch (74HC373 or equivalent logic gate) is used to hold the lower 8-bits of the RAM address. The external latch is controlled by the ALE (Address Latch Enable) signal, which is driven by the External Memory Interface logic. An example of a Multiplexed Configuration is shown in Figure 14.1.

In Multiplexed mode, the external MOVX operation can be broken into two phases delineated by the state of the ALE signal. During the first phase, ALE is high and the lower 8-bits of the Address Bus are presented to AD[7:0]. During this phase, the address latch is configured such that the 'Q' outputs reflect the states of the 'D' inputs. When ALE falls, signaling the beginning of the second phase, the address latch outputs remain fixed and are no longer dependent on the latch inputs. Later in the second phase, the Data Bus controls the state of the AD[7:0] port at the time RD or WR is asserted.

See Section "14.6.2. Multiplexed Mode" on page 101 for more information.

Figure 14.1. Multiplexed Configuration Example

Parameter	Description	Min*	Max*	Units							
T _{ACS}	Address/Control Setup Time	0	3 x T _{SYSCLK}	ns							
T _{ACW}	Address/Control Pulse Width	1 x T _{SYSCLK}	16 x T _{SYSCLK}	ns							
T _{ACH}	Address/Control Hold Time	0	3 x T _{SYSCLK}	ns							
T _{ALEH}	Address Latch Enable High Time	1 x T _{SYSCLK}	4 x T _{SYSCLK}	ns							
T _{ALEL}	Address Latch Enable Low Time	1 x T _{SYSCLK}	4 x T _{SYSCLK}	ns							
T _{WDS}	Write Data Setup Time	1 x T _{SYSCLK}	19 x T _{SYSCLK}	ns							
T _{WDH}	Write Data Hold Time	0	3 x T _{SYSCLK}	ns							
T _{RDS}	Read Data Setup Time	20		ns							
T _{RDH}											
Note: T _{SYSCLK} is	equal to one period of the device system clock (S	YSCLK).									

Table 14.1. AC Parameters for External Memory Interface

Table 15.2. Special Function Registers (Continued)

SFRs are listed in alphabetical order. All undefined SFR locations are reserved

Register	Address	Page	Description	Page	
SMB1CN	0xC0	F	SMBus1 Control	177	
SMB1DAT	0xC2	F	SMBus1 Data	183	
SMBTC	0xB9	F	SMBus0/1 Timing Control	174	
SMOD1	0xE5	All Pages	UART1 Mode	207	
SP	0x81	All Pages	Stack Pointer	82	
SPIOCFG	0xA1	All Pages	SPI Configuration	218	
SPIOCKR	0xA2	All Pages	SPI Clock Rate Control	220	
SPI0CN	0xF8	All Pages	SPI Control	219	
SPIODAT	0xA3	All Pages	SPI Data	220	
TCON	0x88	All Pages	Timer/Counter Control	231	
TH0	0x8C	All Pages	Timer/Counter 0 High	234	
TH1	0x8D	All Pages	Timer/Counter 1 High	234	
TL0	0x8A	All Pages	Timer/Counter 0 Low	233	
TL1	0x8B	All Pages	Timer/Counter 1 Low	233	
TMOD	0x89	All Pages	Timer/Counter Mode	232	
TMR2CN	0xC8	0	Timer/Counter 2 Control	239	
TMR2H	0xCD	0	Timer/Counter 2 High	241	
TMR2L	0xCC	0	Timer/Counter 2 Low	240	
TMR2RLH	0xCB	0	Timer/Counter 2 Reload High	240	
TMR2RLL	0xCA	0	Timer/Counter 2 Reload Low	240	
TMR3CN	0x91	0	Timer/Counter 3 Control	246	
TMR3H	0x95	0	Timer/Counter 3 High	248	
TMR3L	0x94	0	Timer/Counter 3 Low	247	
TMR3RLH	0x93	0	Timer/Counter 3 Reload High	247	
TMR3RLL	0x92	0	Timer/Counter 3 Reload Low	247	
TMR4CN	0x91	F	Timer/Counter 4 Control	251	
TMR4H	0x95	F	Timer/Counter 4 High	253	
TMR4L	0x94	F	Timer/Counter 4 Low	252	
TMR4RLH	0x93	F	Timer/Counter 4 Reload High	252	
TMR4RLL	0x92	F	Timer/Counter 4 Reload Low	252	
TMR5CN	0xC8	F	Timer/Counter 5 Control	256	
TMR5H	0xCD	F	Timer/Counter 5 High	258	
TMR5L	0xCC	F	Timer/Counter 5 Low	257	
TMR5RLH 0xCB F		F	Timer/Counter 5 Reload High		

