Microchip Technology - PIC16F526-E/P Datasheet

E·XFL

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	20MHz
Connectivity	-
Peripherals	POR, WDT
Number of I/O	11
Program Memory Size	1.5KB (1K x 12)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	67 x 8
Voltage - Supply (Vcc/Vdd)	2V ~ 5.5V
Data Converters	A/D 3x8b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Through Hole
Package / Case	14-DIP (0.300", 7.62mm)
Supplier Device Package	14-PDIP
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16f526-e-p

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Table of Contents

1.0	General Description	7
2.0	PIC16F526 Device Varieties	. 9
3.0	Architectural Overview	11
4.0	Memory Organization	15
5.0	Flash Data Memory Control	23
6.0	I/O Port	
7.0	Timer0 Module and TMR0 Register	37
8.0	Special Features of the CPU	
9.0	Analog-to-Digital (A/D) Converter	59
10.0	Comparator(s)	63
11.0	Comparator Voltage Reference Module	69
12.0	Instruction Set Summary	71
13.0	Development Support	79
14.0	Electrical Characteristics	83
15.0	DC and AC Characteristics Graphs and Charts	97
16.0	Packaging Information	107
The N	/icrochip Web Site	115
	omer Change Notification Service	
Custo		115
Read	er Response	116
Produ	uct Identification System	119

TO OUR VALUED CUSTOMERS

It is our intention to provide our valued customers with the best documentation possible to ensure successful use of your Microchip products. To this end, we will continue to improve our publications to better suit your needs. Our publications will be refined and enhanced as new volumes and updates are introduced.

If you have any questions or comments regarding this publication, please contact the Marketing Communications Department via E-mail at **docerrors@mail.microchip.com** or fax the **Reader Response Form** in the back of this data sheet to (480) 792-4150. We welcome your feedback.

Most Current Data Sheet

To obtain the most up-to-date version of this data sheet, please register at our Worldwide Web site at:

http://www.microchip.com

You can determine the version of a data sheet by examining its literature number found on the bottom outside corner of any page. The last character of the literature number is the version number, (e.g., DS30000A is version A of document DS30000).

Errata

An errata sheet, describing minor operational differences from the data sheet and recommended workarounds, may exist for current devices. As device/documentation issues become known to us, we will publish an errata sheet. The errata will specify the revision of silicon and revision of document to which it applies.

To determine if an errata sheet exists for a particular device, please check with one of the following:

- · Microchip's Worldwide Web site; http://www.microchip.com
- Your local Microchip sales office (see last page)
- The Microchip Corporate Literature Center; U.S. FAX: (480) 792-7277

When contacting a sales office or the literature center, please specify which device, revision of silicon and data sheet (include literature number) you are using.

Customer Notification System

Register on our web site at www.microchip.com/cn to receive the most current information on all of our products.

