

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	8051
Core Size	8-Bit
Speed	48 MIPS
Connectivity	I ² C, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, Temp Sensor, WDT
Number of I/O	25
Program Memory Size	32KB (32K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	2.25K x 8
Voltage - Supply (Vcc/Vdd)	2.7V ~ 5.25V
Data Converters	A/D 21x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	32-LQFP
Supplier Device Package	32-LQFP (7x7)
Purchase URL	https://www.e-xfl.com/product-detail/silicon-labs/c8051f38b-b-gq

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

5. Electrical Characteristics

5.1. Absolute Maximum Specifications

Table 5.1. Absolute Maximum Ratings

Parameter	Conditions	Min	Тур	Max	Units
Junction Temperature Under Bias		-55	—	125	°C
Storage Temperature		-65		150	°C
Voltage on RST, INT2, or any Port I/O Pin with Respect to GND	V _{DD} ≥ 2.2 V V _{DD} < 2.2 V	-0.3 -0.3	_	5.8 V _{DD} + 3.6	V V
Voltage on V _{DD} with Respect to GND	Regulator1 in Normal Mode Regulator1 in Bypass Mode	-0.3 -0.3		4.2 1.98	V V
Maximum Total Current through V _{DD} or GND		_		500	mA
Maximum Output Current sunk by RST or any Port Pin				100	mA
Note: Stresses above those listed und This is a stress rating only and	der "Absolute Maximum Ratings" i functional operation of the device	•	•	•	

This is a stress rating only and functional operation of the devices at those or any other conditions above those indicated in the operation listings of this specification is not implied. Exposure to maximum rating conditions for extended periods may affect device reliability.

SFR Definition 6.9. AMX0P: AMUX0 Positive Channel Select

Bit	7	6	5	4	3	2	1	0		
Nam	е			1	AMX0P	[5:0]	1			
Тур	e R	R	R R/W							
Rese	et 0	0	0	0	0	0	0	0		
			Page = All Pages			-				
Bit	Name		age = All Pages	>	Function					
7:6	Unused	Read = 0	0b; Write = don	't care.						
5:0	AMX0P[5:0]	AMUX0 F	Positive Input S	Selection.						
		AMX0P	32-pin Packages	48-pin Packages	AMX0P	32-pin Packag		3-pin ackages		
		000000:	P1.0	P2.0	010010	: P0.1	P	0.4		
		000001:	P1.1	P2.1	010011	: P0.4	P	1.1		
		000010:	P1.2	P2.2	010100	: P0.5	P	1.2		
		000011:	P1.3	P2.3	010101:	: Reserve	ed P	1.0		
		000100:	P1.4	P2.5	010110	: Reserve	ed P	1.3		
		000101:	P1.5	P2.6	010111			1.6		
		000110:	P1.6	P3.0	3.0 011000: Res		ed P	1.7		
		000111:	P1.7	P3.1	011001		ed P2.4			
		001000:	P2.0	P3.4	011010: Reserved			2.7		
		001001:	P2.1	P3.5	011011		ed P	3.2		
		001010:	P2.2	P3.7	011100			3.3		
		001011:	P2.3	P4.0	011101			3.6		
		001100:	P2.4	P4.3	011110	'		emp Sensor		
		001101:	P2.5	P4.4	011111:			DD		
		001110:	P2.6	P4.5	100000			4.1		
		001111:	P2.7	P4.6	100001			4.2		
		010000:	P3.0	Reserved	100010			4.7		
		010001:	P0.0	P0.3	100011 111111:		ed R	eserved		

SFR Definition 9.1. REG01CN: Voltage Regulator Control

Bit	7	6	5	4	3	2	1	0	
Nam	e REG0DI	S INT2STAT	Reserved	REG0MD	STOPCF	Reserved	REG1MD	Reserved	
Туре	e R/W	R	R/W	R/W	R/W	R/W	R/W	R/W	
Rese	et 0	0	0	0	0	0	0	0	
SFR A	Address = 0	<c9; page<="" sfr="" td=""><td>e = All Pages</td><td>6</td><td></td><td></td><td></td><td></td></c9;>	e = All Pages	6					
Bit	Name				Function				
7	REG0DIS	Voltage Regu This bit enable 0: Voltage Reg 1: Voltage Reg	es or disable gulator Enab	s the REG0 led.	Voltage Reg	gulator.			
6	INT2STAT	This bit indica 0: INT2 pin is	INT2 Signal Status. This bit indicates the status of the INT2 pin. 0: INT2 pin is currently low. 1: INT2 pin is currently high.						
5	Reserved	Must Write 0b							
4	REG0MD	Voltage Regu	lator (REG)) Mode Sel	ect.				
		This bit select REG0 voltage 0: REG0 Volta 1: REG0 Volta	regulator of ige Regulato	perates in lov or in normal i	wer power (s mode.			et to 1, the	
3	STOPCF	Stop Mode C This bit config 0: REG1 Regu device. 1: REG1 Regu reset the device	ures the RE ulator is still a ulator is shut	G1 regulator active in STC)P mode. An	y enabled re	set source w	ill reset the	
2	Reserved	Must Write 0b							
1	REG1MD	Voltage Regu	lator (REG	I) Mode.					
		 This bit selects the Voltage Regulator mode for REG1. When REG1MD is set to 1, the REG1 voltage regulator operates in lower power mode. 0: REG1 Voltage Regulator in normal mode. 1: REG1 Voltage Regulator in low power mode. This bit should not be set to '1' if the REG0 Voltage Regulator is disabled. 						et to 1, the	
0	Reserved	Must Write 0b							