17.2. Power-Fail Reset / V_{DD} Monitor

When a powerdown transition or power irregularity causes V_{DD} to drop below V_{RST} , the power supply monitor will drive the \overline{RST} pin low and hold the CIP-51 in a reset state (see Figure 17.2). When V_{DD} returns to a level above V_{RST} , the CIP-51 will be released from the reset state. Note that even though internal data memory contents are not altered by the power-fail reset, it is impossible to determine if V_{DD} dropped below the level required for data retention. If the PORSF flag reads 1, the data may no longer be valid. The V_{DD} monitor is enabled after power-on resets. Its defined state (enabled/disabled) is not altered by any other reset source. For example, if the V_{DD} monitor is disabled by code and a software reset is performed, the V_{DD} monitor will still be disabled after the reset.

Important Note: If the V_{DD} monitor is being turned on from a disabled state, it should be enabled before it is selected as a reset source. Selecting the V_{DD} monitor as a reset source before it is enabled and stabilized may cause a system reset. In some applications, this reset may be undesirable. If this is not desirable in the application, a delay should be introduced between enabling the monitor and selecting it as a reset source. The procedure for enabling the V_{DD} monitor and configuring it as a reset source from a disabled state is shown below:

- 1. Enable the V_{DD} monitor (VDMEN bit in VDM0CN = 1).
- 2. If necessary, wait for the V_{DD} monitor to stabilize (see Table 5.4 for the V_{DD} Monitor turn-on time).
- 3. Select the V_{DD} monitor as a reset source (PORSF bit in RSTSRC = 1).

See Figure 17.2 for V_{DD} monitor timing; note that the power-on-reset delay is not incurred after a V_{DD} monitor reset. See Table 5.4 for complete electrical characteristics of the V_{DD} monitor.

SFR Definition 19.3. OSCICN: Internal H-F Oscillator Control

Bit	7	6	5	4	3	2	1	0
Name	IOSCEN	IFRDY	SUSPEND				IFCN[1:0]	
Туре	R/W	R	R/W	R	R	R	R/W	
Reset	1	1	0	0	0	0	0	0

SFR Address = 0xB2; SFR Page = All Pages

Bit	Name	Function			
7	IOSCEN	Internal H-F Oscillator Enable Bit.			
		0: Internal H-F Oscillator Disabled.			
		1: Internal H-F Oscillator Enabled.			
6	IFRDY	Internal H-F Oscillator Frequency Ready Flag.			
		0: Internal H-F Oscillator is not running at programmed frequency.			
		1: Internal H-F Oscillator is running at programmed frequency.			
5	SUSPEND	Internal Oscillator Suspend Enable Bit.			
		Setting this bit to logic 1 places the internal oscillator in SUSPEND mode. The inter- nal oscillator resumes operation when one of the SUSPEND mode awakening events occurs.			
4:2	Unused	Read = 000b; Write = don't care			
1:0	IFCN[1:0]	Internal H-F Oscillator Frequency Divider Control Bits.			
		The Internal H-F Oscillator is divided by the IFCN bit setting after a divide-by-4 stage.			
		00: SYSCLK can be derived from Internal H-F Oscillator divided by 8 (1.5 MHz).			
		01: SYSCLK can be derived from Internal H-F Oscillator divided by 4 (3 MHz). 10: SYSCLK can be derived from Internal H-F Oscillator divided by 2 (6 MHz).			
		11: SYSCLK can be derived from Internal H-F Oscillator divided by 2 (0 MHz).			