Name	Function	Input Type	Output Type	Description		
RB0//C1IN+/AN0/ ICSPDAT	RB0	TTL	CMOS	Bidirectional I/O pin. Can be software programmed for internal weak pull-up and wake-up from Sleep on pin change.		
	C1IN+	AN		Comparator 1 input.		
	AN0	AN		ADC channel input.		
	ICSPDAT	ST	CMOS	ICSP™ mode Schmitt Trigger.		
RB1/C1IN-/AN1/ ICSPCLK	RB1	TTL	CMOS	Bidirectional I/O pin. Can be software programmed for internal weak pull-up and wake-up from Sleep on pin change.		
	C1IN-	AN		Comparator 1 input.		
	AN1	AN		ADC channel input.		
	ICSPCLK	ST	CMOS	ICSP mode Schmitt Trigger.		
RB2/C1OUT/AN2	RB2	TTL	CMOS	Bidirectional I/O pin.		
	C10UT	_	CMOS	Comparator 1 output.		
	AN2	AN	—	ADC channel input.		
RB3/MCLR/VPP	RB3	TTL	—	Input pin. Can be software programmed for internal weak pull-up and wake-up from Sleep on pin change.		
	MCLR	ST	_	Master Clear (Reset). When configured as MCLR, this pin is an active-low Reset to the device. Voltage on MCLR/VPP must not exceed VDD during normal device operation or the device will enter Programming mode. Weak pull-up always on if configured as MCLR.		
	VPP	HV	_	Programming voltage input.		
RB4/OSC2/CLKOUT	RB4	TTL	CMOS	Bidirectional I/O pin. Can be software programmed for internal weak pull-up and wake-up from Sleep on pin change.		
	OSC2	—	XTAL	Oscillator crystal output. Connections to crystal or resonator in Crystal Oscillator mode (XT, HS and LP modes only, PORTB in other modes).		
	CLKOUT		CMOS	EXTRC/INTRC CLKOUT pin (Fosc/4).		
RB5/OSC1/CLKIN	RB5	TTL	CMOS	Bidirectional I/O pin.		
	OSC1	XTAL		Oscillator crystal input.		
	CLKIN	ST		External clock source input.		
RC0/C2IN+	RC0	TTL	CMOS	Bidirectional I/O port.		
	C2IN+	AN		Comparator 2 input.		
RC1/C2IN-	RC1	TTL	CMOS	Bidirectional I/O port.		
	C2IN-	AN	—	Comparator 2 input.		
RC2/CVREF	RC2	TTL	CMOS	Bidirectional I/O port.		
	CVREF		AN	Programmable Voltage Reference output.		
RC3	RC3	TTL	CMOS	Bidirectional I/O port.		
RC4/C2OUT	RC4	TTL	CMOS	Bidirectional I/O port.		
	C2OUT		CMOS	Comparator 2 output.		
RC5/T0CKI	RC5	TTL	CMOS	Bidirectional I/O port.		
	TOCKI	ST		Timer0 Schmitt Trigger input pin.		
Vdd	Vdd		Р	Positive supply for logic and I/O pins.		
Vss	Vss		Р	Ground reference for logic and I/O pins.		

TABLE 3-2: PIC16F526 PINOUT DESCRIPTION

Legend: I = Input, O = Output, I/O = Input/Output, P = Power, — = Not used, TTL = TTL input, ST = Schmitt Trigger input, HV = High Voltage

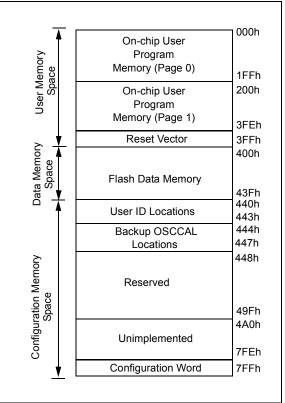
4.0 MEMORY ORGANIZATION

The PIC16F526 memories are organized into program memory and data memory (SRAM). The self-writable portion of the program memory called Flash data memory is located at addresses at 400h-43Fh. All Program mode commands that work on the normal Flash memory work on the Flash data memory. This includes bulk erase, row/column/cycling toggles, Load and Read data commands (Refer to Section 5.0 "Flash Data Memory Control" for more details). For devices with more than 512 bytes of program memory, a paging scheme is used. Program memory pages are accessed using one STATUS register bit. For the PIC16F526, with data memory register files of more than 32 registers, a banking scheme is used. Data memory banks are accessed using the File Select Register (FSR).

4.1 Program Memory Organization for the PIC16F526

The PIC16F526 device has an 11-bit Program Counter (PC) capable of addressing a 2K x 12 program memory space. Program memory is partitioned into user memory, data memory and configuration memory spaces.

The user memory space is the on-chip user program memory. As shown in Figure 4-1, it extends from 0x000 to 0x3FF and partitions into pages, including Reset vector at address 0x3FF.


The data memory space is the Flash data memory block and is located at addresses PC = 400h-43Fh. All Program mode commands that work on the normal Flash memory work on the Flash data memory block. This includes bulk erase, Load and Read data commands.

The configuration memory space extends from 0x440 to 0x7FF. Locations from 0x448 through 0x49F are reserved. The user ID locations extend from 0x440 through 0x443. The Backup OSCCAL locations extend from 0x444 through 0x447. The Configuration Word is physically located at 0x7FF.

Refer to "*PIC16F526 Memory Programming Specification*" (DS41317) for more details.

FIGURE 4-1:

MEMORY MAP

4.4 **OPTION Register**

The OPTION register is a 8-bit wide, write-only register, which contains various control bits to configure the Timer0/WDT prescaler and Timer0.

