

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	8051
Core Size	8-Bit
Speed	48 MIPS
Connectivity	I ² C, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, Temp Sensor, WDT
Number of I/O	25
Program Memory Size	64KB (64K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	4.25K x 8
Voltage - Supply (Vcc/Vdd)	2.7V ~ 5.25V
Data Converters	A/D 21x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	32-VFQFN Exposed Pad
Supplier Device Package	32-QFN (5x5)
Purchase URL	https://www.e-xfl.com/product-detail/silicon-labs/c8051f389-b-gm

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Table 1.1. Product Selection Guide

Ordering Part Number	MIPS (Peak)	Flash Memory (Bytes)	RAM	Calibrated Internal Oscillator	Low Frequency Oscillator	Supply Voltage Regulator	SMBus/I2C	Enhanced SPI	UARTs	Timers (16-bit)	Programmable Counter Array	Digital Port I/O	External Memory Interface (EMIF)	10-bit 500ksps ADC	Temperature Sensor	Voltage Reference	Analog Comparators	Package
C8051F388-B-GQ	48	64k	4352	~	\checkmark	\checkmark	2	\checkmark	2	6	\checkmark	40	\checkmark	\checkmark	\checkmark	\checkmark	2	TQFP48
C8051F389-B-GQ	48	64k	4352	\checkmark	\checkmark	\checkmark	2	\checkmark	2	6	\checkmark	25		\checkmark	\checkmark	\checkmark	2	LQFP32
C8051F389-B-GM	48	64k	4352	\checkmark	\checkmark	\checkmark	2	\checkmark	2	6	\checkmark	25		\checkmark	\checkmark	\checkmark	2	QFN32
C8051F38A-B-GQ	48	32k	2304	\checkmark	\checkmark	\checkmark	2	\checkmark	2	6	\checkmark	40	\checkmark	\checkmark	\checkmark	\checkmark	2	TQFP48
C8051F38B-B-GQ	48	32k	2304	\checkmark	\checkmark	\checkmark	2	\checkmark	2	6	\checkmark	25		\checkmark	\checkmark	\checkmark	2	LQFP32
C8051F38B-B-GM	48	32k	2304	~	\checkmark	\checkmark	2	\checkmark	2	6	<	25		<	\checkmark	\checkmark	2	QFN32
Note: Starting with silico use this format: "(ering) par	t nu	mbe	rs h	avel	beer	n upo	dated	to in	clud	le th	e sili	con	revision and

Table 5.10. ADC0 Electrical Characteristics

 V_{DD} = 3.0 V, VREF = 2.40 V (REFSL=0), PGA Gain = 1, -40 to +85 °C unless otherwise specified.

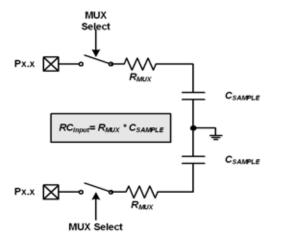
Parameter	Test Condition	Min	Тур	Max	Unit
DC Accuracy					
Resolution			10		bits
Integral Nonlinearity		_	±0.5	±1	LSB
Differential Nonlinearity	Guaranteed Monotonic	—	±0.5	±1	LSB
Offset Error		-2	0	2	LSB
Full Scale Error		-5	-2	0	LSB
Offset Temperature Coefficient		—	0.005	—	LSB/°C
Dynamic performance (10 kHz s	ine-wave single-ended input,	1 dB belo	w Full Sc	ale, 500	ksps)
Signal-to-Noise Plus Distortion		55	58	—	dB
Total Harmonic Distortion	Up to the 5th harmonic	—	-73	—	dB
Spurious-Free Dynamic Range		—	78	—	dB
Conversion Rate					
SAR Conversion Clock		_	_	8.33	MHz
Conversion Time in SAR Clocks	10-bit Mode 8-bit Mode	13 11	_	_	clocks clocks
Track/Hold Acquisition Time		300	_	—	ns
Throughput Rate		—		500	ksps
Analog Inputs					
ADC Input Voltage Range	Single Ended (AIN+ – GND)	0	_	VREF	V
	Differential (AIN+ – AIN–)	-VREF	_	VREF	V
Absolute Pin Voltage with respect to GND	Single Ended or Differential	0	—	V _{DD}	V
Sampling Capacitance		—	30	—	pF
Input Multiplexer Impedance		—	5	—	kΩ
Power Specifications					
Power Supply Current (V _{DD} supplied to ADC0)	Operating Mode, 500 ksps	—	750	1000	μA
Power Supply Rejection		_	1	—	mV/V
Note: Represents one standard devia	ation from the mean.				