19.3. Clock Multiplier

The C8051F388/9/A/B device includes a 48 MHz high-frequency oscillator instead of a 12 MHz oscillator and a 4x Clock Multiplier. For compatibility with C8051F34x and C8051F32x devices however, the CLK-MUL register (SFR Definition 19.4) behaves as if the Clock Multiplier is present and working.

SFR Definition 19.4. CLKMUL: Clock Multiplier Control

Bit	7	6	5	4	3	2	1	0
Name	MULEN	MULINIT	MULRDY				MULSEL[1:0]	
Туре	R	R	R	R	R	R	R	
Reset	1	1	1	0	0	0	0	0

SFR Address = 0xB9; SFR Page = 0

Bit	Name	Description		
7	MULEN	Clock Multiplier Enable Bit. This bit always reads 1.		
6	MULINIT	Clock Multiplier Initialize Bit. This bit always reads 1.		
5	MULRDY	Clock Multiplier Ready Bit. This bit always reads 1.		
4:2	Unused	Read = 000b; Write = don't care		
1:0	MULSEL[1:0]	Clock Multiplier Input Select Bits. These bits always read 00.		

All transactions are initiated by a master, with one or more addressed slave devices as the target. The master generates the START condition and then transmits the slave address and direction bit. If the transaction is a WRITE operation from the master to the slave, the master transmits the data a byte at a time waiting for an ACK from the slave at the end of each byte. For READ operations, the slave transmits the data waiting for an ACK from the master at the end of each byte. At the end of the data transfer, the master generates a STOP condition to terminate the transaction and free the bus. Figure 21.3 illustrates a typical SMBus transaction.

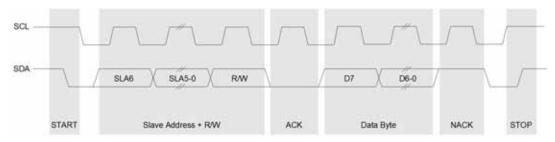


Figure 21.3. SMBus Transaction

21.3.1. Transmitter Vs. Receiver

On the SMBus communications interface, a device is the "transmitter" when it is sending an address or data byte to another device on the bus. A device is a "receiver" when an address or data byte is being sent to it from another device on the bus. The transmitter controls the SDA line during the address or data byte. After each byte of address or data information is sent by the transmitter, the receiver sends an ACK or NACK bit during the ACK phase of the transfer, during which time the receiver controls the SDA line.

21.3.2. Arbitration

A master may start a transfer only if the bus is free. The bus is free after a STOP condition or after the SCL and SDA lines remain high for a specified time (see Section "21.3.5. SCL High (SMBus Free) Timeout" on page 169). In the event that two or more devices attempt to begin a transfer at the same time, an arbitration scheme is employed to force one master to give up the bus. The master devices continue transmitting until one attempts a HIGH while the other transmits a LOW. Since the bus is open-drain, the bus will be pulled LOW. The master attempting the HIGH will detect a LOW SDA and lose the arbitration. The winning master continues its transmission without interruption; the losing master becomes a slave and receives the rest of the transfer if addressed. This arbitration scheme is non-destructive: one device always wins, and no data is lost.

21.3.3. Clock Low Extension

SMBus provides a clock synchronization mechanism, similar to I2C, which allows devices with different speed capabilities to coexist on the bus. A clock-low extension is used during a transfer in order to allow slower slave devices to communicate with faster masters. The slave may temporarily hold the SCL line LOW to extend the clock low period, effectively decreasing the serial clock frequency.

21.3.4. SCL Low Timeout

If the SCL line is held low by a slave device on the bus, no further communication is possible. Furthermore, the master cannot force the SCL line high to correct the error condition. To solve this problem, the SMBus protocol specifies that devices participating in a transfer must detect any clock cycle held low longer than 25 ms as a "timeout" condition. Devices that have detected the timeout condition must reset the communication no later than 10 ms after detecting the timeout condition.

