
Silicon Labs - C8051F389-B-GQ Datasheet

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated
circuits designed to perform specific tasks within larger
systems. These microcontrollers are essentially compact
computers on a single chip, containing a processor core,
memory, and programmable input/output peripherals.
They are called "embedded" because they are embedded
within electronic devices to control various functions,
rather than serving as standalone computers.
Microcontrollers are crucial in modern electronics,
providing the intelligence and control needed for a wide
range of applications.

Applications of "Embedded -
Microcontrollers"

Embedded microcontrollers are used in virtually every
sector of electronics, providing the necessary control and
processing power for a multitude of applications. In
consumer electronics, they manage the operations of
smartphones, home appliances, and wearable devices. In
automotive systems, microcontrollers control engine
functions, safety features, and infotainment systems.
Industrial applications rely on microcontrollers for
automation, robotics, and process control. Additionally,
microcontrollers are integral in medical devices, handling
functions such as monitoring, diagnostics, and control of
therapeutic equipment. Their versatility and
programmability make them essential components in
creating efficient, responsive, and intelligent electronic
systems.

Common Subcategories of "Embedded -
Microcontrollers"

Embedded microcontrollers can be categorized based on
their architecture, performance, and application focus.
Common subcategories include 8-bit, 16-bit, and 32-bit
microcontrollers, differentiated by their processing power
and memory capacity. 8-bit microcontrollers are typically
used in simple applications like basic control systems and
small devices. 16-bit microcontrollers offer a balance
between performance and complexity, suitable for
medium-scale applications like industrial automation. 32-
bit microcontrollers provide high performance and are
used in complex applications requiring advanced
processing, such as automotive systems and sophisticated
consumer electronics. Each subcategory serves a specific
range of applications, providing tailored solutions for
different performance and complexity needs.

Types of "Embedded - Microcontrollers"

There are various types of embedded microcontrollers,
each designed to meet specific application requirements.
General-purpose microcontrollers are versatile and used in
a wide range of applications, offering a balance of
performance, memory, and peripheral options. Special-
purpose microcontrollers are tailored for specific tasks,
such as automotive controllers, which include features like
built-in motor control peripherals and automotive-grade

Details

Product Status Active

Core Processor 8051

Core Size 8-Bit

Speed 48 MIPS

Connectivity I²C, SPI, UART/USART

Peripherals Brown-out Detect/Reset, POR, PWM, Temp Sensor, WDT

Number of I/O 25

Program Memory Size 64KB (64K x 8)

Program Memory Type FLASH

EEPROM Size -

RAM Size 4.25K x 8

Voltage - Supply (Vcc/Vdd) 2.7V ~ 5.25V

Data Converters A/D 21x10b

Oscillator Type Internal

Operating Temperature -40°C ~ 85°C (TA)

Mounting Type Surface Mount

Package / Case 32-LQFP

Supplier Device Package 32-LQFP (7x7)

Purchase URL https://www.e-xfl.com/product-detail/silicon-labs/c8051f389-b-gq

Email: info@E-XFL.COM Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

https://www.e-xfl.com/product/pdf/c8051f389-b-gq-4390736
https://www.e-xfl.com
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers

Rev. 1.1 27

C8051F388/9/A/B

Figure 3.4. LQFP-32 (C8051F389/B) Pinout Diagram (Top View)

C8051F388/9/A/B

28 Rev. 1.1

Figure 3.5. LQFP-32 Package Diagram

Table 3.4. LQFP-32 Package Dimensions
Dimension Min Nom Max Dimension Min Nom Max

A — — 1.60 E 9.00 BSC
A1 0.05 — 0.15 E1 7.00 BSC
A2 1.35 1.40 1.45 L 0.45 0.60 0.75
b 0.30 0.37 0.45 aaa 0.20
c 0.09 — 0.20 bbb 0.20
D 9.00 BSC ccc 0.10
D1 7.00 BSC ddd 0.20
e 0.80 BSC q 0° 3.5° 7°

Notes:
1. All dimensions shown are in millimeters (mm) unless otherwise noted.
2. Dimensioning and Tolerancing per ANSI Y14.5M-1994.
3. This drawing conforms to JEDEC outline MS-026, variation BBA.
4. The recommended card reflow profile is per the JEDEC/IPC J-STD-020 specification for Small Body

Components.

Rev. 1.1 63

C8051F388/9/A/B

SFR Address = 0x9B; SFR Page = All Pages

SFR Definition 8.1. CPT0CN: Comparator0 Control

Bit 7 6 5 4 3 2 1 0

Name CP0EN CP0OUT CP0RIF CP0FIF CP0HYP[1:0] CP0HYN[1:0]

Type R/W R R/W R/W R/W R/W

Reset 0 0 0 0 0 0 0 0

Bit Name Function

7 CP0EN Comparator0 Enable Bit.
0: Comparator0 Disabled.
1: Comparator0 Enabled.

6 CP0OUT Comparator0 Output State Flag.
0: Voltage on CP0+ < CP0–.
1: Voltage on CP0+ > CP0–.

5 CP0RIF Comparator0 Rising-Edge Flag. Must be cleared by software.
0: No Comparator0 Rising Edge has occurred since this flag was last cleared.
1: Comparator0 Rising Edge has occurred.