Table 11.1. CIP-51 Instruction Set Summary (Continued)

Mnemonic	Description	Bytes	Clock Cycles		
XRL direct, #data	Exclusive-OR immediate to direct byte	3	3		
CLR A	Clear A	1	1		
CPLA	CPL A Complement A				
RLA					
RLC A	Rotate A left through Carry	1	1		
RR A	Rotate A right	1	1		
RRC A	Rotate A right through Carry	1	1		
SWAP A	Swap nibbles of A	1	1		
Data Transfer					
MOV A, Rn	Move Register to A	1	1		
MOV A, direct	Move direct byte to A	2	2		
MOV A, @Ri	Move indirect RAM to A	1	2		
MOV A, #data	Move immediate to A	2	2		
MOV Rn, A	Move A to Register	1	1		
MOV Rn, direct	Move direct byte to Register	2	2		
MOV Rn, #data	Move immediate to Register	2	2		
MOV direct, A	Move A to direct byte	2	2		
MOV direct, Rn	Move Register to direct byte	2	2		
MOV direct, direct	Move direct byte to direct byte	3	3		
MOV direct, @Ri	Move indirect RAM to direct byte	2	2		
MOV direct, #data	Move immediate to direct byte	3	3		
MOV @Ri, A	Move A to indirect RAM	1	2		
MOV @Ri, direct	Move direct byte to indirect RAM	2	2		
MOV @Ri, #data	Move immediate to indirect RAM	2	2		
MOV DPTR, #data16	Load DPTR with 16-bit constant	3	3		
MOVC A, @A+DPTR	Move code byte relative DPTR to A	1	3		
MOVC A, @A+PC	Move code byte relative PC to A	1	3		
MOVX A, @Ri	Move external data (8-bit address) to A	1	3		
MOVX @Ri, A	Move A to external data (8-bit address)	1	3		
MOVX A, @DPTR	Move external data (16-bit address) to A	1	3		
MOVX @DPTR, A	Move A to external data (16-bit address)	1	3		
PUSH direct	Push direct byte onto stack	2	2		
POP direct	Pop direct byte from stack	2	2		
XCH A, Rn	Exchange Register with A	1	1		
XCH A, direct	Exchange direct byte with A	2	2		
XCH A, @Ri	Exchange indirect RAM with A	1	2		
XCHD A, @Ri	Exchange low nibble of indirect RAM with A	1	2		
Boolean Manipulation		I	<u>I</u>		
CLR C	Clear Carry	1	1		
CLR bit	Clear direct bit	2	2		
SETB C	Set Carry	1	1		
SETB bit	Set direct bit	2	2		
CPL C	Complement Carry	1	1		
CPL bit	Complement direct bit	2	2		

12. Prefetch Engine

The C8051F388/9/A/B family of devices incorporate a 2-byte prefetch engine. Because the access time of the Flash memory is 40 ns, and the minimum instruction time is roughly 20 ns, the prefetch engine is necessary for full-speed code execution. Instructions are read from Flash memory two bytes at a time by the prefetch engine and given to the CIP-51 processor core to execute. When running linear code (code without any jumps or branches), the prefetch engine allows instructions to be executed at full speed. When a code branch occurs, the processor may be stalled for up to two clock cycles while the next set of code bytes is retrieved from Flash memory. It is recommended that the prefetch be used for optimal code execution timing.

Note: The prefetch engine can be disabled when the device is in suspend mode to save power.

SFR Definition 12.1. PFE0CN: Prefetch Engine Control

Bit	7	6	5	4	3	2	1	0
Name			PFEN					FLBWE
Туре	R	R	R/W	R	R	R	R	R/W
Reset	0	0	1	0	0	0	0	0

SFR Address = 0xAF; SFR Page = All Pages

Bit	Name	Function
7:6	Unused	Read = 00b, Write = don't care.
5	PFEN	Prefetch Enable.
		This bit enables the prefetch engine.
		0: Prefetch engine is disabled.
		1: Prefetch engine is enabled.
4:1	Unused	Read = 0000b. Write = don't care.
0	FLBWE	Flash Block Write Enable.
		This bit allows block writes to Flash memory from software.
		0: Each byte of a software Flash write is written individually.
		1: Flash bytes are written in groups of two.