By executing the <code>OPTION</code> instruction, the contents of the W register will be transferred to the <code>OPTION</code> register. A Reset sets the <code>OPTION <7:0></code> bits.

Note:	If TRIS bit is set to '0', the wake-up on
	change and pull-up functions are disabled
	for that pin (i.e., note that TRIS overrides
	Option control of RBPU and RBWU).

REGISTER 4-2: OPTION: OPTION REGISTER

W-1	W-1	W-1	W-1	W-1	W-1	W-1	W-1
RBWU	RBPU	T0CS ⁽¹⁾	T0SE	PSA	PS2	PS1	PS0
bit 7 bit 0							

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	l as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 7	RBWU: Enable Wake-up On Pin Change bit (RB0, RB1, RB3, RB4) 1 = Disabled 0 = Enabled					
bit 6	RBPU: Enable Weak Pull-ups bit (RB0, RB1, RB3, RB4) 1 = Disabled 0 = Enabled					
bit 5	TOCS: Timer0 Clock Source Select bit ⁽¹⁾ 1 = Transition on T0CKI pin 0 = Internal instruction cycle clock (CLKOUT)					
bit 4	TOSE: Timer0 Source Edge Select bit 1 = Increment on high-to-low transition on T0CKI pin 0 = Increment on low-to-high transition on T0CKI pin					
bit 3	 PSA: Prescaler Assignment bit 1 = Prescaler assigned to the WDT 0 = Prescaler assigned to Timer0 					
bit 2-0	PS<2:0>: Prescaler Rate Select bits					
	Bit Value Timer0 Rate WDT Rate					
	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$					

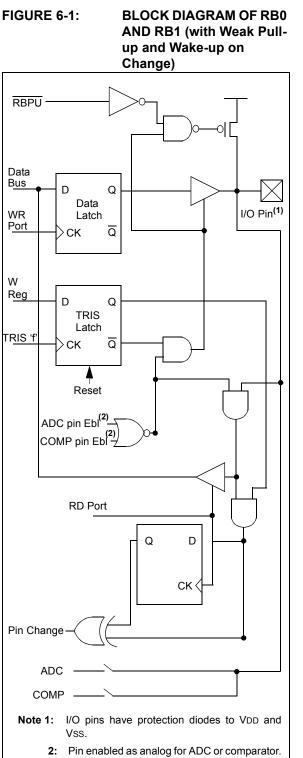
Note 1: If the TOCS bit is set to '1', it will override the TRIS function on the TOCKI pin.

4.5 OSCCAL Register

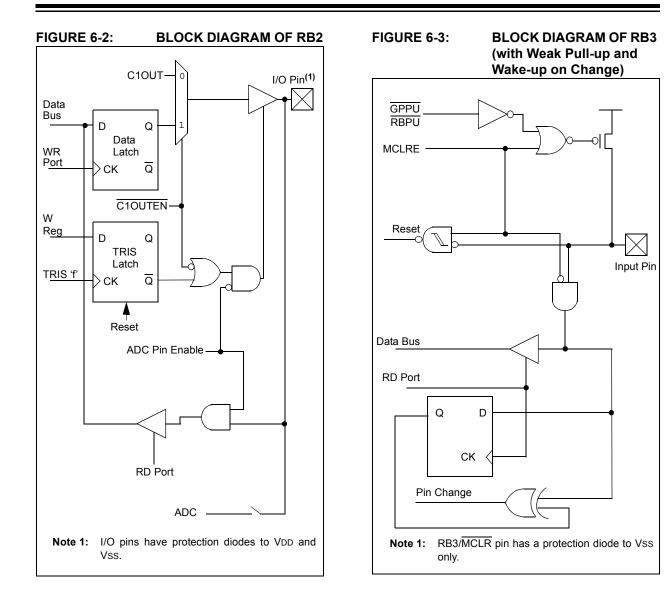
The Oscillator Calibration (OSCCAL) register is used to calibrate the 8 MHz internal oscillator macro. It contains 7 bits of calibration that uses a two's complement scheme for controlling the oscillator speed. See Register 4-3 for details.

