

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Discontinued at Digi-Key
Core Processor	8051
Core Size	8-Bit
Speed	48 MIPS
Connectivity	EBI/EMI, I ² C, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, Temp Sensor, WDT
Number of I/O	40
Program Memory Size	32KB (32K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	2.25K x 8
Voltage - Supply (Vcc/Vdd)	2.7V ~ 5.25V
Data Converters	A/D 32x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	48-TQFP
Supplier Device Package	-
Purchase URL	https://www.e-xfl.com/product-detail/silicon-labs/c8051f38a-gq

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

List of Tables

Table 1.1. Product Selection Guide	16
Table 2.1. C8051F388/9/A/B Replacement Part Numbers	
Table 3.1. Pin Definitions for the C8051F388/9/A/B	
Table 3.2. TQFP-48 Package Dimensions	
Table 3.3. TQFP-48 PCB Land Pattern Dimensions	
Table 3.4. LQFP-32 Package Dimensions	
Table 3.5. LQFP-32 PCB Land Pattern Dimensions	
Table 3.6. QFN-32 Package Dimensions	
Table 3.7. QFN-32 PCB Land Pattern Dimensions	32
Table 5.1. Absolute Maximum Ratings	
Table 5.2. Global Electrical Characteristics	
Table 5.3. Port I/O DC Electrical Characteristics	
Table 5.4. Reset Electrical Characteristics	
Table 5.5. Internal Voltage Regulator Electrical Characteristics	37
Table 5.6. Flash Electrical Characteristics	37
Table 5.7. Internal High-Frequency Oscillator Electrical Characteristics	38
Table 5.8. Internal Low-Frequency Oscillator Electrical Characteristics	
Table 5.9. External Oscillator Electrical Characteristics	
Table 5.10. ADC0 Electrical Characteristics	39
Table 5.11. Temperature Sensor Electrical Characteristics	40
Table 5.12. Voltage Reference Electrical Characteristics	40
Table 5.13. Comparator Electrical Characteristics	
Table 11.1. CIP-51 Instruction Set Summary	
Table 14.1. AC Parameters for External Memory Interface	
Table 15.1. Special Function Register (SFR) Memory Map 1	06
Table 15.2. Special Function Registers 1	
Table 16.1. Interrupt Summary	
Table 21.1. SMBus Clock Source Selection	70
Table 21.2. Minimum SDA Setup and Hold Times 1	71
Table 21.3. Sources for Hardware Changes to SMBnCN 1	78
Table 21.4. Hardware Address Recognition Examples (EHACK = 1) 1	
Table 21.5. SMBus Status Decoding: Hardware ACK Disabled (EHACK = 0) 1	88
Table 21.6. SMBus Status Decoding: Hardware ACK Enabled (EHACK = 1) 1	90
Table 22.1. Timer Settings for Standard Baud Rates Using Internal Oscillator 1	99
Table 23.1. Baud Rate Generator Settings for Standard Baud Rates	02
Table 24.1. SPI Slave Timing Parameters	
Table 26.1. PCA Timebase Input Options	60
Table 26.2. PCA0CPM Bit Settings for PCA Capture/Compare Modules	62
Table 26.3. Watchdog Timer Timeout Intervals1 2	71

Table 5.13. Comparator Electrical Characteristics

 V_{DD} = 3.0 V, -40 to +85 °C unless otherwise noted.