14.6. Timing

The timing parameters of the External Memory Interface can be configured to enable connection to devices having different setup and hold time requirements. The Address Setup time, Address Hold time, RD and WR strobe widths, and in multiplexed mode, the width of the ALE pulse are all programmable in units of SYSCLK periods through EMI0TC, shown in SFR Definition 14.3, and EMI0CF[1:0].

The timing for an off-chip MOVX instruction can be calculated by adding 4 SYSCLK cycles to the timing parameters defined by the EMI0TC register. Assuming non-multiplexed operation, the minimum execution time for an off-chip XRAM operation is 5 SYSCLK cycles (1 SYSCLK for RD or WR pulse + 4 SYSCLKs). For multiplexed operations, the Address Latch Enable signal will require a minimum of 2 additional SYSCLK cycles. Therefore, the minimum execution time for an off-chip XRAM operation in multiplexed mode is 7 SYSCLK cycles (2 for \overline{ALE} + 1 for \overline{RD} or \overline{WR} + 4). The programmable setup and hold times default to the maximum delay settings after a reset. Table 14.1 lists the AC parameters for the External Memory Interface, and Figure 14.4 through Figure 14.9 show the timing diagrams for the different External Memory Interface modes and MOVX operations.

SFR Definition 14.3. EMI0TC: External Memory Timing Control

Bit	7	6	5	4	3	2	1	0	
Name	EAS	[1:0]	EWR[3:0]				EAH[1:0]		
Туре	R/W			R/\	N		R/	W	
Reset	1	1	1 1 1 1			1	1		

SFR Address = 0x84; SFR Page = All Pages

Bit	Name	Function
7:6	EAS[1:0]	EMIF Address Setup Time Bits. 00: Address setup time = 0 SYSCLK cycles. 01: Address setup time = 1 SYSCLK cycle. 10: Address setup time = 2 SYSCLK cycles. 11: Address setup time = 3 SYSCLK cycles.
5:2	EWR[3:0]	EMIF WR and RD Pulse-Width Control Bits. 0000: WR and RD pulse width = 1 SYSCLK cycle. 0001: WR and RD pulse width = 2 SYSCLK cycles. 0010: WR and RD pulse width = 3 SYSCLK cycles. 0011: WR and RD pulse width = 4 SYSCLK cycles. 010: WR and RD pulse width = 5 SYSCLK cycles. 0101: WR and RD pulse width = 5 SYSCLK cycles. 0101: WR and RD pulse width = 6 SYSCLK cycles. 0111: WR and RD pulse width = 7 SYSCLK cycles. 0110: WR and RD pulse width = 8 SYSCLK cycles. 0111: WR and RD pulse width = 9 SYSCLK cycles. 1000: WR and RD pulse width = 10 SYSCLK cycles. 1011: WR and RD pulse width = 11 SYSCLK cycles. 1010: WR and RD pulse width = 12 SYSCLK cycles. 1011: WR and RD pulse width = 13 SYSCLK cycles. 1100: WR and RD pulse width = 14 SYSCLK cycles. 1101: WR and RD pulse width = 14 SYSCLK cycles. 1111: WR and RD pulse width = 15 SYSCLK cycles. 1111: WR and RD pulse width = 16 SYSCLK cycles.
1:0	EAH[1:0]	EMIF Address Hold Time Bits. 00: Address hold time = 0 SYSCLK cycles. 01: Address hold time = 1 SYSCLK cycle. 10: Address hold time = 2 SYSCLK cycles. 11: Address hold time = 3 SYSCLK cycles.

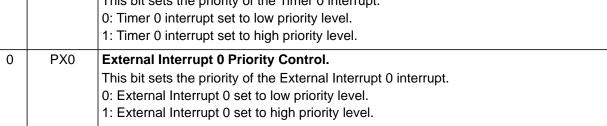

Parameter	Description	Min*	Max*	Units					
T _{ACS}	Address/Control Setup Time	0	3 x T _{SYSCLK}	ns					
T _{ACW}	Address/Control Pulse Width	1 x T _{SYSCLK}	16 x T _{SYSCLK}	ns					
T _{ACH}	Address/Control Hold Time	0	3 x T _{SYSCLK}	ns					
T _{ALEH}	Address Latch Enable High Time	1 x T _{SYSCLK}	4 x T _{SYSCLK}	ns					
T _{ALEL}	Address Latch Enable Low Time	1 x T _{SYSCLK}	4 x T _{SYSCLK}	ns					
T _{WDS}	Write Data Setup Time	1 x T _{SYSCLK}	19 x T _{SYSCLK}	ns					
T _{WDH}	Write Data Hold Time	0	3 x T _{SYSCLK}	ns					
T _{RDS}	Read Data Setup Time	20		ns					
T _{RDH}									
Note: T _{SYSCLK} is	equal to one period of the device system clock (S	YSCLK).							