4 CP0FIF Comparator0 Falling-Edge Flag. Must be cleared by software.
0: No Comparator0 Falling-Edge has occurred since this flag was last cleared.
1: Comparator0 Falling-Edge has occurred.

3:2 CP0HYP[1:0] Comparator0 Positive Hysteresis Control Bits.
00: Positive Hysteresis Disabled.
01: Positive Hysteresis = 5 mV.
10: Positive Hysteresis = 10 mV.
11: Positive Hysteresis = 20 mV.

1:0 CP0HYN[1:0] Comparator0 Negative Hysteresis Control Bits.
00: Negative Hysteresis Disabled.
01: Negative Hysteresis = 5 mV.
10: Negative Hysteresis = 10 mV.
11: Negative Hysteresis = 20 mV.

C8051F388/9/A/B

64 Rev. 1.1

SFR Address = 0x9D; SFR Page = All Pages

SFR Definition 8.2. CPT0MD: Comparator0 Mode Selection

Bit 7 6 5 4 3 2 1 0

Name CP0RIE CP0FIE CP0MD[1:0]

Type R R R/W R/W R R R/W

Reset 0 0 0 0 0 0 1 0

Bit Name Function

7:6 Unused Read = 00b, Write = don’t care.

5 CP0RIE Comparator0 Rising-Edge Interrupt Enable.
0: Comparator0 Rising-edge interrupt disabled.
1: Comparator0 Rising-edge interrupt enabled.

4 CP0FIE Comparator0 Falling-Edge Interrupt Enable.
0: Comparator0 Falling-edge interrupt disabled.
1: Comparator0 Falling-edge interrupt enabled.

3:2 Unused Read = 00b, Write = don’t care.

1:0 CP0MD[1:0] Comparator0 Mode Select.
These bits affect the response time and power consumption for Comparator0.
00: Mode 0 (Fastest Response Time, Highest Power Consumption)
01: Mode 1
10: Mode 2
11: Mode 3 (Slowest Response Time, Lowest Power Consumption)

Rev. 1.1 79

C8051F388/9/A/B

ANL C, bit AND direct bit to Carry 2 2
ANL C, /bit AND complement of direct bit to Carry 2 2
ORL C, bit OR direct bit to carry 2 2
ORL C, /bit OR complement of direct bit to Carry 2 2
MOV C, bit Move direct bit to Carry 2 2
MOV bit, C Move Carry to direct bit 2 2

Program Flow
Timings are listed with the PFE on and FLRT = 0. Extra cycles are required for branches if FLRT = 1.

JC rel Jump if Carry is set 2 2/4
JNC rel Jump if Carry is not set 2 2/4
JB bit, rel Jump if direct bit is set 3 3/5
JNB bit, rel Jump if direct bit is not set 3 3/5
JBC bit, rel Jump if direct bit is set and clear bit 3 3/5
ACALL addr11 Absolute subroutine call 2 4
LCALL addr16 Long subroutine call 3 5
RET Return from subroutine 1 6
RETI Return from interrupt 1 6
AJMP addr11 Absolute jump 2 4
LJMP addr16 Long jump 3 5
SJMP rel Short jump (relative address) 2 4
JMP @A+DPTR Jump indirect relative to DPTR 1 4
JZ rel Jump if A equals zero 2 2/4
JNZ rel Jump if A does not equal zero 2 2/4
CJNE A, direct, rel Compare direct byte to A and jump if not equal 3 4/6
CJNE A, #data, rel Compare immediate to A and jump if not equal 3 3/5
CJNE Rn, #data, rel Compare immediate to Register and jump if not

equal
3 3/5

CJNE @Ri, #data, rel Compare immediate to indirect and jump if not
equal

3 4/6

DJNZ Rn, rel Decrement Register and jump if not zero 2 2/4
DJNZ direct, rel Decrement direct byte and jump if not zero 3 3/5
NOP No operation 1 1

Table 11.1. CIP-51 Instruction Set Summary (Continued)

Mnemonic Description Bytes Clock
Cycles

C8051F388/9/A/B

82 Rev. 1.1

SFR Address = 0x81; SFR Page = All Pages

SFR Address = 0xE0; SFR Page = All Pages; Bit-Addressable

SFR Address = 0xF0; SFR Page = All Pages; Bit-Addressable

SFR Definition 11.3. SP: Stack Pointer

Bit 7 6 5 4 3 2 1 0

Name SP[7:0]

Type R/W

Reset 0 0 0 0 0 1 1 1

Bit Name Function

7:0 SP[7:0] Stack Pointer.
The Stack Pointer holds the location of the top of the stack. The stack pointer is incre-
mented before every PUSH operation. The SP register defaults to 0x07 after reset.