For the SMBus0 interface, Timer 3 is used to implement SCL low timeouts. Timer 4 is used on the SMBus1 interface for SCL low timeouts. The SCL low timeout feature is enabled by setting the SMBnTOE bit in SMBnCF. The associated timer is forced to reload when SCL is high, and allowed to count when SCL is

22. UART0

UART0 is an asynchronous, full duplex serial port offering modes 1 and 3 of the standard 8051 UART. Enhanced baud rate support allows a wide range of clock sources to generate standard baud rates (details in Section "22.1. Enhanced Baud Rate Generation" on page 194). Received data buffering allows UART0 to start reception of a second incoming data byte before software has finished reading the previous data byte.

UART0 has two associated SFRs: Serial Control Register 0 (SCON0) and Serial Data Buffer 0 (SBUF0). The single SBUF0 location provides access to both transmit and receive registers. Writes to SBUF0 always access the Transmit register. Reads of SBUF0 always access the buffered Receive register; it is not possible to read data from the Transmit register.

With UART0 interrupts enabled, an interrupt is generated each time a transmit is completed (TI0 is set in SCON0), or a data byte has been received (RI0 is set in SCON0). The UART0 interrupt flags are not cleared by hardware when the CPU vectors to the interrupt service routine. They must be cleared manually by software, allowing software to determine the cause of the UART0 interrupt (transmit complete or receive complete).

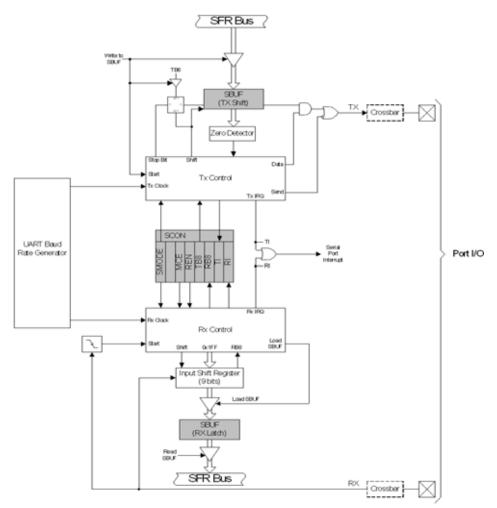


Figure 22.1. UART0 Block Diagram

- 1. Clear RI1 to 0
- 2. Read SBUF1
- 3. Check RI1, and repeat at Step 1 if RI1 is set to 1.

If the extra bit function is enabled (XBE1 = 1) and the parity function is disabled (PE1 = 0), the extra bit for the oldest byte in the FIFO can be read from the RBX1 bit (SCON1.2). If the extra bit function is not enabled, the value of the stop bit for the oldest FIFO byte will be presented in RBX1. When the parity function is enabled (PE1 = 1), hardware will check the received parity bit against the selected parity type (selected with S1PT[1:0]) when receiving data. If a byte with parity error is received, the PERR1 flag will be set to 1. This flag must be cleared by software. Note: when parity is enabled, the extra bit function is not available.

23.3.3. Multiprocessor Communications

UART1 supports multiprocessor communication between a master processor and one or more slave processors by special use of the extra data bit. When a master processor wants to transmit to one or more slaves, it first sends an address byte to select the target(s). An address byte differs from a data byte in that its extra bit is logic 1; in a data byte, the extra bit is always set to logic 0.

Setting the MCE1 bit (SMOD1.7) of a slave processor configures its UART such that when a stop bit is received, the UART will generate an interrupt only if the extra bit is logic 1 (RBX1 = 1) signifying an address byte has been received. In the UART interrupt handler, software will compare the received address with the slave's own assigned address. If the addresses match, the slave will clear its MCE1 bit to enable interrupts on the reception of the following data byte(s). Slaves that weren't addressed leave their MCE1 bits set and do not generate interrupts on the reception of the following data byte(s). Slaves that weren't addressed leave their MCE1 bits set and do not generate interrupts on the reception of the following data byte(s) and bytes, thereby ignoring the data. Once the entire message is received, the addressed slave resets its MCE1 bit to ignore all transmissions until it receives the next address byte.