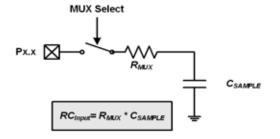
6.3.3. Settling Time Requirements

A minimum tracking time is required before each conversion to ensure that an accurate conversion is performed. This tracking time is determined by the AMUX0 resistance, the ADC0 sampling capacitance, any external source resistance, and the accuracy required for the conversion. Note that in low-power tracking mode, three SAR clocks are used for tracking at the start of every conversion. For most applications, these three SAR clocks will meet the minimum tracking time requirements.

Figure 6.5 shows the equivalent ADC0 input circuit. The required ADC0 settling time for a given settling accuracy (SA) may be approximated by Equation 6.1. See Table 5.10 for ADC0 minimum settling time requirements as well as the mux impedance and sampling capacitor values.

Equation 6.1. ADC0 Settling Time Requirements


Where:


SA is the settling accuracy, given as a fraction of an LSB (for example, 0.25 to settle within 1/4 LSB) *t* is the required settling time in seconds

 R_{TOTAL} is the sum of the AMUX0 resistance and any external source resistance. *n* is the ADC resolution in bits (10).

Differential Mode

Single-Ended Mode

Figure 6.5. ADC0 Equivalent Input Circuits

Rev. 1.1

SFR Definition 6.7. ADC0LTH: ADC0 Less-Than Data High Byte

Bit	7	6	5	4	3	2	1	0			
Nam	e	ADC0LTH[7:0]									
Туре	R/W										
Rese	et O	0	0 0 0 0 0 0 0								
SFR A	Address = 0xC6	; SFR Page	e = All Pages								
Bit	Name		Function								
7:0	ADC0LTH[7:0] ADC0 Le	ADC0 Less-Than Data Word High-Order Bits.								

SFR Definition 6.8. ADC0LTL: ADC0 Less-Than Data Low Byte

Bit	7	7 6 5 4 3 2 1 0									
Nam	e	ADC0LTL[7:0]									
Туре	R/W										
Rese	et 0	0 0 0 0 0 0									
SFR A	Address = 0xC5	; SFR Page	e = All Pages	5							
Bit	Name		Function								
7:0	ADC0LTL[7:0	O] ADC0 Less-Than Data Word Low-Order Bits.									

8.1. Comparator Multiplexers

C8051F388/9/A/B devices include an analog input multiplexer to connect Port I/O pins to the comparator inputs. The Comparator inputs are selected in the CPTnMX registers (SFR Definition 8.5 and SFR Definition 8.6). The CMXnP2–CMXnP0 bits select the Comparator positive input; the CMXnN2–CMXnN0 bits select the Comparator negative input.

Important Note About Comparator Inputs: The Port pins selected as comparator inputs should be configured as analog inputs in their associated Port configuration register, and configured to be skipped by the Crossbar (for details on Port configuration, see Section "20.3. General Purpose Port I/O" on page 155).

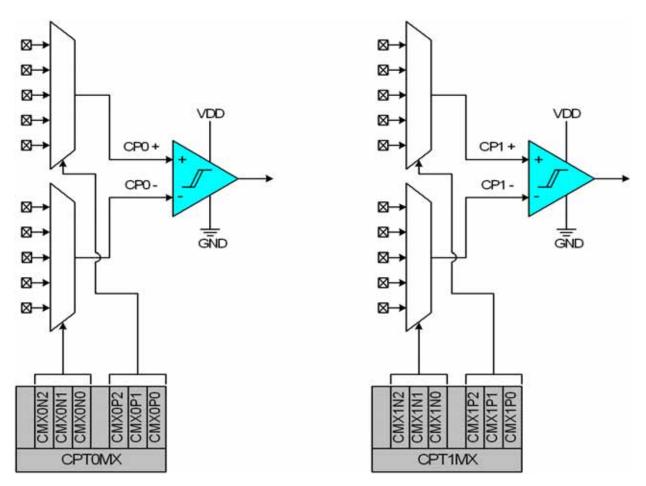


Figure 8.4. Comparator Input Multiplexer Block Diagram

SFR Definition 14.2. EMI0CF: External Memory Interface Configuration

Bit	7	6	5	4	3	2	1	0
Name		Reserved		EMD2	EMD[1:0]		EALE[1:0]	
Туре	R	R/W	R	R/W	R/W		R/W	
Reset	0	0	0	0	0	0	1	1