Table 14.1. AC Parameters for External Memory Interface

SFR Definition 16.2. IP: Interrupt Priority

Bit	7	6	5	4	3	2	1	0		
Nam	е	PSPI0	PT2	PS0	PT1	PX1	PT0	PX0		
Тур	e R	R/W	R/W	R/W	R/W	R/W	R/W	R/W		
Rese	et 1	0	0	0	0	0	0	0		
SFR A	Address = 0	xB8; SFR Page	= All Pages	; Bit-Addres	sable			•		
Bit	Name				Function					
7	Unused	Read = 1b, W	rite = Don't (Care.						
6	PSPI0	Serial Periph	eral Interfac	ce (SPI0) Int	terrupt Prio	rity Control.				
		This bit sets th		. ,	-	•				
		0: SPI0 interru	pt set to low	v priority leve	el.					
		1: SPI0 interru	pt set to hig	h priority lev	vel.					
5	PT2	Timer 2 Inter	upt Priority	Control.						
		This bit sets the priority of the Timer 2 interrupt.								
		0: Timer 2 inte	•							
		1: Timer 2 inte	rrupt set to	high priority	level.					
4	PS0	UART0 Interr	upt Priority	Control.						
			This bit sets the priority of the UART0 interrupt.							
		0: UART0 inte	•							
		1: UART0 inte	rrupt set to h	high priority	level.					
3	PT1	Timer 1 Inter	• •							
		This bit sets th			•					
		0: Timer 1 interrupt set to low priority level.1: Timer 1 interrupt set to high priority level.								
			•	• • •						
2	PX1	External Inter	-	•		., ,				
		This bit sets th				interrupt.				
			0: External Interrupt 1 set to low priority level. 1: External Interrupt 1 set to high priority level.							
4	DTO		•	• •						
1	PT0	Timer 0 Intern	• •		intorrunt					
					•					
	0: Timer 0 interrupt set to low priority level.									

SFR Definition 16.3. EIE1: Extended Interrupt Enable 1

Bit	7	6	5	4	3	2	1	0
Name	ET3	ECP1	ECP0	EPCA0	EADC0	EWADC0	Reserved	ESMB0
Туре	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0

SFR Address = 0xE6; SFR Page = All Pages

Bit	Name	Function
7	ET3	Enable Timer 3 Interrupt. This bit sets the masking of the Timer 3 interrupt. 0: Disable Timer 3 interrupts. 1: Enable interrupt requests generated by the TF3L or TF3H flags.
6	ECP1	 Enable Comparator1 (CP1) Interrupt. This bit sets the masking of the CP1 interrupt. 0: Disable CP1 interrupts. 1: Enable interrupt requests generated by the CP1RIF or CP1FIF flags.
5	ECP0	 Enable Comparator0 (CP0) Interrupt. This bit sets the masking of the CP0 interrupt. 0: Disable CP0 interrupts. 1: Enable interrupt requests generated by the CP0RIF or CP0FIF flags.
4	EPCA0	 Enable Programmable Counter Array (PCA0) Interrupt. This bit sets the masking of the PCA0 interrupts. 0: Disable all PCA0 interrupts. 1: Enable interrupt requests generated by PCA0.
3	EADC0	 Enable ADC0 Conversion Complete Interrupt. This bit sets the masking of the ADC0 Conversion Complete interrupt. 0: Disable ADC0 Conversion Complete interrupt. 1: Enable interrupt requests generated by the AD0INT flag.
2	EWADC0	 Enable Window Comparison ADC0 Interrupt. This bit sets the masking of ADC0 Window Comparison interrupt. 0: Disable ADC0 Window Comparison interrupt. 1: Enable interrupt requests generated by ADC0 Window Compare flag (AD0WINT).
1	Reserved	Read = 0b, Must Write 0b.
0	ESMB0	Enable SMBus0 Interrupt. This bit sets the masking of the SMB0 interrupt. 0: Disable all SMB0 interrupts. 1: Enable interrupt requests generated by SMB0.

19.4. Programmable Internal Low-Frequency (L-F) Oscillator

All C8051F388/9/A/B devices include a programmable low-frequency internal oscillator, which is calibrated to a nominal frequency of 80 kHz. The low-frequency oscillator circuit includes a divider that can be changed to divide the clock by 1, 2, 4, or 8, using the OSCLD bits in the OSCLCN register (see SFR Definition 19.5). Additionally, the OSCLF[3:0] bits can be used to adjust the oscillator's output frequency.