Parameter	Test Condition	Min	Тур	Max	Unit
Response Time:	CP0+ - CP0- = 100 mV	_	100		ns
Mode 0, Vcm [*] = 1.5 V	CP0+ - CP0- = -100 mV	_	250		ns
Response Time:	CP0+ - CP0- = 100 mV	_	175	_	ns
Mode 1, Vcm [*] = 1.5 V	CP0+ - CP0- = -100 mV	_	500		ns
Response Time:	CP0+ - CP0- = 100 mV	_	320		ns
Mode 2, Vcm [*] = 1.5 V	CP0+ - CP0- = -100 mV	_	1100	_	ns
Response Time:	CP0+ - CP0- = 100 mV	_	1050		ns
Mode 3, Vcm [*] = 1.5 V	CP0+ - CP0- = -100 mV	_	5200		ns
Common-Mode Rejection Ratio		_	1.5	4	mV/V
Positive Hysteresis 1	CP0HYP1-0 = 00	_	0	1	mV
Positive Hysteresis 2	CP0HYP1-0 = 01	2	5	10	mV
Positive Hysteresis 3	CP0HYP1-0 = 10	7	10	20	mV
Positive Hysteresis 4	CP0HYP1-0 = 11	15	20	30	mV
Negative Hysteresis 1	CP0HYN1-0 = 00	_	0	1	mV
Negative Hysteresis 2	CP0HYN1-0 = 01	2	5	10	mV
Negative Hysteresis 3	CP0HYN1-0 = 10	7	10	20	mV
Negative Hysteresis 4	CP0HYN1-0 = 11	15	20	30	mV
Inverting or Non-Inverting Input Voltage Range		-0.25		V _{DD} + 0.25	V
Input Capacitance		_	4		pF
Input Bias Current		—	0.001		nA
Input Offset Voltage		-10		+10	mV
Power Supply				•	
Power Supply Rejection		_	0.1		mV/V
Power-up Time		—	10		μs
Supply Current at DC	Mode 0	_	20		μA
	Mode 1	—	10	_	μA
	Mode 2	—	4	_	μA
	Mode 3	_	1	—	μA
Note: Vcm is the common-mode vol	tage on CP0+ and CP0				

SFR Definition 6.9. AMX0P: AMUX0 Positive Channel Select

Bit	7	6	5	4	3	2	1	0		
Nam	е			1	AMX0P	[5:0]	1			
Тур	e R	R	R R/W							
Rese	et 0	0	0	0	0	0	0	0		
			age = All Pages	_		-				
Bit	Name		age = All Pages	>	Function					
7:6	Unused	Read = 0	0b; Write = don	't care.						
5:0	AMX0P[5:0]	AMUX0 F	Positive Input S	Selection.						
		AMX0P	32-pin Packages	48-pin Packages	AMX0P	32-pin Packag		3-pin ackages		
		000000:	P1.0	P2.0	010010	: P0.1	P	0.4		
		000001:	P1.1	P2.1	010011	: P0.4	P	1.1		
		000010:	P1.2	P2.2	010100	: P0.5	P	1.2		
		000011:	P1.3	P2.3	010101	: Reserve	ed P	1.0		
		000100:	P1.4	P2.5	010110	: Reserve	ed P	1.3		
		000101:	P1.5	P2.6	010111			1.6		
		000110:	P1.6	P3.0	011000	: Reserve	ed P	1.7		
		000111:	P1.7	P3.1	011001			2.4		
		001000:	P2.0	P3.4	011010			2.7		
		001001:	P2.1	P3.5	011011		ed P	3.2		
		001010:	P2.2	P3.7	011100			3.3		
		001011:	P2.3	P4.0	011101			3.6		
		001100:	P2.4	P4.3	011110	'		emp Sensor		
		001101:	P2.5	P4.4	011111:			DD		
		001110:	P2.6	P4.5	100000			4.1		
		001111:	P2.7	P4.6	100001			4.2		
		010000:	P3.0	Reserved	100010			4.7		
		010001:	P0.0	P0.3	100011 111111:		ed R	eserved		