SFR Definition 11.4. ACC: Accumulator

Bit 7 6 5 4 3 2 1 0

Name ACC[7:0]

Type R/W

Reset 0 0 0 0 0 0 0 0

Bit Name Function

7:0 ACC[7:0] Accumulator.
This register is the accumulator for arithmetic operations.

SFR Definition 11.5. B: B Register

Bit 7 6 5 4 3 2 1 0

Name B[7:0]

Type R/W

Reset 0 0 0 0 0 0 0 0

Bit Name Function

7:0 B[7:0] B Register.
This register serves as a second accumulator for certain arithmetic operations.

C8051F388/9/A/B

106 Rev. 1.1

Table 15.1. Special Function Register (SFR) Memory Map

A
dd

re
ss

P
ag

e

0(8) 1(9) 2(A) 3(B) 4(C) 5(D) 6(E) 7(F)

F8 SPI0CN PCA0L PCA0H PCA0CPL0 PCA0CPH0 PCA0CPL4 PCA0CPH4 VDM0CN

F0 B P0MDIN P1MDIN P2MDIN P3MDIN P4MDIN EIP1 EIP2

E8 ADC0CN PCA0CPL1 PCA0CPH1 PCA0CPL2 PCA0CPH2 PCA0CPL3 PCA0CPH3 RSTSRC

E0
0

ACC XBR0 XBR1 XBR2
IT01CF

SMOD1 EIE1 EIE2
F CKCON1

D8 PCA0CN PCA0MD PCA0CPM0 PCA0CPM1 PCA0CPM2 PCA0CPM3 PCA0CPM4 P3SKIP

D0 PSW REF0CN SCON1 SBUF1 P0SKIP P1SKIP P2SKIP

C8
0 TMR2CN

REG01CN
TMR2RLL TMR2RLH TMR2L TMR2H SMB0ADM SMB0ADR

F TMR5CN TMR5RLL TMR5RLH TMR5L TMR5H SMB1ADM SMB1ADR

C0
0 SMB0CN SMB0CF SMB0DAT

ADC0GTL ADC0GTH ADC0LTL ADC0LTH P4
F SMB1CN SMB1CF SMB1DAT

B8
0

IP
CLKMUL

AMX0N AMX0P
ADC0CF

ADC0L ADC0H SFRPAGE
F SMBTC

B0 P3 OSCXCN OSCICN OSCICL SBRLL1 SBRLH1 FLSCL FLKEY

A8 IE CLKSEL EMI0CN SBCON1 P4MDOUT PFE0CN

A0 P2 SPI0CFG SPI0CKR SPI0DAT P0MDOUT P1MDOUT P2MDOUT P3MDOUT

98 SCON0 SBUF0 CPT1CN CPT0CN CPT1MD CPT0MD CPT1MX CPT0MX

90
0

P1
TMR3CN TMR3RLL TMR3RLH TMR3L TMR3H

F TMR4CN TMR4RLL TMR4RLH TMR4L TMR4H

88 TCON TMOD TL0 TL1 TH0 TH1 CKCON PSCTL

80 P0 SP DPL DPH EMI0TC EMI0CF OSCLCN PCON

0(8) 1(9) 2(A) 3(B) 4(C) 5(D) 6(E) 7(F)

Notes:
1. SFR Addresses ending in 0x0 or 0x8 are bit-addressable locations and can be used with bitwise instructions.
2. Unless indicated otherwise, SFRs are available on both page 0 and page F.

C8051F388/9/A/B

112 Rev. 1.1

16. Interrupts
The C8051F388/9/A/B include an extended interrupt system supporting multiple interrupt sources with two
priority levels. The allocation of interrupt sources between on-chip peripherals and external inputs pins var-
ies according to the specific version of the device. Each interrupt source has one or more associated inter-
rupt-pending flag(s) located in an SFR. When a peripheral or external source meets a valid interrupt
condition, the associated interrupt-pending flag is set to logic 1.

If interrupts are enabled for the source, an interrupt request is generated when the interrupt-pending flag is
set. As soon as execution of the current instruction is complete, the CPU generates an LCALL to a prede-
termined address to begin execution of an interrupt service routine (ISR). Each ISR must end with an RETI
instruction, which returns program execution to the next instruction that would have been executed if the
interrupt request had not occurred. If interrupts are not enabled, the interrupt-pending flag is ignored by the
hardware and program execution continues as normal. (The interrupt-pending flag is set to logic 1 regard-
less of the interrupt's enable/disable state.)