Multiple addresses can be assigned to a single slave and/or a single address can be assigned to multiple slaves, thereby enabling "broadcast" transmissions to more than one slave simultaneously. The master processor can be configured to receive all transmissions or a protocol can be implemented such that the master/slave role is temporarily reversed to enable half-duplex transmission between the original master and slave(s).

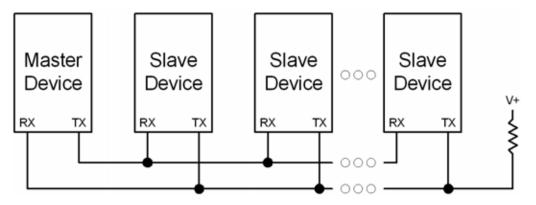
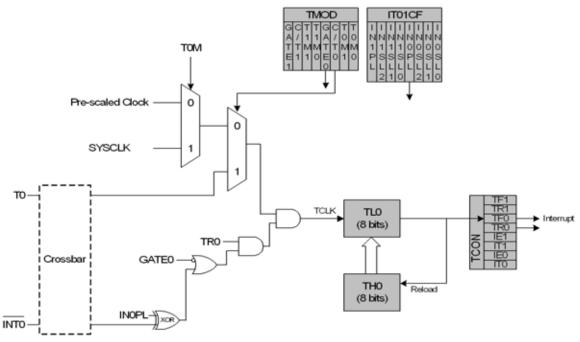
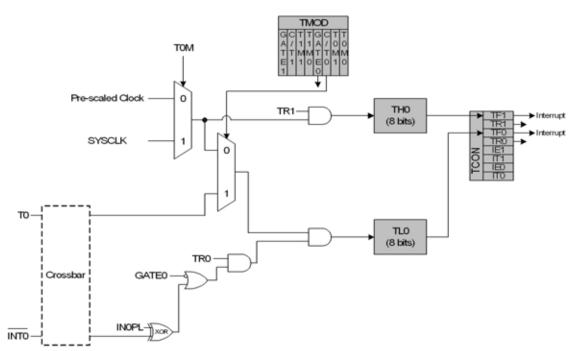


Figure 23.6. UART Multi-Processor Mode Interconnect Diagram




Figure 25.2. T0 Mode 2 Block Diagram

25.1.4. Mode 3: Two 8-bit Counter/Timers (Timer 0 Only)

In Mode 3, Timer 0 is configured as two separate 8-bit counter/timers held in TL0 and TH0. The counter/timer in TL0 is controlled using the Timer 0 control/status bits in TCON and TMOD: TR0, C/T0, GATE0 and TF0. TL0 can use either the system clock or an external input signal as its timebase. The TH0 register is restricted to a timer function sourced by the system clock or prescaled clock. TH0 is enabled using the Timer 1 run control bit TR1. TH0 sets the Timer 1 overflow flag TF1 on overflow and thus controls the Timer 1 interrupt.

Timer 1 is inactive in Mode 3. When Timer 0 is operating in Mode 3, Timer 1 can be operated in Modes 0, 1 or 2, but cannot be clocked by external signals nor set the TF1 flag and generate an interrupt. However, the Timer 1 overflow can be used to generate baud rates or overflow conditions for other peripherals. While Timer 0 is operating in Mode 3, Timer 1 run control is handled through its mode settings. To run Timer 1 while Timer 0 is in Mode 3, set the Timer 1 Mode as 0, 1, or 2. To disable Timer 1, configure it for Mode 3.

25.4. Timer 4

Timer 4 is a 16-bit timer formed by two 8-bit SFRs: TMR4L (low byte) and TMR4H (high byte). Timer 4 may operate in 16-bit auto-reload mode or (split) 8-bit auto-reload mode. The T4SPLIT bit (TMR4CN.3) defines

Timer 4 may be clocked by the system clock, the system clock divided by 12, or the external oscillator source divided by 8. Note that the external oscillator source divided by 8 is synchronized with the system clock.