SFR Address = 0x85; SFR Page = All Pages

Bit	Name	Function
7	Unused	Read = 0b; Write = don't care.
6	Reserved	Read = 0b; Must Write 0b.
5	Unused	Read = 0b; Write = don't care.
4	EMD2	EMIF Multiplex Mode Select.
		0: EMIF operates in multiplexed address/data mode.1: EMIF operates in non-multiplexed mode (separate address and data pins).
3:2	EMD[1:0]	EMIF Operating Mode Select.
		These bits control the operating mode of the External Memory Interface. 00: Internal Only: MOVX accesses on-chip XRAM only. All effective addresses alias to on-chip memory space. 01: Split Mode without Bank Select: Accesses below the on-chip XRAM boundary are directed on-chip. Accesses above the on-chip XRAM boundary are directed off-chip. 8-bit off-chip MOVX operations use the current contents of the Address High port latches to resolve upper address byte. Note that in order to access off-chip space, EMI0CN must be set to a page that is not contained in the on-chip address space. 10: Split Mode with Bank Select: Accesses below the on-chip XRAM boundary are directed on-chip. Accesses above the on-chip XRAM boundary are directed off-chip. 8-bit off-chip MOVX operations use the contents of EMI0CN to determine the high-byte of the address. 11: External Only: MOVX accesses off-chip XRAM only. On-chip XRAM is not visi- ble to the CPU.
1:0	EALE[1:0]	 ALE Pulse-Width Select Bits (only has effect when EMD2 = 0). 00: ALE high and ALE low pulse width = 1 SYSCLK cycle. 01: ALE high and ALE low pulse width = 2 SYSCLK cycles. 10: ALE high and ALE low pulse width = 3 SYSCLK cycles. 11: ALE high and ALE low pulse width = 4 SYSCLK cycles.

14.6.1. Non-multiplexed Mode

14.6.1.1. 16-bit MOVX: EMI0CF[4:2] = 101, 110, or 111

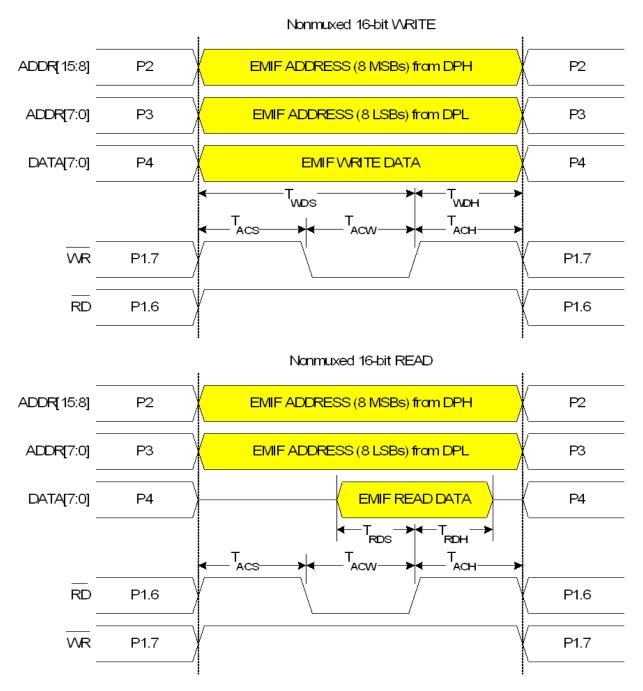
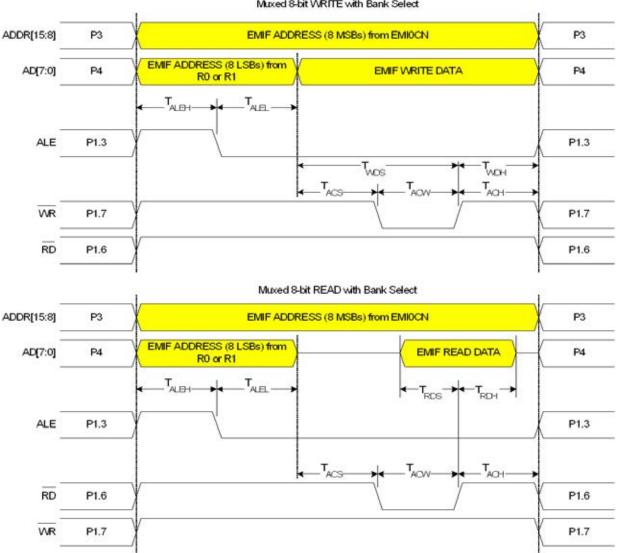



Figure 14.4. Non-Multiplexed 16-bit MOVX Timing

14.6.1.3. 8-bit MOVX with Bank Select: EMI0CF[4:2] = 110

Muxed 8-bit WRITE with Bank Select

Figure 14.6. Non-Multiplexed 8-bit MOVX with Bank Select Timing

Table 15.2. Special Function Registers

SFRs are liste	ed in alpha	betical order	r. All undefined SFR locations are reserved