Each interrupt source can be individually enabled or disabled through the use of an associated interrupt
enable bit in an SFR (IE, EIE1, or EIE2). However, interrupts must first be globally enabled by setting the
EA bit (IE.7) to logic 1 before the individual interrupt enables are recognized. Setting the EA bit to logic 0
disables all interrupt sources regardless of the individual interrupt-enable settings.

Note: Any instruction that clears a bit to disable an interrupt should be immediately followed by an instruc-
tion that has two or more opcode bytes. Using EA (global interrupt enable) as an example:

// in 'C':
EA = 0; // clear EA bit.
EA = 0; // this is a dummy instruction with two-byte opcode.

; in assembly:
CLR EA ; clear EA bit.
CLR EA ; this is a dummy instruction with two-byte opcode.

For example, if an interrupt is posted during the execution phase of a "CLR EA" opcode (or any instruction
which clears a bit to disable an interrupt source), and the instruction is followed by a single-cycle instruc-
tion, the interrupt may be taken. However, a read of the enable bit will return a 0 inside the interrupt service
routine. When the bit-clearing opcode is followed by a multi-cycle instruction, the interrupt will not be taken.

Some interrupt-pending flags are automatically cleared by the hardware when the CPU vectors to the ISR.
However, most are not cleared by the hardware and must be cleared by software before returning from the
ISR. If an interrupt-pending flag remains set after the CPU completes the return-from-interrupt (RETI)
instruction, a new interrupt request will be generated immediately and the CPU will re-enter the ISR after
the completion of the next instruction.

Rev. 1.1 113

C8051F388/9/A/B

16.1. MCU Interrupt Sources and Vectors
The C8051F388/9/A/B MCUs support several interrupt sources. Software can simulate an interrupt by set-
ting any interrupt-pending flag to logic 1. If interrupts are enabled for the flag, an interrupt request will be
generated and the CPU will vector to the ISR address associated with the interrupt-pending flag. MCU
interrupt sources, associated vector addresses, priority order and control bits are summarized in
Table 16.1. Refer to the datasheet section associated with a particular on-chip peripheral for information
regarding valid interrupt conditions for the peripheral and the behavior of its interrupt-pending flag(s).

16.1.1. Interrupt Priorities
Each interrupt source can be individually programmed to one of two priority levels: low or high. A low prior-
ity interrupt service routine can be preempted by a high priority interrupt. A high priority interrupt cannot be
preempted. Each interrupt has an associated interrupt priority bit in an SFR (IP, EIP1, or EIP2) used to
configure its priority level. Low priority is the default. If two interrupts are recognized simultaneously, the
interrupt with the higher priority is serviced first. If both interrupts have the same priority level, a fixed prior-
ity order is used to arbitrate, given in Table 16.1.

16.1.2. Interrupt Latency
Interrupt response time depends on the state of the CPU when the interrupt occurs. Pending interrupts are
sampled and priority decoded each system clock cycle. Therefore, the fastest possible response time is 6
system clock cycles: 1 clock cycle to detect the interrupt and 5 clock cycles to complete the LCALL to the
ISR. If an interrupt is pending when a RETI is executed, a single instruction is executed before an LCALL
is made to service the pending interrupt. Therefore, the maximum response time for an interrupt (when no
other interrupt is currently being serviced or the new interrupt is of greater priority) occurs when the CPU is
performing an RETI instruction followed by a DIV as the next instruction. In this case, the response time is
20 system clock cycles: 1 clock cycle to detect the interrupt, 6 clock cycles to execute the RETI, 8 clock
cycles to complete the DIV instruction and 5 clock cycles to execute the LCALL to the ISR. If the CPU is
executing an ISR for an interrupt with equal or higher priority, the new interrupt will not be serviced until the
current ISR completes, including the RETI and following instruction.

Note that the CPU is stalled during Flash write operations. Interrupt service latency will be increased for
interrupts occurring while the CPU is stalled. The latency for these situations will be determined by the
standard interrupt service procedure (as described above) and the amount of time the CPU is stalled.

16.2. Interrupt Register Descriptions
The SFRs used to enable the interrupt sources and set their priority level are described in this section.
Refer to the data sheet section associated with a particular on-chip peripheral for information regarding
valid interrupt conditions for the peripheral and the behavior of its interrupt-pending flag(s).