Table 11.1. CIP-51 Instruction Set Summary

Mnemonic	Description	Bytes	Clock Cycles
Arithmetic Operations		I	
ADD A, Rn	Add register to A	1	1
ADD A, direct	Add direct byte to A	2	2
ADD A, @Ri	Add indirect RAM to A	1	2
ADD A, #data	Add immediate to A	2	2
ADDC A, Rn	Add register to A with carry	1	1
ADDC A, direct	Add direct byte to A with carry	2	2
ADDC A, @Ri	Add indirect RAM to A with carry	1	2
ADDC A, #data	Add immediate to A with carry	2	2
SUBB A, Rn	Subtract register from A with borrow	1	1
SUBB A, direct	Subtract direct byte from A with borrow	2	2
SUBB A, @Ri	Subtract indirect RAM from A with borrow	1	2
SUBB A, #data	Subtract immediate from A with borrow	2	2
INC A	Increment A	1	1
INC Rn	Increment register	1	1
INC direct	Increment direct byte	2	2
INC @Ri	Increment indirect RAM	1	2
DEC A	Decrement A	1	1
DEC Rn	Decrement register	1	1
DEC direct	Decrement direct byte	2	2
DEC @Ri	Decrement indirect RAM	1	2
INC DPTR	Increment Data Pointer	1	1
MULAB	Multiply A and B	1	4
DIV AB	Divide A by B	1	8
DAA	Decimal adjust A	1	1
Logical Operations		I	
ANL A, Rn	AND Register to A	1	1
ANL A, direct	AND direct byte to A	2	2
ANLA, @Ri	AND indirect RAM to A	1	2
ANL A, #data	AND immediate to A	2	2
ANL direct, A	AND A to direct byte	2	2
ANL direct, #data	AND immediate to direct byte	3	3
ORL A, Rn	OR Register to A	1	1
ORL A, direct	OR direct byte to A	2	2
ORLA, @Ri	OR indirect RAM to A	1	2
ORL A, #data	OR immediate to A	2	2
ORL direct, A	OR A to direct byte	2	2
ORL direct, #data	OR immediate to direct byte	3	3
XRLA, Rn	Exclusive-OR Register to A	1	1
XRL A, direct	Exclusive-OR direct byte to A	2	2
XRLA, @Ri	Exclusive-OR indirect RAM to A	1	2
XRL A, #data	Exclusive-OR immediate to A	2	2
XRL direct, A	Exclusive-OR A to direct byte	2	2

14.6.1.3. 8-bit MOVX with Bank Select: EMI0CF[4:2] = 110

Muxed 8-bit WRITE with Bank Select

Figure 14.6. Non-Multiplexed 8-bit MOVX with Bank Select Timing

SFR Definition 19.1. CLKSEL: Clock Select

Bit	7	6	5	4	3	2	1	0
Name		Reserved			OUTCLK	CLKSL[2:0]		
Туре	R	R/W			R/W		R/W	
Reset	0	0	0	0	0	0	0	0

SFR Address = 0xA9; SFR Page = All Pages

Bit	Name	Function
7	Unused	Read = 0b; Write = don't care
6:4	Reserved	Read = 0b; Must Write 000b.
3	OUTCLK	Crossbar Clock Out Select.
		If the SYSCLK signal is enabled on the Crossbar, this bit selects between outputting SYSCLK and SYSCLK synchronized with the Port I/O pins.
		0: Enabling the Crossbar SYSCLK signal outputs SYSCLK.
		1: Enabling the Crossbar SYSCLK signal outputs SYSCLK synchronized with the Port I/O.
2:0	CLKSL[2:0]	System Clock Source Select Bits.
		000: SYSCLK derived from the Internal High-Frequency Oscillator / 4 and scaled per the IFCN bits in register OSCICN.
		001: SYSCLK derived from the External Oscillator circuit.
		010: SYSCLK derived from the Internal High-Frequency Oscillator / 2.
		011: SYSCLK derived from the Internal High-Frequency Oscillator.
		100: SYSCLK derived from the Internal Low-Frequency Oscillator and scaled per the OSCLD bits in register OSCLCN.
		101-111: Reserved.