Register	Address	Page	Description	Page
ACC	0xE0	All Pages	Accumulator	82
ADC0CF	0xBC	All Pages	ADC0 Configuration	49
ADC0CN	0xE8	All Pages	ADC0 Control	51
ADC0GTH	0xC4	All Pages	ADC0 Greater-Than Compare High	52
ADC0GTL	0xC3	All Pages	ADC0 Greater-Than Compare Low	52
ADC0H	0xBE	All Pages	ADC0 High	50
ADC0L	ADC0L 0xBD All Pages		ADC0 Low	50
ADCOLTH 0xC6 All F		All Pages	ADC0 Less-Than Compare Word High	53
ADC0LTL	0xC5	All Pages	ADC0 Less-Than Compare Word Low	53
AMX0N	0xBA	All Pages	AMUX0 Negative Channel Select	57
AMX0P	0xBB	All Pages	AMUX0 Positive Channel Select	56
В	0xF0	All Pages	B Register	82
CKCON	0x8E	All Pages	Clock Control	225
CKCON1	0xE4	F	Clock Control 1	226
CLKMUL	0xB9	0	Clock Multiplier	141
CLKSEL	0xA9	All Pages	Clock Select	138
CPT0CN	0x9B	All Pages	Comparator0 Control	63
CPT0MD	0x9D	All Pages	Comparator0 Mode Selection	64
CPT0MX	0x9F	All Pages	Comparator0 MUX Selection	68
CPT1CN	0x9A	All Pages	Comparator1 Control	65
CPT1MD	0x9C	All Pages	Comparator1 Mode Selection	66
CPT1MX	0x9E	All Pages	Comparator1 MUX Selection	69
DPH	0x83	All Pages	Data Pointer High	81
DPL	0x82	All Pages	Data Pointer Low	81
EIE1	0xE6	All Pages	Extended Interrupt Enable 1	117
EIE2	0xE7	All Pages	Extended Interrupt Enable 2	119
EIP1	0xF6	All Pages	Extended Interrupt Priority 1	118
EIP2	0xF7	All Pages	Extended Interrupt Priority 2	120
EMIOCF	0x85	All Pages	External Memory Interface Configuration	91
EMIOCN	0xAA	All Pages	External Memory Interface Control	90
EMIOTC	0x84	All Pages	External Memory Interface Timing	97
FLKEY	0xB7	All Pages	Flash Lock and Key	134
FLSCL	0xB6	All Pages	Flash Scale	135

19.3. Clock Multiplier

The C8051F388/9/A/B device includes a 48 MHz high-frequency oscillator instead of a 12 MHz oscillator and a 4x Clock Multiplier. For compatibility with C8051F34x and C8051F32x devices however, the CLK-MUL register (SFR Definition 19.4) behaves as if the Clock Multiplier is present and working.

SFR Definition 19.4. CLKMUL: Clock Multiplier Control

Bit	7	6	5	4	3	2	1	0	
Name	MULEN	MULINIT	MULRDY				MULSEL[1:0]		
Туре	R	R	R	R	R	R	R		
Reset	1	1	1	0	0	0	0	0	

SFR Address = 0xB9; SFR Page = 0

Bit	Name	Description
7	MULEN	Clock Multiplier Enable Bit. This bit always reads 1.
6	MULINIT	Clock Multiplier Initialize Bit. This bit always reads 1.
5	MULRDY	Clock Multiplier Ready Bit. This bit always reads 1.
4:2	Unused	Read = 000b; Write = don't care
1:0	MULSEL[1:0]	Clock Multiplier Input Select Bits. These bits always read 00.

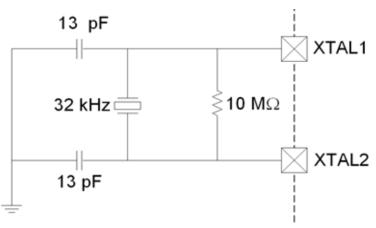


Figure 19.2. External Crystal Example

Important Note on External Crystals: Crystal oscillator circuits are quite sensitive to PCB layout. The crystal should be placed as close as possible to the XTAL pins on the device. The traces should be as short as possible and shielded with ground plane from any other traces which could introduce noise or interference.

When using an external crystal, the external oscillator drive circuit must be configured by software for *Crystal Oscillator Mode* or *Crystal Oscillator Mode with divide by 2 stage*. The divide by 2 stage ensures that the clock derived from the external oscillator has a duty cycle of 50%. The External Oscillator Frequency Control value (XFCN) must also be specified based on the crystal frequency (see SFR Definition 19.6).

When the crystal oscillator is first enabled, the external oscillator valid detector allows software to determine when the external system clock is valid and running. Switching to the external oscillator before the crystal oscillator has stabilized can result in unpredictable behavior. The recommended procedure for starting the crystal is:

- 1. Configure XTAL1 and XTAL2 for analog I/O.
- 2. Disable the XTAL1 and XTAL2 digital output drivers by writing 1s to the appropriate bits in the Port Latch register.
- 3. Configure and enable the external oscillator.
- 4. Wait at least 1 ms.
- 5. Poll for XTLVLD \geq 1.
- 6. Switch the system clock to the external oscillator.