C8051F388/9/A/B

128 Rev. 1.1

SFR Address = 0xEF; SFR Page = All Pages

SFR Definition 17.2. RSTSRC: Reset Source

Bit 7 6 5 4 3 2 1 0

Name Reserved FERROR C0RSEF SWRSF WDTRSF MCDRSF PORSF PINRSF

Type R/W R R/W R/W R R/W R/W R

Reset Varies Varies Varies Varies Varies Varies Varies Varies

Bit Name Description Write Read

7 Reserved Must Write 0b. Read = 0b

6 FERROR Flash Error Reset Flag. N/A Set to 1 if Flash
read/write/erase error
caused the last reset.

5 C0RSEF Comparator0 Reset Enable
and Flag.

Writing a 1 enables Com-
parator0 as a reset source
(active-low).

Set to 1 if Comparator0
caused the last reset.

4 SWRSF Software Reset Force and
Flag.

Writing a 1 forces a sys-
tem reset.

Set to 1 if last reset was
caused by a write to
SWRSF.

3 WDTRSF Watchdog Timer Reset Flag. N/A Set to 1 if Watchdog Timer
overflow caused the last
reset.

2 MCDRSF Missing Clock Detector
Enable and Flag.

Writing a 1 enables the
Missing Clock Detector.
The MCD triggers a reset
if a missing clock condition
is detected.

Set to 1 if Missing Clock
Detector timeout caused
the last reset.

1 PORSF Power-On / VDD Monitor
Reset Flag, and VDD monitor
Reset Enable.

Writing a 1 enables the
VDD monitor as a reset
source.
Writing 1 to this bit
before the VDD monitor
is enabled and stabilized
may cause a system
reset.

Set to 1 anytime a power-
on or VDD monitor reset
occurs.
When set to 1 all other
RSTSRC flags are inde-
terminate.

0 PINRSF HW Pin Reset Flag. N/A Set to 1 if RST pin caused
the last reset.

Note: Do not use read-modify-write operations on this register

Rev. 1.1 161

C8051F388/9/A/B

SFR Address = 0xA6; SFR Page = All Pages

SFR Address = 0xD6; SFR Page = All Pages

SFR Definition 20.14. P2MDOUT: Port 2 Output Mode

Bit 7 6 5 4 3 2 1 0

Name P2MDOUT[7:0]

Type R/W

Reset 0 0 0 0 0 0 0 0

Bit Name Function
7:0 P2MDOUT[7:0] Output Configuration Bits for P2.7–P2.0 (respectively).

These bits are ignored if the corresponding bit in register P2MDIN is logic 0.
0: Corresponding P2.n Output is open-drain.
1: Corresponding P2.n Output is push-pull.

SFR Definition 20.15. P2SKIP: Port 2 Skip

Bit 7 6 5 4 3 2 1 0

Name P2SKIP[7:0]

Type R/W

Reset 0 0 0 0 0 0 0 0

Bit Name Function
7:0 P2SKIP[3:0] Port 2 Crossbar Skip Enable Bits.

These bits select Port 2 pins to be skipped by the Crossbar Decoder. Port pins
used for analog, special functions or GPIO should be skipped by the Crossbar.
0: Corresponding P2.n pin is not skipped by the Crossbar.
1: Corresponding P2.n pin is skipped by the Crossbar.

Rev. 1.1 187

C8051F388/9/A/B

21.5.4. Read Sequence (Slave)
During a read sequence, an SMBus master reads data from a slave device. The slave in this transfer will
be a receiver during the address byte, and a transmitter during all data bytes. When slave events are
enabled (INH = 0), the interface enters Slave Receiver Mode (to receive the slave address) when a START
followed by a slave address and direction bit (READ in this case) is received. If hardware ACK generation
is disabled, upon entering Slave Receiver Mode, an interrupt is generated and the ACKRQ bit is set. The
software must respond to the received slave address with an ACK, or ignore the received slave address
with a NACK. If hardware ACK generation is enabled, the hardware will apply the ACK for a slave address
which matches the criteria set up by SMB0ADR and SMB0ADM. The interrupt will occur after the ACK
cycle.

If the received slave address is ignored (by software or hardware), slave interrupts will be inhibited until the
next START is detected. If the received slave address is acknowledged, zero or more data bytes are trans-
mitted. If the received slave address is acknowledged, data should be written to SMB0DAT to be transmit-
ted. The interface enters slave transmitter mode, and transmits one or more bytes of data. After each byte
is transmitted, the master sends an acknowledge bit; if the acknowledge bit is an ACK, SMB0DAT should
be written with the next data byte. If the acknowledge bit is a NACK, SMB0DAT should not be written to
before SI is cleared (an error condition may be generated if SMB0DAT is written following a received
NACK while in slave transmitter mode). The interface exits slave transmitter mode after receiving a STOP.
The interface will switch to slave receiver mode if SMB0DAT is not written following a Slave Transmitter
interrupt. Figure 21.8 shows a typical slave read sequence. Two transmitted data bytes are shown, though
any number of bytes may be transmitted. Notice that all of the “data byte transferred” interrupts occur after
the ACK cycle in this mode, regardless of whether hardware ACK generation is enabled.