19.4.1. Calibrating the Internal L-F Oscillator

Timers 2 and 3 include capture functions that can be used to capture the oscillator frequency, when running from a known time base. When either Timer 2 or Timer 3 is configured for L-F Oscillator Capture Mode, a falling edge (Timer 2) or rising edge (Timer 3) of the low-frequency oscillator's output will cause a capture event on the corresponding timer. As a capture event occurs, the current timer value (TMRnH:TMRnL) is copied into the timer reload registers (TMRnRLH:TMRnRLL). By recording the difference between two successive timer capture values, the low-frequency oscillator's period can be calculated. The OSCLF bits can then be adjusted to produce the desired oscillator frequency.

SFR Definition 19.5. OSCLCN: Internal L-F Oscillator Control

Bit	7	6	5	4	3	2	1	0
Name	OSCLEN	OSCLRDY	OSCLF[3:0]				OSCL	D[1:0]
Туре	R/W	R		R.W				W
Reset	0	0	Varies	Varies	Varies	Varies	0	0

SFR Address = 0x86; SFR Page = All Pages

Bit	Name	Function
7	OSCLEN	Internal L-F Oscillator Enable.
		0: Internal L-F Oscillator Disabled.
		1: Internal L-F Oscillator Enabled.
6	OSCLRDY	Internal L-F Oscillator Ready.
		0: Internal L-F Oscillator frequency not stabilized.
		1: Internal L-F Oscillator frequency stabilized.
		Note: OSCLRDY is only set back to 0 in the event of a device reset or a change to the OSCLD[1:0] bits.
5:2	OSCLF[3:0]	Internal L-F Oscillator Frequency Control Bits.
		Fine-tune control bits for the Internal L-F oscillator frequency. When set to 0000b, the L-F oscillator operates at its fastest setting. When set to 1111b, the L-F oscillator operates at its slowest setting. The OSCLF bits should only be changed by firmware when the L-F oscillator is disabled (OSCLEN = 0).
1:0	OSCLD[1:0]	Internal L-F Oscillator Divider Select.
		00: Divide by 8 selected.
		01: Divide by 4 selected.
		10: Divide by 2 selected.
		11: Divide by 1 selected.

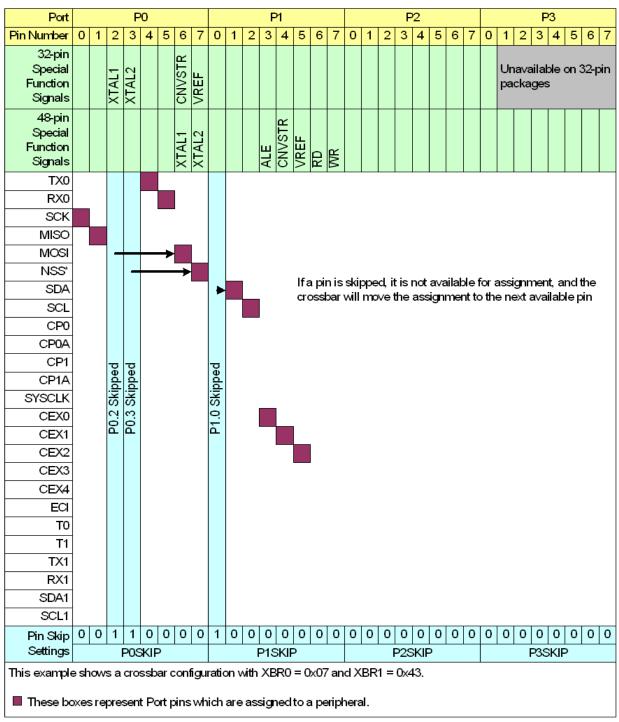
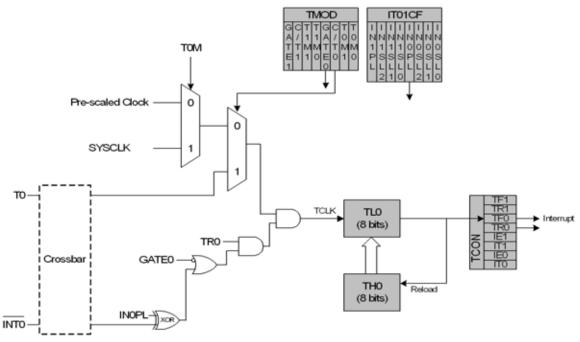