20. Port Input/Output

Digital and analog resources are available through 40 I/O pins (C8051F388/A) or 25 I/O pins (C8051F389/ B). Port pins are organized as shown in Figure 20.1. Each of the Port pins can be defined as general-purpose I/O (GPIO) or analog input; Port pins P0.0-P3.7 can be assigned to one of the internal digital resources as shown in Figure 20.3. The designer has complete control over which functions are assigned, limited only by the number of physical I/O pins. This resource assignment flexibility is achieved through the use of a Priority Crossbar Decoder. Note that the state of a Port I/O pin can always be read in the corresponding Port latch, regardless of the Crossbar settings.

The Crossbar assigns the selected internal digital resources to the I/O pins based on the Priority Decoder (Figure 20.3 and Figure 20.4). The registers XBR0, XBR1, and XBR2 defined in SFR Definition 20.1, SFR Definition 20.2, and SFR Definition 20.3, are used to select internal digital functions.

All Port I/Os are 5 V tolerant (refer to Figure 20.2 for the Port cell circuit). The Port I/O cells are configured as either push-pull or open-drain in the Port Output Mode registers (PnMDOUT, where n = 0,1,2,3,4).

Figure 20.1. Port I/O Functional Block Diagram (Port 0 through Port 3)

SFR Definition 20.8. P1: Port 1

Bit	7	6	5	4	3	2	1	0			
Name		P1[7:0]									
Туре		R/W									
Reset	1	1	1	1	1	1	1	1			

SFR Address = 0x90; SFR Page = All Pages; Bit Addressable

Bit	Name	Description	Write	Read
7:0	P1[7:0]	Port 1 Data. Sets the Port latch logic value or reads the Port pin logic state in Port cells con- figured for digital I/O.	0: Set output latch to logic LOW. 1: Set output latch to logic HIGH.	0: P1.n Port pin is logic LOW. 1: P1.n Port pin is logic HIGH.

SFR Definition 20.9. P1MDIN: Port 1 Input Mode

Bit	7	6	5	4	3	2	1	0		
Name	P1MDIN[7:0]									
Туре		R/W								
Reset	1*	1	1	1	1	1	1	1		

SFR Address = 0xF2; SFR Page = All Pages

Bit	Name	Function
7:0	P1MDIN[7:0]	Analog Configuration Bits for P1.7–P1.0 (respectively).
		Port pins configured for analog mode have their weak pullup, digital driver, and digital receiver disabled.
		0: Corresponding P1.n pin is configured for analog mode.
		1: Corresponding P1.n pin is not configured for analog mode.

SFR Definition 20.14. P2MDOUT: Port 2 Output Mode

Bit	7	6	5	4	3	2	1	0			
Name		P2MDOUT[7:0]									
Туре		R/W									
Reset	0	0	0	0	0	0	0	0			

SFR Address = 0xA6; SFR Page = All Pages

Bit	Name	Function
7:0	P2MDOUT[7:0]	Output Configuration Bits for P2.7–P2.0 (respectively).
		These bits are ignored if the corresponding bit in register P2MDIN is logic 0. 0: Corresponding P2.n Output is open-drain. 1: Corresponding P2.n Output is push-pull.

SFR Definition 20.15. P2SKIP: Port 2 Skip

Bit	7	6	5	4	3	2	1	0
Name		P2SKIP[7:0]						
Туре		R/W						
Reset	t 0 0 0 0 0 0 0 0				0			

SFR Address = 0xD6; SFR Page = All Pages

Bit	Name	Function
7:0	P2SKIP[3:0]	Port 2 Crossbar Skip Enable Bits.
		 These bits select Port 2 pins to be skipped by the Crossbar Decoder. Port pins used for analog, special functions or GPIO should be skipped by the Crossbar. 0: Corresponding P2.n pin is not skipped by the Crossbar. 1: Corresponding P2.n pin is skipped by the Crossbar.