Figure 21.8. Typical Slave Read Sequence

21.6. SMBus Status Decoding
The current SMBus status can be easily decoded using the SMB0CN register. The appropriate actions to
take in response to an SMBus event depend on whether hardware slave address recognition and ACK
generation is enabled or disabled. Table 21.5 describes the typical actions when hardware slave address
recognition and ACK generation is disabled. Table 21.6 describes the typical actions when hardware slave
address recognition and ACK generation is enabled. In the tables, STATUS VECTOR refers to the four
upper bits of SMB0CN: MASTER, TXMODE, STA, and STO. The shown response options are only the typ-
ical responses; application-specific procedures are allowed as long as they conform to the SMBus specifi-
cation. Highlighted responses are allowed by hardware but do not conform to the SMBus specification.

C8051F388/9/A/B

198 Rev. 1.1

SFR Address = 0x98; SFR Page = All Pages; Bit-Addressable

SFR Definition 22.1. SCON0: Serial Port 0 Control

Bit 7 6 5 4 3 2 1 0

Name S0MODE - MCE0 REN0 TB80 RB80 TI0 RI0

Type R/W R R/W R/W R/W R/W R/W R/W

Reset 0 1 0 0 0 0 0 0

Bit Name Function
7 S0MODE Serial Port 0 Operation Mode.

Selects the UART0 Operation Mode.
0: 8-bit UART with Variable Baud Rate.
1: 9-bit UART with Variable Baud Rate.

6 Unused Read = 1b, Write = don’t care.

5 MCE0 Multiprocessor Communication Enable.
The function of this bit is dependent on the Serial Port 0 Operation Mode:
Mode 0: Checks for valid stop bit.
0: Logic level of stop bit is ignored.
1: RI0 will only be activated if stop bit is logic level 1.
Mode 1: Multiprocessor Communications Enable.
0: Logic level of ninth bit is ignored.
1: RI0 is set and an interrupt is generated only when the ninth bit is logic 1.

4 REN0 Receive Enable.
0: UART0 reception disabled.
1: UART0 reception enabled.

3 TB80 Ninth Transmission Bit.
The logic level of this bit will be sent as the ninth transmission bit in 9-bit UART Mode
(Mode 1). Unused in 8-bit mode (Mode 0).

2 RB80 Ninth Receive Bit.
RB80 is assigned the value of the STOP bit in Mode 0; it is assigned the value of the
9th data bit in Mode 1.

1 TI0 Transmit Interrupt Flag.
Set by hardware when a byte of data has been transmitted by UART0 (after the 8th bit
in 8-bit UART Mode, or at the beginning of the STOP bit in 9-bit UART Mode). When
the UART0 interrupt is enabled, setting this bit causes the CPU to vector to the UART0
interrupt service routine. This bit must be cleared manually by software.

0 RI0 Receive Interrupt Flag.
Set to 1 by hardware when a byte of data has been received by UART0 (set at the
STOP bit sampling time). When the UART0 interrupt is enabled, setting this bit to 1
causes the CPU to vector to the UART0 interrupt service routine. This bit must be
cleared manually by software.

C8051F388/9/A/B

200 Rev. 1.1

Note: SCA1-SCA0 and T1M define the Timer Clock Source. X = Don’t care

Table 22.1. Timer Settings for Standard Baud Rates Using Internal Oscillator

Target
Baud

Rate (bps)

Actual
Baud

Rate (bps)

Baud
Rate
Error

 Oscillator
Divide
Factor

Timer Clock
Source

SCA1-SCA0
(pre-scale

select*

T1M Timer 1
Reload

Value (hex)

Rev. 1.1 213

C8051F388/9/A/B

1 at the end of the transfer. If interrupts are enabled, an interrupt request is generated when the SPIF flag
is set. While the SPI0 master transfers data to a slave on the MOSI line, the addressed SPI slave device
simultaneously transfers the contents of its shift register to the SPI master on the MISO line in a full-duplex
operation. Therefore, the SPIF flag serves as both a transmit-complete and receive-data-ready flag. The
data byte received from the slave is transferred MSB-first into the master's shift register. When a byte is
fully shifted into the register, it is moved to the receive buffer where it can be read by the processor by
reading SPI0DAT.

When configured as a master, SPI0 can operate in one of three different modes: multi-master mode, 3-wire
single-master mode, and 4-wire single-master mode. The default, multi-master mode is active when NSS-
MD1 (SPI0CN.3) = 0 and NSSMD0 (SPI0CN.2) = 1. In this mode, NSS is an input to the device, and is
used to disable the master SPI0 when another master is accessing the bus. When NSS is pulled low in this
mode, MSTEN (SPI0CN.6) and SPIEN (SPI0CN.0) are set to 0 to disable the SPI master device, and a
Mode Fault is generated (MODF, SPI0CN.5 = 1). Mode Fault will generate an interrupt if enabled. SPI0
must be manually re-enabled in software under these circumstances. In multi-master systems, devices will
typically default to being slave devices while they are not acting as the system master device. In multi-mas-
ter mode, slave devices can be addressed individually (if needed) using general-purpose I/O pins.
Figure 24.2 shows a connection diagram between two master devices in multiple-master mode.