All transactions are initiated by a master, with one or more addressed slave devices as the target. The master generates the START condition and then transmits the slave address and direction bit. If the transaction is a WRITE operation from the master to the slave, the master transmits the data a byte at a time waiting for an ACK from the slave at the end of each byte. For READ operations, the slave transmits the data waiting for an ACK from the master at the end of each byte. At the end of the data transfer, the master generates a STOP condition to terminate the transaction and free the bus. Figure 21.3 illustrates a typical SMBus transaction.

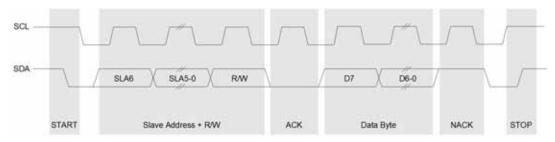


Figure 21.3. SMBus Transaction

21.3.1. Transmitter Vs. Receiver

On the SMBus communications interface, a device is the "transmitter" when it is sending an address or data byte to another device on the bus. A device is a "receiver" when an address or data byte is being sent to it from another device on the bus. The transmitter controls the SDA line during the address or data byte. After each byte of address or data information is sent by the transmitter, the receiver sends an ACK or NACK bit during the ACK phase of the transfer, during which time the receiver controls the SDA line.

21.3.2. Arbitration

A master may start a transfer only if the bus is free. The bus is free after a STOP condition or after the SCL and SDA lines remain high for a specified time (see Section "21.3.5. SCL High (SMBus Free) Timeout" on page 169). In the event that two or more devices attempt to begin a transfer at the same time, an arbitration scheme is employed to force one master to give up the bus. The master devices continue transmitting until one attempts a HIGH while the other transmits a LOW. Since the bus is open-drain, the bus will be pulled LOW. The master attempting the HIGH will detect a LOW SDA and lose the arbitration. The winning master continues its transmission without interruption; the losing master becomes a slave and receives the rest of the transfer if addressed. This arbitration scheme is non-destructive: one device always wins, and no data is lost.

21.3.3. Clock Low Extension

SMBus provides a clock synchronization mechanism, similar to I2C, which allows devices with different speed capabilities to coexist on the bus. A clock-low extension is used during a transfer in order to allow slower slave devices to communicate with faster masters. The slave may temporarily hold the SCL line LOW to extend the clock low period, effectively decreasing the serial clock frequency.

21.3.4. SCL Low Timeout

If the SCL line is held low by a slave device on the bus, no further communication is possible. Furthermore, the master cannot force the SCL line high to correct the error condition. To solve this problem, the SMBus protocol specifies that devices participating in a transfer must detect any clock cycle held low longer than 25 ms as a "timeout" condition. Devices that have detected the timeout condition must reset the communication no later than 10 ms after detecting the timeout condition.

For the SMBus0 interface, Timer 3 is used to implement SCL low timeouts. Timer 4 is used on the SMBus1 interface for SCL low timeouts. The SCL low timeout feature is enabled by setting the SMBnTOE bit in SMBnCF. The associated timer is forced to reload when SCL is high, and allowed to count when SCL is

22.2. Operational Modes

UART0 provides standard asynchronous, full duplex communication. The UART mode (8-bit or 9-bit) is selected by the S0MODE bit (SCON0.7). Typical UART connection options are shown in Figure 22.3.

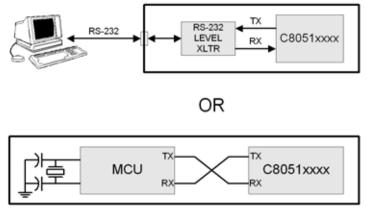


Figure 22.3. UART Interconnect Diagram

22.2.1. 8-Bit UART

8-Bit UART mode uses a total of 10 bits per data byte: one start bit, eight data bits (LSB first), and one stop bit. Data are transmitted LSB first from the TX0 pin and received at the RX0 pin. On receive, the eight data bits are stored in SBUF0 and the stop bit goes into RB80 (SCON0.2).

Data transmission begins when software writes a data byte to the SBUF0 register. The TI0 Transmit Interrupt Flag (SCON0.1) is set at the end of the transmission (the beginning of the stop-bit time). Data reception can begin any time after the REN0 Receive Enable bit (SCON0.4) is set to logic 1. After the stop bit is received, the data byte will be loaded into the SBUF0 receive register if the following conditions are met: RI0 must be logic 0, and if MCE0 is logic 1, the stop bit must be logic 1. In the event of a receive data overrun, the first received 8 bits are latched into the SBUF0 receive register and the following overrun data bits are lost.