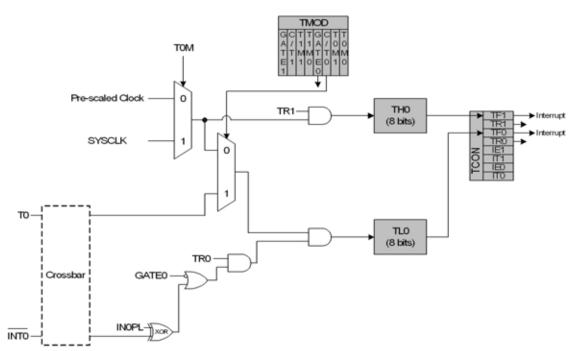
Figure 20.5. Crossbar Priority Decoder in Example Configuration (3 Pins Skipped)

	Values Read		d			Values to Write			itus iected										
Mode	Status Vector	Current SMbus State				Typical Response Options	STA	STO	ACK	Next Status Vector Expected									
		0	0	x	A slave address + R/W was	If Write, Set ACK for first data byte.	0	0	1	0000									
					received; ACK sent.	If Read, Load SMB0DAT with data byte	0	0	X	0100									
	0010				Lost arbitration as master;	If Write, Set ACK for first data byte.	0	0	1	0000									
iver		0	1		slave address + R/W received; ACK sent.	If Read, Load SMB0DAT with data byte	0	0	Х	0100									
ece						Reschedule failed transfer	1	0	Х	1110									
Slave Receiver	0001	0	0		A STOP was detected while addressed as a Slave Trans- mitter or Slave Receiver.	Clear STO.	0	0	Х										
		0	1	х	Lost arbitration while attempt- ing a STOP.	No action required (transfer complete/aborted).	0	0	0										
	0000	0	0	v		Set ACK for next data byte; Read SMB0DAT.	0	0	1	0000									
	0000			~	X	^					^	X	X	A slave byte was received.	Set NACK for next data byte; Read SMB0DAT.	0	0	0	0000
uo	0010	0	1	x	Lost arbitration while attempt-	Abort failed transfer.	0	0	Х	—									
nditi	0010				ing a repeated START.	Reschedule failed transfer.	1	0	Х	1110									
Cor	0001	0	1	х	Lost arbitration due to a	Abort failed transfer.	0	0	Х	—									
Error Condition	2001				detected STOP.	Reschedule failed transfer.	1	0	Х	1110									
ц	0000	0	1	x	Lost arbitration while transmit-	Abort failed transfer.	0	0	Х	—									
Bus	0000				ting a data byte as master.	Reschedule failed transfer.	1	0	X	1110									

SFR Definition 23.1. SCON1: UART1 Control

Bit	7	6	5	4	3	2	1	0
Name	OVR1	PERR1	THRE1	REN1	TBX1	RBX1	TI1	RI1
Туре	R/W	R/W	R	R/W	R/W	R/W	R/W	R/W
Reset	0	0	1	0	0	0	0	0
SFR Ad	ddress = 0	xD2; SFR Page	e = All Pages	3			1	
Bit	Name				Function			
7	OVR1	Receive FIFO Overrun Flag. This bit indicates a receive FIFO overrun condition, where an incoming character is disc due to a full FIFO. This bit must be cleared to 0 by software. 0: Receive FIFO Overrun has not occurred. 1: Receive FIFO Overrun has occurred.					discarded	
6	PERR1							
5	THRE1	Transmit Hold 0: Transmit Hold 1: Transmit Hold	ding Register	not Empty - c				
4	REN1	This bit enables receive FIFO. 0: UART1 recept	Receive Enable. This bit enables/disables the UART receiver. When disabled, bytes can still be read from the receive FIFO. 0: UART1 reception disabled. 1: UART1 reception enabled.					
3	TBX1	The logic level of	Extra Transmission Bit. The logic level of this bit will be assigned to the extra transmission bit when XBE1 = 1. This bit is not used when Parity is enabled.					
2	RBX1	Extra Receive Bit. RBX1 is assigned the value of the extra bit when XBE1 = 1. If XBE1 is cleared to 0, RBX1 assigned the logic level of the first stop bit. This bit is not valid when Parity is enabled.						
1	TI1	Transmit Interrupt Flag. Set to a 1 by hardware after data has been transmitted at the beginning of the STOP bit. When the UART1 interrupt is enabled, setting this bit causes the CPU to vector to the UART1 interrupt service routine. This bit must be cleared manually by software.						
0	RI1	Receive Interrupt Flag. Set to 1 by hardware when a byte of data has been received by UART1 (set at the STOP bit sam pling time). When the UART1 interrupt is enabled, setting this bit to 1 causes the CPU to vector to the UART1 interrupt service routine. This bit must be cleared manually by software. Note that RI1 will remain set to '1' as long as there is still data in the UART FIFO. After the last byte has been shifted from the FIFO to SBUF1, RI1 can be cleared.						PU to vector re. Note that