3-wire single-master mode is active when NSSMD1 (SPI0CN.3) = 0 and NSSMD0 (SPI0CN.2) = 0. In this
mode, NSS is not used, and is not mapped to an external port pin through the crossbar. Any slave devices
that must be addressed in this mode should be selected using general-purpose I/O pins. Figure 24.3
shows a connection diagram between a master device in 3-wire master mode and a slave device.

4-wire single-master mode is active when NSSMD1 (SPI0CN.3) = 1. In this mode, NSS is configured as an
output pin, and can be used as a slave-select signal for a single SPI device. In this mode, the output value
of NSS is controlled (in software) with the bit NSSMD0 (SPI0CN.2). Additional slave devices can be
addressed using general-purpose I/O pins. Figure 24.4 shows a connection diagram for a master device in
4-wire master mode and two slave devices.

Figure 24.2. Multiple-Master Mode Connection Diagram

Figure 24.3. 3-Wire Single Master and 3-Wire Single Slave Mode Connection Diagram

Rev. 1.1 255

C8051F388/9/A/B

25.5.2. 8-bit Timers with Auto-Reload
When T5SPLIT is 1 and T5CE = 0, Timer 5 operates as two 8-bit timers (TMR5H and TMR5L). Both 8-bit
timers operate in auto-reload mode as shown in Figure 25.15. TMR5RLL holds the reload value for
TMR5L; TMR5RLH holds the reload value for TMR5H. The TR5 bit in TMR5CN handles the run control for
TMR5H. TMR5L is always running when configured for 8-bit Mode.

Each 8-bit timer may be configured to use SYSCLK, SYSCLK divided by 12, or the external oscillator clock
source divided by 8. The Timer 5 Clock Select bits (T5MH and T5ML in CKCON1) select either SYSCLK or
the clock defined by the Timer 5 External Clock Select bit (T5XCLK in TMR5CN), as follows:

The TF5H bit is set when TMR5H overflows from 0xFF to 0x00; the TF5L bit is set when TMR5L overflows
from 0xFF to 0x00. When Timer 5 interrupts are enabled, an interrupt is generated each time TMR5H over-
flows. If Timer 5 interrupts are enabled and TF5LEN (TMR5CN.5) is set, an interrupt is generated each
time either TMR5L or TMR5H overflows. When TF5LEN is enabled, software must check the TF5H and
TF5L flags to determine the source of the Timer 5 interrupt. The TF5H and TF5L interrupt flags are not
cleared by hardware and must be manually cleared by software.

Figure 25.15. Timer 5 8-Bit Mode Block Diagram

T5MH T5XCLK TMR5H Clock Source T5ML T5XCLK TMR5L Clock Source
0 0 SYSCLK/12 0 0 SYSCLK/12
0 1 External Clock/8 0 1 External Clock/8
1 X SYSCLK 1 X SYSCLK

Rev. 1.1 257

C8051F388/9/A/B

SFR Address = 0xCA; SFR Page = F

SFR Address = 0xCB; SFR Page = F

SFR Address = 0xCC; SFR Page = F

SFR Definition 25.25. TMR5RLL: Timer 5 Reload Register Low Byte

Bit 7 6 5 4 3 2 1 0

Name TMR5RLL[7:0]

Type R/W

Reset 0 0 0 0 0 0 0 0

Bit Name Function

7:0 TMR5RLL[7:0] Timer 5 Reload Register Low Byte.
TMR5RLL holds the low byte of the reload value for Timer 5.

SFR Definition 25.26. TMR5RLH: Timer 5 Reload Register High Byte

Bit 7 6 5 4 3 2 1 0

Name TMR5RLH[7:0]

Type R/W

Reset 0 0 0 0 0 0 0 0

Bit Name Function

7:0 TMR5RLH[7:0] Timer 5 Reload Register High Byte.
TMR5RLH holds the high byte of the reload value for Timer 5.

SFR Definition 25.27. TMR5L: Timer 5 Low Byte

Bit 7 6 5 4 3 2 1 0

Name TMR5L[7:0]

Type R/W

Reset 0 0 0 0 0 0 0 0

Bit Name Function

7:0 TMR5L[7:0] Timer 5 Low Byte.
In 16-bit mode, the TMR5L register contains the low byte of the 16-bit Timer 5. In
8-bit mode, TMR5L contains the 8-bit low byte timer value.