REGISTER 4-3: OSCCAL: OSCILLATOR CALIBRATION REGISTER

R/W-1	U-0						
CAL6	CAL5	CAL4	CAL3	CAL2	CAL1	CAL0	—
bit 7							bit 0


Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 7-1 CAL<6:0>: Oscillator Calibration bits 0111111 = Maximum frequency


bit 0

6.4 I/O Interfacing

The equivalent circuit for an I/O port pin is shown in Figure 6-1. All port pins, except RB3 which is inputonly, may be used for both input and output operations. For input operations, these ports are non-latching. Any input must be present until read by an input instruction (e.g., MOVF PORTB, W). The outputs are latched and remain unchanged until the output latch is rewritten. To use a port pin as output, the corresponding direction control bit in TRIS must be cleared (= 0). For use as an input, the corresponding TRIS bit must be set. Any I/O pin (except RB3) can be programmed individually as input or output.

PIC16F526

TABLE 8-2: CAPACITOR SELECTION FOR CRYSTAL OSCILLATOR⁽²⁾

Osc Type	Resonator Freq.	Cap. Range C1	Cap. Range C2	
LP	32 kHz ⁽¹⁾	15 pF	15 pF	
ХТ	200 kHz 1 MHz 4 MHz	47-68 pF 15 pF 15 pF	47-68 pF 15 pF 15 pF	
HS	20 MHz	15-47 pF	15-47 pF	
Note 1:	For VDD > 4.5V, C1 = C2 \approx 30 pF is recommended.			
2:	These values are for design guidance only. Rs may be required to avoid over- driving crystals with low drive level specifi- cation. Since each crystal has its own characteristics, the user should consult			

8.2.3 EXTERNAL CRYSTAL OSCILLATOR CIRCUIT

the crystal manufacturer for appropriate values of external components.

Either a prepackaged oscillator or a simple oscillator circuit with TTL gates can be used as an external crystal oscillator circuit. Prepackaged oscillators provide a wide operating range and better stability. A well-designed crystal oscillator will provide good performance with TTL gates. Two types of crystal oscillator circuits can be used: one with parallel resonance, or one with series resonance.

Figure 8-3 shows implementation of a parallel resonant oscillator circuit. The circuit is designed to use the fundamental frequency of the crystal. The 74AS04 inverter performs the 180-degree phase shift that a parallel oscillator requires. The 4.7 k Ω resistor provides the negative feedback for stability. The 10 k Ω potentiometers bias the 74AS04 in the linear region. This circuit could be used for external oscillator designs.

FIGURE 8-3: EXTERNAL PARALLEL RESONANT CRYSTAL OSCILLATOR CIRCUIT

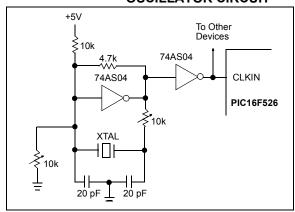
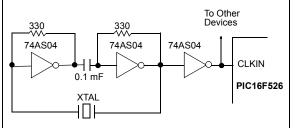



Figure 8-4 shows a series resonant oscillator circuit. This circuit is also designed to use the fundamental frequency of the crystal. The inverter performs a 180-degree phase shift in a series resonant oscillator circuit. The 330 Ω resistors provide the negative feedback to bias the inverters in their linear region.

8.2.4 EXTERNAL RC OSCILLATOR

For timing insensitive applications, the RC device option offers additional cost savings. The RC oscillator frequency is a function of the supply voltage, the resistor (REXT) and capacitor (CEXT) values, and the operating temperature. In addition to this, the oscillator frequency will vary from unit-to-unit due to normal process parameter variation. Furthermore, the difference in lead frame capacitance between package types will also affect the oscillation frequency, especially for low CEXT values. The user also needs to take into account variation due to tolerance of external R and C components used.

Figure 8-5 shows how the R/C combination is connected to the PIC16F526 device. For REXT values below 3.0 k Ω , the oscillator operation may become unstable, or stop completely. For very high REXT values (e.g., 1 M Ω), the oscillator becomes sensitive to noise, humidity and leakage. Thus, we recommend keeping REXT between 5.0 k Ω and 100 k Ω .

Although the oscillator will operate with no external capacitor (CEXT = 0 pF), we recommend using values above 20 pF for noise and stability reasons. With no or small external capacitance, the oscillation frequency can vary dramatically due to changes in external capacitances, such as PCB trace capacitance or package lead frame capacitance.