If these conditions are met, the eight bits of data is stored in SBUF0, the stop bit is stored in RB80 and the RI0 flag is set. If these conditions are not met, SBUF0 and RB80 will not be loaded and the RI0 flag will not be set. An interrupt will occur if enabled when either TI0 or RI0 is set.

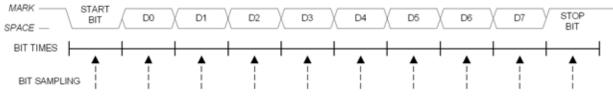
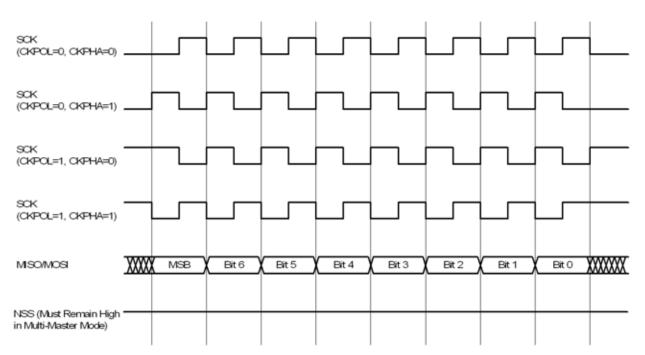


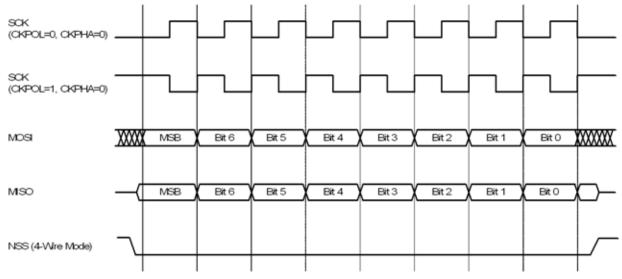
Figure 22.4. 8-Bit UART Timing Diagram

SFR Definition 22.2. SBUF0: Serial (UART0) Port Data Buffer

Bit	7	6	5	4	3	2	1	0			
Name	SBUF0[7:0]										
Туре		R/W									
Reset	0	0	0	0	0	0	0	0			


SFR Address = 0x99; SFR Page = All Pages

Bit	Name	Function
7:0	SBUF0[7:0]	Serial Data Buffer Bits 7–0 (MSB–LSB).
		This SFR accesses two registers; a transmit shift register and a receive latch register. When data is written to SBUF0, it goes to the transmit shift register and is held for serial transmission. Writing a byte to SBUF0 initiates the transmission. A read of SBUF0 returns the contents of the receive latch.


Table 22.1. Timer Settings for Standard Baud Rates Using Internal Oscillator

	Target Baud	Actual Baud	Baud Rate	Oscillator Divide	Timer Clock Source	SCA1-SCA0 (pre-scale	T1M	Timer 1 Reload
	Rate (bps)	Rate (bps)	Error	Factor	course	select*		Value (hex)
	230400	230769	0.16%	52	SYSCLK	XX	1	0xE6
MHz	115200	115385	0.16%	104	SYSCLK	XX	1	0xCC
2	57600	57692	0.16%	208	SYSCLK	XX	1	0x98
1	28800	28846	0.16%	416	SYSCLK	XX	1	0x30
	14400	14423	0.16%	832	SYSCLK/4	01	0	0x98
SCLK	9600	9615	0.16%	1248	SYSCLK/4	01	0	0x64
SΥS	2400	2404	0.16%	4992	SYSCLK / 12	00	0	0x30
S	1200	1202	0.16%	9984	SYSCLK / 48	10	0	0x98
Ν	230400	230769	0.16%	104	SYSCLK	XX	1	0xCC
MHz	115200	115385	0.16%	208	SYSCLK	XX	1	0x98
24 N	57600	57692	0.16%	416	SYSCLK	XX	1	0x30
2	28800	28846	0.16%	832	SYSCLK/4	01	0	0x98
	14400	14423	0.16%	1664	SYSCLK/4	01	0	0x30
SCLK	9600	9615	0.16%	2496	SYSCLK / 12	00	0	0x98
SΥS	2400	2404	0.16%	9984	SYSCLK / 48	10	0	0x98
S	1200	1202	0.16%	19968	SYSCLK / 48	10	0	0x30
Ŗ	230400	230769	0.16%	208	SYSCLK	XX	1	0x98
MHz	115200	115385	0.16%	416	SYSCLK	XX	1	0x30
48	57600	57692	0.16%	832	SYSCLK/4	01	0	0x98
	28800	28846	0.16%	1664	SYSCLK/4	01	0	0x30
ا <u>۲</u>	14400	14388	0.08%	3336	SYSCLK / 12	00	0	0x75
SCLK	9600	9615	0.16%	4992	SYSCLK / 12	00	0	0x30
SΥ	2400	2404	0.16%	19968	SYSCLK / 48	10	0	0x30