Table 21.5. SMBus Status Decoding: Hardware ACK Disabled (EHACK = 0)
--

	Va	alue	es F	Rea	d			1	lues Nrit		tus ected
Mode	Status	Current SMbus State		Current SMbus State	Typical Response Options	STA	STO	ACK	Next Status Vector Expected		
	111	0	0	0	x	A master START was gener- ated.	Load slave address + R/W into SMB0DAT.	0	0	Х	1100
			~	0		A master data or address byte	Set STA to restart transfer.	1	0	Х	1110
ter			0	0	0	was transmitted; NACK received.	Abort transfer.	0	1	Х	—
Master Transmitter							Load next data byte into SMB0- DAT.	0	0	Х	1100
Tra	110	0					End transfer with STOP.	0	1	Х	—
Master	Master Ma	0 0 1 was tra	A master data or address byte was transmitted; ACK	End transfer with STOP and start another transfer.	1	1	Х	—			
						received.	Send repeated START.	1	0	Х	1110
								Switch to Master Receiver Mode (clear SI without writing new data to SMB0DAT).	0	0	Х
							Acknowledge received byte; Read SMB0DAT.	0	0	1	1000
							Send NACK to indicate last byte, and send STOP.	0	1	0	—
ver							Send NACK to indicate last byte, and send STOP followed by START.	1	1	0	1110
ster Receiver	1000 1 0 X	x	A master data byte was received; ACK requested.	Send ACK followed by repeated START.	1	0	1	1110			
Mastel							Send NACK to indicate last byte, and send repeated START.	1	0	0	1110
					Send ACK and switch to Master Transmitter Mode (write to SMB0DAT before clearing SI).	0	0	1	1100		
							Send NACK and switch to Mas- ter Transmitter Mode (write to SMB0DAT before clearing SI).	0	0	0	1100

SFR Definition 23.3. SBUF1: UART1 Data Buffer

Bit	7	6	5	4	3	2	1	0
Name		SBUF1[7:0]						
Туре		R/W						
Reset	0	0	0	0	0	0	0	0

SFR Address = 0xD3; SFR Page = All Pages

Bit	Name	Description	Write	Read
7:0	SBUF1[7:0]	Serial Data Buffer Bits. This SFR is used to both send data from the UART and to read received data from the UART1 receive FIFO.	Writing a byte to SBUF1 initiates the transmission. When data is written to SBUF1, it first goes to the Transmit Holding Register, where it is held for serial transmission. When the transmit shift register is available, data is trans- ferred into the shift regis- ter, and SBUF1 may be written again.	Reading SBUF1 retrieves data from the receive FIFO. When read, the old- est byte in the receive FIFO is returned, and removed from the FIFO. Up to three bytes may be held in the FIFO. If there are additional bytes avail- able in the FIFO, the RI1 bit will remain at logic 1, even after being cleared by software.

SFR Definition 25.4. TMOD: Timer Mode

Bit	7	6	5	4	3	2	1	0
Nam	e GATE1	C/T1	T1M	[1:0]	GATE0	C/T0	TOM	[1:0]
Туре	R/W	R/W	R/	R/W	R/W			
Rese	et 0	0	0	0	0	0	0	0
SFR A	ddress = 0x8	9; SFR Page	= All Pages	•	•			
Bit	Name				Function			
7	GATE1	Timer 1 Ga	te Control.					
		0: Timer 1 e	nabled whe	n TR1 = 1 irr	espective of	INT1 logic le	evel.	
					1 AND INT1	is active as	defined by b	oit IN1PL in
		U	,	R Definition	16.7).			
6	C/T1	Counter/Ti	ner 1 Selec	t.				
					ock defined b	•	•	
				emented by	high-to-low t	ransitions or	n external pir	n (T1).
5:4	T1M[1:0]	Timer 1 Mo	de Select.					
				ner 1 operat	ion mode.			
			13-bit Cour					
			16-bit Cour					
					n Auto-Reloa	d		
		,	Timer 1 Ina	cuve				
3	GATE0	Timer 0 Ga						
					espective of	•		
				R Definition	1 AND INT(16 7)	is active as	defined by t	
2	С/Т0	Counter/Tir	-		,			
	0,10				ock defined h	v T0M bit in	register CK	CON
		0: Timer: Timer 0 incremented by clock defined by T0M bit in register CKC 1: Counter: Timer 0 incremented by high-to-low transitions on external pin						
1:0	T0M[1:0]	Timer 0 Mode Select.						
		These bits s	elect the Tir	ner 0 operat	ion mode.			
			13-bit Cour					
			16-bit Cour					
					n Auto-Reloa	d		
		11: Mode 3,	Two 8-bit C	ounter/Time	rs			