Rev. 1.1 261

C8051F388/9/A/B

26.2. PCA0 Interrupt Sources
Figure 26.3 shows a diagram of the PCA interrupt tree. There are six independent event flags that can be
used to generate a PCA0 interrupt. They are: the main PCA counter overflow flag (CF), which is set upon
a 16-bit overflow of the PCA0 counter and the individual flags for each PCA channel (CCF0, CCF1, CCF2,
CCF3, and CCF4), which are set according to the operation mode of that module. These event flags are
always set when the trigger condition occurs. Each of these flags can be individually selected to generate
a PCA0 interrupt, using the corresponding interrupt enable flag (ECF for CF, and ECCFn for each CCFn).
PCA0 interrupts must be globally enabled before any individual interrupt sources are recognized by the
processor. PCA0 interrupts are globally enabled by setting the EA bit and the EPCA0 bit to logic 1.

Figure 26.3. PCA Interrupt Block Diagram

C8051F388/9/A/B

262 Rev. 1.1

26.3. Capture/Compare Modules
Each module can be configured to operate independently in one of six operation modes: edge-triggered
capture, software timer, high-speed output, frequency output, 8-bit pulse width modulator, or 16-bit pulse
width modulator. Each module has Special Function Registers (SFRs) associated with it in the CIP-51 sys-
tem controller. These registers are used to exchange data with a module and configure the module's mode
of operation. Table 26.2 summarizes the bit settings in the PCA0CPMn register used to select the PCA
capture/compare module’s operating mode. Setting the ECCFn bit in a PCA0CPMn register enables the
module's CCFn interrupt.

Table 26.2. PCA0CPM Bit Settings for PCA Capture/Compare Modules

Operational Mode PCA0CPMn
Bit Number 7 6 5 4 3 2 1 0

Capture triggered by positive edge on CEXn X X 1 0 0 0 0 A

Capture triggered by negative edge on CEXn X X 0 1 0 0 0 A

Capture triggered by any transition on CEXn X X 1 1 0 0 0 A

Software Timer X B 0 0 1 0 0 A

High Speed Output X B 0 0 1 1 0 A

Frequency Output X B 0 0 0 1 1 A

8-Bit Pulse Width Modulator 0 B 0 0 C 0 1 A

16-Bit Pulse Width Modulator 1 B 0 0 C 0 1 A

Notes:
1. X = Don’t Care (no functional difference for individual module if 1 or 0).
2. A = Enable interrupts for this module (PCA interrupt triggered on CCFn set to 1).
3. B = When set to 0, the digital comparator is off. For high speed and frequency output modes, the associated

pin will not toggle. In any of the PWM modes, this generates a 0% duty cycle (output = 0).
4. C = When set, a match event will cause the CCFn flag for the associated channel to be set.

C8051F388/9/A/B

270 Rev. 1.1

The 8-bit offset held in PCA0CPH4 is compared to the upper byte of the 16-bit PCA counter. This offset
value is the number of PCA0L overflows before a reset. Up to 256 PCA clocks may pass before the first
PCA0L overflow occurs, depending on the value of the PCA0L when the update is performed. The total off-
set is then given (in PCA clocks) by Equation 26.4, where PCA0L is the value of the PCA0L register at the
time of the update.

Equation 26.4. Watchdog Timer Offset in PCA Clocks
The WDT reset is generated when PCA0L overflows while there is a match between PCA0CPH4 and
PCA0H. Software may force a WDT reset by writing a 1 to the CCF4 flag (PCA0CN.4) while the WDT is
enabled.

26.4.2. Watchdog Timer Usage
To configure the WDT, perform the following tasks:

1. Disable the WDT by writing a 0 to the WDTE bit.

2. Select the desired PCA clock source (with the CPS2–CPS0 bits).

3. Load PCA0CPL4 with the desired WDT update offset value.

4. Configure the PCA Idle mode (set CIDL if the WDT should be suspended while the CPU is in Idle
mode).

5. Enable the WDT by setting the WDTE bit to 1.

6. Reset the WDT timer by writing to PCA0CPH4.

The PCA clock source and Idle mode select cannot be changed while the WDT is enabled. The watchdog
timer is enabled by setting the WDTE or WDLCK bits in the PCA0MD register. When WDLCK is set, the
WDT cannot be disabled until the next system reset. If WDLCK is not set, the WDT is disabled by clearing
the WDTE bit.

The WDT is enabled following any reset. The PCA0 counter clock defaults to the system clock divided by
12, PCA0L defaults to 0x00, and PCA0CPL4 defaults to 0x00. Using Equation 26.4, this results in a WDT
timeout interval of 256 PCA clock cycles, or 3072 system clock cycles. Table 26.3 lists some example tim-
eout intervals for typical system clocks.

Offset 256 PCA0CPL4 256 PCA0L– +=