SFR Definition 24.1. SPI0CFG: SPI0 Configuration

Bit	7	6	5	4	3	2	1	0
Name	SPIBSY	MSTEN	СКРНА	CKPOL	SLVSEL	NSSIN	SRMT	RXBMT
Туре	R	R/W	R/W	R/W	R	R	R	R
Reset	0	0	0	0	0	1	1	1

SFR Address = 0xA1; SFR Page = All Pages

Bit	Name	Function
7	SPIBSY	SPI Busy.
		This bit is set to logic 1 when a SPI transfer is in progress (master or slave mode).
6	MSTEN	Master Mode Enable.
		0: Disable master mode. Operate in slave mode.
		1: Enable master mode. Operate as a master.
5	CKPHA	SPI0 Clock Phase.
		0: Data centered on first edge of SCK period.*
		1: Data centered on second edge of SCK period.*
4	CKPOL	SPI0 Clock Polarity.
		0: SCK line low in idle state.
		1: SCK line high in idle state.
3	SLVSEL	Slave Selected Flag.
		This bit is set to logic 1 whenever the NSS pin is low indicating SPI0 is the selected
		slave. It is cleared to logic 0 when NSS is high (slave not selected). This bit does not indicate the instantaneous value at the NSS pin, but rather a de-glitched ver-
		sion of the pin input.
2	NSSIN	NSS Instantaneous Pin Input.
		This bit mimics the instantaneous value that is present on the NSS port pin at the
		time that the register is read. This input is not de-glitched.
1	SRMT	Shift Register Empty (valid in slave mode only).
		This bit will be set to logic 1 when all data has been transferred in/out of the shift
		register, and there is no new information available to read from the transmit buffer or write to the receive buffer. It returns to logic 0 when a data byte is transferred to
		the shift register from the transmit buffer or by a transition on SCK. SRMT = 1 when
		in Master Mode.
0	RXBMT	Receive Buffer Empty (valid in slave mode only).
		This bit will be set to logic 1 when the receive buffer has been read and contains no
		new information. If there is new information available in the receive buffer that has not been read, this bit will return to logic 0. RXBMT = 1 when in Master Mode.
	la classa and l	
Note:		data on MOSI is sampled in the center of each data bit. In master mode, data on MISO is /SCLK before the end of each data bit, to provide maximum settling time for the slave device.
	•	for timing parameters.

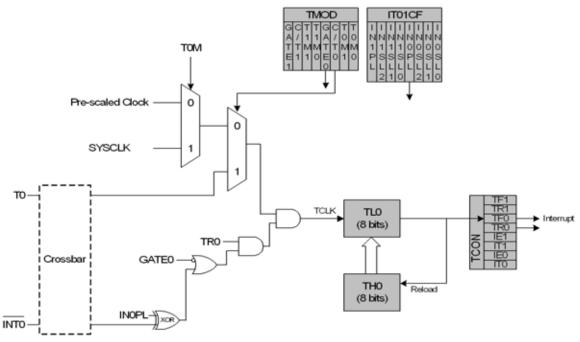


Figure 25.2. T0 Mode 2 Block Diagram

25.1.4. Mode 3: Two 8-bit Counter/Timers (Timer 0 Only)

In Mode 3, Timer 0 is configured as two separate 8-bit counter/timers held in TL0 and TH0. The counter/timer in TL0 is controlled using the Timer 0 control/status bits in TCON and TMOD: TR0, C/T0, GATE0 and TF0. TL0 can use either the system clock or an external input signal as its timebase. The TH0 register is restricted to a timer function sourced by the system clock or prescaled clock. TH0 is enabled using the Timer 1 run control bit TR1. TH0 sets the Timer 1 overflow flag TF1 on overflow and thus controls the Timer 1 interrupt.

Timer 1 is inactive in Mode 3. When Timer 0 is operating in Mode 3, Timer 1 can be operated in Modes 0, 1 or 2, but cannot be clocked by external signals nor set the TF1 flag and generate an interrupt. However, the Timer 1 overflow can be used to generate baud rates or overflow conditions for other peripherals. While Timer 0 is operating in Mode 3, Timer 1 run control is handled through its mode settings. To run Timer 1 while Timer 0 is in Mode 3, set the Timer 1 Mode as 0, 1, or 2. To disable Timer 1, configure it for Mode 3.