Figure 25.7. Timer 2 Capture Mode (T2SPLIT = 0)

SFR Definition 25.9. TMR2CN: Timer 2 Control

Bit	7	6	5	4	3	2	1	0
Name	TF2H	TF2L	TF2LEN	TF2CEN	T2SPLIT	TR2	T2CSS	T2XCLK
Туре	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0

SFR Address = 0xC8; SFR Page = 0; Bit-Addressable

Bit	Name	Function
7	TF2H	Timer 2 High Byte Overflow Flag.
		Set by hardware when the Timer 2 high byte overflows from 0xFF to 0x00. In 16 bit mode, this will occur when Timer 2 overflows from 0xFFFF to 0x0000. When the Timer 2 interrupt is enabled, setting this bit causes the CPU to vector to the Timer 2 interrupt service routine. This bit is not automatically cleared by hardware.
6	TF2L	Timer 2 Low Byte Overflow Flag.
		Set by hardware when the Timer 2 low byte overflows from 0xFF to 0x00. TF2L will be set when the low byte overflows regardless of the Timer 2 mode. This bit is not automatically cleared by hardware.
5	TF2LEN	Timer 2 Low Byte Interrupt Enable.
		When set to 1, this bit enables Timer 2 Low Byte interrupts. If Timer 2 interrupts are also enabled, an interrupt will be generated when the low byte of Timer 2 overflows.
4	TF2CEN	Timer 2 Low-Frequency Oscillator Capture Enable.
		When set to 1, this bit enables Timer 2 Low-Frequency Oscillator Capture Mode. If TF2CEN is set and Timer 2 interrupts are enabled, an interrupt will be generated on a falling edge of the low-frequency oscillator output, and the current 16-bit timer value in TMR2H:TMR2L will be copied to TMR2RLH:TMR2RLL.
3	T2SPLIT	Timer 2 Split Mode Enable.
		When this bit is set, Timer 2 operates as two 8-bit timers with auto-reload.
2	TR2	Timer 2 Run Control.
		Timer 2 is enabled by setting this bit to 1. In 8-bit mode, this bit enables/disables TMR2H only; TMR2L is always enabled in split mode.
1	T2CSS	Timer 2 Capture Source Select.
		This bit selects the source of a capture event when bit T2CE is set to 1. 0: Reserved.
		1: Capture source is falling edge of Low-Frequency Oscillator.
0	T2XCLK	Timer 2 External Clock Select.
		 This bit selects the external clock source for Timer 2. However, the Timer 2 Clock Select bits (T2MH and T2ML in register CKCON) may still be used to select between the external clock and the system clock for either timer. 0: Timer 2 clock is the system clock divided by 12. 1: Timer 2 clock is the external clock divided by 8 (synchronized with SYSCLK).

SFR Definition 25.18. TMR3H Timer 3 High Byte

Bit	7	6	5	4	3	2	1	0
Name				TMR3	H[7:0]			
Туре	R/W							
Reset	0 0 0 0 0 0 0 0							
SFR Add	SFR Address = 0x95; SFR Page = 0							

Bit	Name	Function
7:0		Timer 3 High Byte. In 16-bit mode, the TMR3H register contains the high byte of the 16-bit Timer 3. In
		8-bit mode, TMR3H contains the 8-bit high byte timer value.