25.4.1. 16-bit Timer with Auto-Reload

When T4SPLIT (TMR4CN.3) is zero, Timer 4 operates as a 16-bit timer with auto-reload. Timer 4 can be clocked by SYSCLK, SYSCLK divided by 12, or the external oscillator clock source divided by 8. As the 16-bit timer register increments and overflows from 0xFFFF to 0x0000, the 16-bit value in the Timer 4 reload registers (TMR4RLH and TMR4RLL) is loaded into the Timer 4 register as shown in Figure 25.12, and the Timer 4 High Byte Overflow Flag (TMR4CN.7) is set. If Timer 4 interrupts are enabled (if EIE1.7 is set), an interrupt will be generated on each Timer 4 overflow. Additionally, if Timer 4 interrupts are enabled and the TF4LEN bit is set (TMR4CN.5), an interrupt will be generated each time the lower 8 bits (TMR4L) overflow from 0xFF to 0x00.

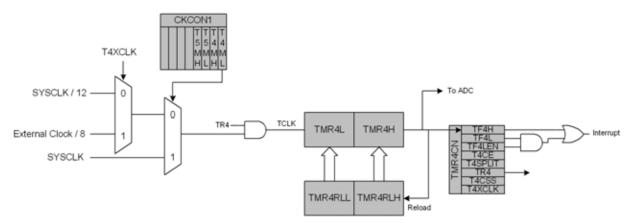


Figure 25.12. Timer 4 16-Bit Mode Block Diagram

26.4. Watchdog Timer Mode

A programmable watchdog timer (WDT) function is available through the PCA Module 4. The WDT is used to generate a reset if the time between writes to the WDT update register (PCA0CPH4) exceed a specified limit. The WDT can be configured and enabled/disabled as needed by software.

With the WDTE bit set in the PCA0MD register, Module 4 operates as a watchdog timer (WDT). The Module 4 high byte is compared to the PCA counter high byte; the Module 4 low byte holds the offset to be used when WDT updates are performed. **The Watchdog Timer is enabled on reset. Writes to some PCA registers are restricted while the Watchdog Timer is enabled.** The WDT will generate a reset shortly after code begins execution. To avoid this reset, the WDT should be explicitly disabled (and optionally re-configured and re-enabled if it is used in the system).

26.4.1. Watchdog Timer Operation

While the WDT is enabled:

- PCA counter is forced on.
- Writes to PCA0L and PCA0H are not allowed.
- PCA clock source bits (CPS2–CPS0) are frozen.
- PCA Idle control bit (CIDL) is frozen.
- Module 4 is forced into software timer mode.
- Writes to the Module 4 mode register (PCA0CPM4) are disabled.

While the WDT is enabled, writes to the CR bit will not change the PCA counter state; the counter will run until the WDT is disabled. The PCA counter run control bit (CR) will read zero if the WDT is enabled but user software has not enabled the PCA counter. If a match occurs between PCA0CPH4 and PCA0H while the WDT is enabled, a reset will be generated. To prevent a WDT reset, the WDT may be updated with a write of any value to PCA0CPH4. Upon a PCA0CPH4 write, PCA0H plus the offset held in PCA0CPL4 is loaded into PCA0CPH4 (See Figure 26.10).

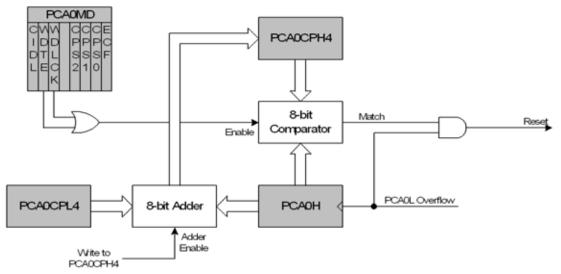


Figure 26.10. PCA Module 4 with Watchdog Timer Enabled

28.2. INT2 Pin Not Connected

Problem

The INT2 pin is non-functional on revision A C8051F388/9/A/B devices.

Impacts

The INT2 pin cannot be used to generate an interrupt.

Workaround

The /INT0 and /INT1 external interrupts are available on P0 and can still be used to generate an external pin interrupt.

Resolution

This behavior has been corrected on revision B of this device.