Figure 25.2. T0 Mode 2 Block Diagram

25.1.4. Mode 3: Two 8-bit Counter/Timers (Timer 0 Only)

In Mode 3, Timer 0 is configured as two separate 8-bit counter/timers held in TL0 and TH0. The counter/timer in TL0 is controlled using the Timer 0 control/status bits in TCON and TMOD: TR0, C/T0, GATE0 and TF0. TL0 can use either the system clock or an external input signal as its timebase. The TH0 register is restricted to a timer function sourced by the system clock or prescaled clock. TH0 is enabled using the Timer 1 run control bit TR1. TH0 sets the Timer 1 overflow flag TF1 on overflow and thus controls the Timer 1 interrupt.

Timer 1 is inactive in Mode 3. When Timer 0 is operating in Mode 3, Timer 1 can be operated in Modes 0, 1 or 2, but cannot be clocked by external signals nor set the TF1 flag and generate an interrupt. However, the Timer 1 overflow can be used to generate baud rates or overflow conditions for other peripherals. While Timer 0 is operating in Mode 3, Timer 1 run control is handled through its mode settings. To run Timer 1 while Timer 0 is in Mode 3, set the Timer 1 Mode as 0, 1, or 2. To disable Timer 1, configure it for Mode 3.

SFR Definition 25.4. TMOD: Timer Mode

Bit	7	6	5	4	3	2	1	0
Nam	e GATE1	C/T1	T1M[1:0]		GATE0	C/T0	T0M[1:0]	
Туре	R/W	R/W	R/	W	R/W	R/W	R/	W
Rese	et 0	0	0	0	0	0	0	0
SFR A	ddress = 0x8	9; SFR Page	= All Pages	•	•			
Bit	Name				Function			
7	GATE1	Timer 1 Ga	te Control.					
		0: Timer 1 e	nabled whe	n TR1 = 1 irr	espective of	INT1 logic le	evel.	
					1 AND INT1	is active as	defined by b	oit IN1PL in
		U	,	R Definition	16.7).			
6	C/T1	Counter/Ti	ner 1 Selec	t.				
					ock defined b	•	•	
				emented by	high-to-low t	ransitions or	n external pir	n (T1).
5:4	T1M[1:0]	Timer 1 Mo	de Select.					
				ner 1 operat	ion mode.			
			13-bit Cour					
			16-bit Cour					
					n Auto-Reloa	d		
		,	Timer 1 Ina	cuve				
3	GATE0	Timer 0 Ga						
					espective of	•		
				R Definition	1 AND INT(16 7)	is active as	defined by t	
2	С/Т0	Counter/Tir	-		,			
	0,10				ock defined h	v T0M bit in	register CK	CON
		 0: Timer: Timer 0 incremented by clock defined by T0M bit in register 0 1: Counter: Timer 0 incremented by high-to-low transitions on external 					-	
1:0	T0M[1:0]	Timer 0 Mo			-		· ·	
		These bits s	elect the Tir	ner 0 operat	ion mode.			
			13-bit Cour					
			16-bit Cour					
					n Auto-Reloa	d		
		11: Mode 3,	Two 8-bit C	ounter/Time	rs			

25.3.2. 8-bit Timers with Auto-Reload

When T3SPLIT is 1 and T3CE = 0, Timer 3 operates as two 8-bit timers (TMR3H and TMR3L). Both 8-bit timers operate in auto-reload mode as shown in Figure 25.9. TMR3RLL holds the reload value for TMR3L; TMR3RLH holds the reload value for TMR3H. The TR3 bit in TMR3CN handles the run control for TMR3H. TMR3L is always running when configured for 8-bit Mode.

Each 8-bit timer may be configured to use SYSCLK, SYSCLK divided by 12, or the external oscillator clock source divided by 8. The Timer 3 Clock Select bits (T3MH and T3ML in CKCON) select either SYSCLK or the clock defined by the Timer 3 External Clock Select bit (T3XCLK in TMR3CN), as follows:

ТЗМН	T3XCLK	TMR3H Clock Source
0	0	SYSCLK / 12
0	1	External Clock / 8
1	Х	SYSCLK

T3ML	T3XCLK	TMR3L Clock Source
0	0	SYSCLK / 12
0	1	External Clock / 8
1	Х	SYSCLK

The TF3H bit is set when TMR3H overflows from 0xFF to 0x00; the TF3L bit is set when TMR3L overflows from 0xFF to 0x00. When Timer 3 interrupts are enabled, an interrupt is generated each time TMR3H overflows. If Timer 3 interrupts are enabled and TF3LEN (TMR3CN.5) is set, an interrupt is generated each time either TMR3L or TMR3H overflows. When TF3LEN is enabled, software must check the TF3H and TF3L flags to determine the source of the Timer 3 interrupt. The TF3H and TF3L interrupt flags are not cleared by hardware and must be manually cleared by software.