SFR Definition 25.19. TMR4CN: Timer 4 Control

Bit	7	6	5	4	3	2	1	0
Name	TF4H	TF4L	TF4LEN		T4SPLIT	TR4		T4XCLK
Туре	R/W	R/W	R/W	R	R/W	R/W	R	R/W
Reset	0	0	0	0	0	0	0	0

SFR Address = 0x91; SFR Page = F

Bit	Name	Function
7	TF4H	Timer 4 High Byte Overflow Flag.
		Set by hardware when the Timer 4 high byte overflows from 0xFF to 0x00. In 16 bit mode, this will occur when Timer 4 overflows from 0xFFFF to 0x0000. When the Timer 4 interrupt is enabled, setting this bit causes the CPU to vector to the Timer 4 interrupt service routine. This bit is not automatically cleared by hardware.
6	TF4L	Timer 4 Low Byte Overflow Flag.
		Set by hardware when the Timer 4 low byte overflows from 0xFF to 0x00. TF4L will be set when the low byte overflows regardless of the Timer 4 mode. This bit is not automatically cleared by hardware.
5	TF4LEN	Timer 4 Low Byte Interrupt Enable.
		When set to 1, this bit enables Timer 4 Low Byte interrupts. If Timer 4 interrupts are also enabled, an interrupt will be generated when the low byte of Timer 4 overflows.
4	Unused	Read = 0b; Write = don't care.
3	T4SPLIT	Timer 4 Split Mode Enable.
		When this bit is set, Timer 4 operates as two 8-bit timers with auto-reload.
		0: Timer 4 operates in 16-bit auto-reload mode.
	TD 4	1: Timer 4 operates as two 8-bit auto-reload timers.
2	TR4	Timer 4 Run Control.
		Timer 4 is enabled by setting this bit to 1. In 8-bit mode, this bit enables/disables TMR4H only; TMR4L is always enabled in split mode.
1	Unused	Read = 0b; Write = don't care.
0	T4XCLK	Timer 4 External Clock Select.
		 This bit selects the external clock source for Timer 4. However, the Timer 4 Clock Select bits (T4MH and T4ML in register CKCON1) may still be used to select between the external clock and the system clock for either timer. 0: Timer 4 clock is the system clock divided by 12. 1: Timer 4 clock is the external clock divided by 8 (synchronized with SYSCLK).

25.5.2. 8-bit Timers with Auto-Reload

When T5SPLIT is 1 and T5CE = 0, Timer 5 operates as two 8-bit timers (TMR5H and TMR5L). Both 8-bit timers operate in auto-reload mode as shown in Figure 25.15. TMR5RLL holds the reload value for TMR5L; TMR5RLH holds the reload value for TMR5H. The TR5 bit in TMR5CN handles the run control for TMR5H. TMR5L is always running when configured for 8-bit Mode.

Each 8-bit timer may be configured to use SYSCLK, SYSCLK divided by 12, or the external oscillator clock source divided by 8. The Timer 5 Clock Select bits (T5MH and T5ML in CKCON1) select either SYSCLK or the clock defined by the Timer 5 External Clock Select bit (T5XCLK in TMR5CN), as follows:

T5MH	T5XCLK	TMR5H Clock Source
0	0	SYSCLK/12
0	1	External Clock/8
1	Х	SYSCLK

T5ML	T5XCLK	TMR5L Clock Source
0	0	SYSCLK/12
0	1	External Clock/8
1	X	SYSCLK

The TF5H bit is set when TMR5H overflows from 0xFF to 0x00; the TF5L bit is set when TMR5L overflows from 0xFF to 0x00. When Timer 5 interrupts are enabled, an interrupt is generated each time TMR5H overflows. If Timer 5 interrupts are enabled and TF5LEN (TMR5CN.5) is set, an interrupt is generated each time either TMR5L or TMR5H overflows. When TF5LEN is enabled, software must check the TF5H and TF5L flags to determine the source of the Timer 5 interrupt. The TF5H and TF5L interrupt flags are not cleared by hardware and must be manually cleared by software.