SFR Definition 25.5. TL0: Timer 0 Low Byte

Bit	7	6	5	4	3	2	1	0		
Nam	9	TL0[7:0]								
Туре	•	R/W								
Rese	t 0	0	0	0	0	0	0	0		
SFR A	SFR Address = 0x8A; SFR Page = All Pages									
Bit	Name									

SERF	4001622 = 0.001	A, SER Faye = All Fayes
Dit	Nomo	

Bit	Name	Function
7:0	TL0[7:0]	Timer 0 Low Byte.
		The TL0 register is the low byte of the 16-bit Timer 0.

SFR Definition 25.6. TL1: Timer 1 Low Byte

Bit	Bit 7 6 5 4 3 2							0	
Nam	e			TL1	[7:0]				
Туре	9			R/	W				
Rese	et 0	0	0	0	0	0	0	0	
SFR A	ddress = 0x8	B; SFR Page	= All Pages						
Bit	Name				Function				
7:0	TL1[7:0]	1[7:0] Timer 1 Low Byte.							
		The TL1 register is the low byte of the 16-bit Timer 1.							

SFR Definition 25.20. TMR4RLL: Timer 4 Reload Register Low Byte

Bit	7	6	5	4	3	2	1	0			
Name		TMR4RLL[7:0]									
Туре		R/W									
Reset	0	0	0	0	0	0	0	0			
SFR Ad	dress = 0x92	2; SFR Page	= F								
D:4	Nama				E.mation						

Bit	Name	Function
7:0	TMR4RLL[7:0]	Timer 4 Reload Register Low Byte.
		TMR4RLL holds the low byte of the reload value for Timer 4.

SFR Definition 25.21. TMR4RLH: Timer 4 Reload Register High Byte

Bit	7	6	5	4	3	2	1	0			
Nam	e	TMR4RLH[7:0]									
Туре	9			R	W						
Rese	et 0	0	0	0	0	0	0	0			
SFR A	Address = 0x93	; SFR Page	= F								
Bit	Name				Function						
7:0	TMR4RLH[7:0	_H[7:0] Timer 4 Reload Register High Byte.									
		TMR4RLH holds the high byte of the reload value for Timer 4.									

SFR Definition 25.22. TMR4L: Timer 4 Low Byte

Bit	7	6	5	4	3	2	1	0			
Name		TMR4L[7:0]									
Туре		R/W									
Reset	0	0	0	0	0	0	0	0			

SFR Address = 0x94; SFR Page = F

Bit	Name	Function
7:0		Timer 4 Low Byte.
		In 16-bit mode, the TMR4L register contains the low byte of the 16-bit Timer 4. In 8-bit mode, TMR4L contains the 8-bit low byte timer value.

SFR Definition 25.24. TMR5CN: Timer 5 Control

Bit	7	6	5	4	3	2	1	0
Name	TF5H	TF5L	TF5LEN		T5SPLIT	TR5		T5XCLK
Туре	R/W	R/W	R/W	R	R/W	R/W	R	R/W
Reset	0	0	0	0	0	0	0	0

SFR Address = 0xC8; SFR Page = F; Bit-Addressable

Bit	Name	Function			
7	TF5H	Timer 5 High Byte Overflow Flag. Set by hardware when the Timer 5 high byte overflows from 0xFF to 0x00. In 16 bit mode, this will occur when Timer 5 overflows from 0xFFFF to 0x0000. When the Timer 5 interrupt is enabled, setting this bit causes the CPU to vector to the Timer 5 interrupt service routine. This bit is not automatically cleared by hardware.			
6	TF5L	Timer 5 Low Byte Overflow Flag. Set by hardware when the Timer 5 low byte overflows from 0xFF to 0x00. TF5L will be set when the low byte overflows regardless of the Timer 5 mode. This bit is not automatically cleared by hardware.			
5	TF5LEN	Timer 5 Low Byte Interrupt Enable.When set to 1, this bit enables Timer 5 Low Byte interrupts. If Timer 5 interrupts are also enabled, an interrupt will be generated when the low byte of Timer 5 overflows.			
4	Unused	Read = 0b; Write = don't care.			
3	T5SPLIT	Timer 5 Split Mode Enable.When this bit is set, Timer 5 operates as two 8-bit timers with auto-reload.0: Timer 5 operates in 16-bit auto-reload mode.1: Timer 5 operates as two 8-bit auto-reload timers.			
2	TR5	Timer 5 Run Control. Timer 5 is enabled by setting this bit to 1. In 8-bit mode, this bit enables/disables TMR5H only; TMR5L is always enabled in split mode.			
1	Unused	Read = 0b; Write = don't care.			
0	T5XCLK	Timer 5 External Clock Select.This bit selects the external clock source for Timer 5. However, the Timer 5 ClockSelect bits (T5MH and T5ML in register CKCON1) may still be used to selectbetween the external clock and the system clock for either timer.0: Timer 5 clock is the system clock divided by 12.1: Timer 5 clock is the external clock divided by 8 (synchronized with SYSCLK).			