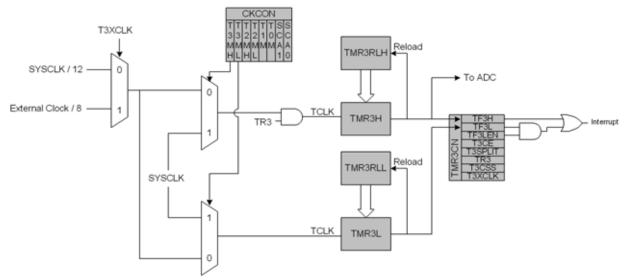


Figure 25.9. Timer 3 8-Bit Mode Block Diagram

25.3.3. Timer 3 Capture Modes: LFO Falling Edge

When T3CE = 1, Timer 3 will operate in a special capture mode with the LFO (T3CSS is set to 1). The LFO falling-edge capture mode can be used to calibrate the internal Low-Frequency Oscillator against the internal High-Frequency Oscillator or an external clock source. When T3SPLIT = 0, Timer 3 counts up and overflows from 0xFFFF to 0x0000. Each time a capture event is received, the contents of the Timer 3 registers (TMR3H:TMR3L) are latched into the Timer 3 Reload registers (TMR3RLH:TMR3RLL). A Timer 3 interrupt is generated if enabled.

26.3.1. Edge-triggered Capture Mode

In this mode, a valid transition on the CEXn pin causes the PCA to capture the value of the PCA counter/timer and load it into the corresponding module's 16-bit capture/compare register (PCA0CPLn and PCA0CPHn). The CAPPn and CAPNn bits in the PCA0CPMn register are used to select the type of transition that triggers the capture: low-to-high transition (positive edge), high-to-low transition (negative edge), or either transition (positive or negative edge). When a capture occurs, the Capture/Compare Flag (CCFn) in PCA0CN is set to logic 1. An interrupt request is generated if the CCFn interrupt for that module is enabled. The CCFn bit is not automatically cleared by hardware when the CPU vectors to the interrupt service routine, and must be cleared by software. If both CAPPn and CAPNn bits are set to logic 1, then the state of the Port pin associated with CEXn can be read directly to determine whether a rising-edge or fall-ing-edge caused the capture.

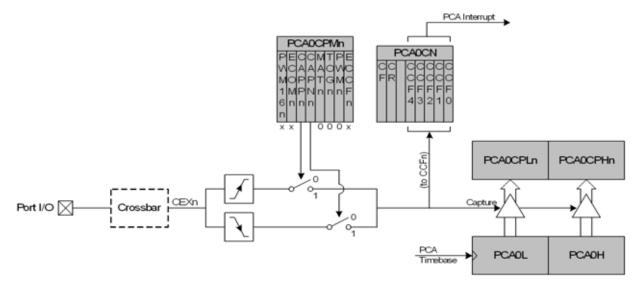


Figure 26.4. PCA Capture Mode Diagram

Note: The CEXn input signal must remain high or low for at least 2 system clock cycles to be recognized by the hardware.

SFR Definition 26.6. PCA0CPLn: PCA Capture Module Low Byte

Bit	7	6	5	4	3	2	1	0
Name		PCA0CPn[7:0]						
Туре	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0

SFR Addresses: 0xFB (n = 0), 0xE9 (n = 1), 0xEB (n = 2), 0xED (n = 3), 0xFD (n = 4)

SFR Pages: All Pages (n = 0), All Pages (n = 1), All Pages (n = 2), All Pages (n = 3), All Page	s (n = 4)
	- (

Bit	Name	Function				
7:0	PCA0CPn[7:0]	PCA Capture Module Low Byte.				
		The PCA0CPLn register holds the low byte (LSB) of the 16-bit capture module n.				
Note:	Note: A write to this register will clear the module's ECOMn bit to a 0.					

SFR Definition 26.7. PCA0CPHn: PCA Capture Module High Byte

Bit	7	6	5	4	3	2	1	0
Name	PCA0CPn[15:8]							
Туре	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0

SFR Addresses: 0xFC (n = 0), 0xEA (n = 1), 0xEC (n = 2), 0xEE (n = 3), 0xFE (n = 4)

SFR Pages: All Pages (n = 0), All Pages (n = 1), All Pages (n = 2), All Pages (n = 3), All Pages (n = 4)

Bit	Name	Function					
7:0	PCA0CPn[15:8]	PCA Capture Module High Byte.					
		The PCA0CPHn register holds the high byte (MSB) of the 16-bit capture module n.					
Note	Note: A write to this register will set the module's ECOMn bit to a 1.						