Figure 25.15. Timer 5 8-Bit Mode Block Diagram

26.5. Register Descriptions for PCA0

Following are detailed descriptions of the special function registers related to the operation of the PCA.

SFR Definition 26.1. PCA0CN: PCA Control

Bit	7	6	5	4	3	2	1	0
Name	CF	CR		CCF4	CCF3	CCF2	CCF1	CCF0
Туре	R/W	R/W	R	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0

SFR Address = 0xD8; SFR Page = All Pages; Bit-Addressable

Bit	Name	Function
7	CF	PCA Counter/Timer Overflow Flag.
		Set by hardware when the PCA Counter/Timer overflows from 0xFFFF to 0x0000. When the Counter/Timer Overflow (CF) interrupt is enabled, setting this bit causes the CPU to vector to the PCA interrupt service routine. This bit is not automatically cleared by hardware and must be cleared by software.
6	CR	PCA Counter/Timer Run Control.
		This bit enables/disables the PCA Counter/Timer.
		0: PCA Counter/Timer disabled.
		1: PCA Counter/Timer enabled.
5	Unused	Read = 0b, Write = Don't care.
2	CCF4	PCA Module 4 Capture/Compare Flag.
		This bit is set by hardware when a match or capture occurs. When the CCF4 interrupt is enabled, setting this bit causes the CPU to vector to the PCA interrupt service rou- tine. This bit is not automatically cleared by hardware and must be cleared by software.
1	CCF3	PCA Module 3 Capture/Compare Flag.
		This bit is set by hardware when a match or capture occurs. When the CCF3 interrupt is enabled, setting this bit causes the CPU to vector to the PCA interrupt service rou- tine. This bit is not automatically cleared by hardware and must be cleared by software.
2	CCF2	PCA Module 2 Capture/Compare Flag.
		This bit is set by hardware when a match or capture occurs. When the CCF2 interrupt is enabled, setting this bit causes the CPU to vector to the PCA interrupt service rou- tine. This bit is not automatically cleared by hardware and must be cleared by software.
1	CCF1	PCA Module 1 Capture/Compare Flag.
		This bit is set by hardware when a match or capture occurs. When the CCF1 interrupt is enabled, setting this bit causes the CPU to vector to the PCA interrupt service rou- tine. This bit is not automatically cleared by hardware and must be cleared by software.
0	CCF0	PCA Module 0 Capture/Compare Flag.
		This bit is set by hardware when a match or capture occurs. When the CCF0 interrupt is enabled, setting this bit causes the CPU to vector to the PCA interrupt service rou- tine. This bit is not automatically cleared by hardware and must be cleared by software.

C2 Register Definition 27.2. DEVICEID: C2 Device ID

Bit	7	6	5	4	3	2	1	0	
Name		DEVICEID[7:0]							
Туре	e			R/	W				
Rese	et 0	0	1	0	1	0	0	0	
C2 Ad	ldress: 0x00		-		-				
Bit	Name				Function				
7:0	DEVICEID[7:0	Device I	D.						
		This read-only register returns the 8-bit device ID: 0x28 (C8051F388/9/A/B).						/A/B).	

C2 Register Definition 27.3. REVID: C2 Revision ID

Bit	7	6	5	4	3	2	1	0
Name				REVI	D[7:0]			
Туре	R/W							
Reset	Varies							
C2 Address: 0x01								

Bit	Name	Function
7:0	REVID[7:0]	Revision ID.
		This read-only register returns the 8-bit revision ID. For example: 0x00 = Revision A or Revision B.