Section 14.0 "Electrical Characteristics" shows RC frequency variation from part-to-part due to normal process variation. The variation is larger for larger values of R (since leakage current variation will affect RC frequency more for large R) and for smaller values of C (since variation of input capacitance will affect RC frequency more).

8.10 Program Verification/Code Protection

If the code protection bit has not been programmed, the on-chip program memory can be read out for verification purposes.

The first 64 locations and the last location (OSCCAL) can be read, regardless of the code protection bit setting.

The last memory location can be read regardless of the code protection bit setting on the PIC16F526 device.

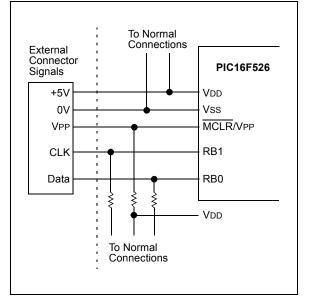
8.11 ID Locations

Four memory locations are designated as ID locations where the user can store checksum or other code identification numbers. These locations are not accessible during normal execution, but are readable and writable during Program/Verify.

Use only the lower 4 bits of the ID locations and always program the upper 8 bits as '0's.

8.12 In-Circuit Serial Programming™

The PIC16F526 microcontroller can be serially programmed while in the end application circuit. This is simply done with two lines for clock and data, and three other lines for power, ground and the programming voltage. This allows customers to manufacture boards with unprogrammed devices and then program the microcontroller just before shipping the product. This also allows the most recent firmware, or a custom firmware, to be programmed.


The devices are placed into a Program/Verify mode by holding the RB1 and RB0 pins low while raising the $\overline{\text{MCLR}}$ (VPP) pin from VIL to VIHH (see programming specification). RB1 becomes the programming clock and B0 becomes the programming data. Both RB1 and RB0 are Schmitt Trigger inputs in this mode.

After Reset, a 6-bit command is then supplied to the device. Depending on the command, 14 bits of program data are then supplied to or from the device, depending if the command was a Load or a Read. For complete details of serial programming, please refer to the PIC16F526 Programming Specifications.

A typical In-Circuit Serial Programming connection is shown in Figure 8-15.

FIGURE 8-15:

TYPICAL IN-CIRCUIT SERIAL PROGRAMMING CONNECTION

RETLW	Return with Literal in W	SLEEP
Syntax:	[<i>label</i>] RETLW k	Syntax:
Operands:	$0 \leq k \leq 255$	Operand
Operation:	$k \rightarrow (W);$ TOS $\rightarrow PC$	Operatio
Status Affected:	None	
Description:	The W register is loaded with the eight-bit literal 'k'. The program counter is loaded from the top of the stack (the return address). This is a two-cycle instruction.	Status Af Descripti

SLEEP	Enter SLEEP Mode
Syntax:	[label] SLEEP
Operands:	None
Operation:	$\begin{array}{l} 00h \rightarrow WDT; \\ 0 \rightarrow WDT \ prescaler; \\ 1 \rightarrow \overline{TO}; \\ 0 \rightarrow \overline{PD} \end{array}$
Status Affected:	TO, PD, RBWUF
Description:	Time-out Status bit (TO) is set. The Power-down Status bit (PD) is cleared. RBWUF is unaffected. The WDT and its prescaler are cleared.
	The processor is put into Sleep mode with the oscillator stopped. See Section 8.9 "Power-down Mode (Sleep)" on Sleep for more details.

RLF	Rotate Left f through Carry							
Syntax:	[<i>label</i>] RLF f,d							
Operands:	$\begin{array}{l} 0\leq f\leq 31\\ d\in [0,1] \end{array}$							
Operation:	See description below							
Status Affected:	С							
Description:	The contents of register 'f' are rotated one bit to the left through the Carry flag. If 'd' is '0', the result is placed in the W register. If 'd' is '1', the result is stored back in register 'f'.							

SUBWF	Subtract W from f								
Syntax:	[<i>label</i>] SUBWF f,d								
Operands:	$\begin{array}{l} 0\leq f\leq 31\\ d\in [0,1] \end{array}$								
Operation:	$(f) - (W) \rightarrow (dest)$								
Status Affected:	C, DC, Z								
Description:	Subtract (2's complement method) the W register from register 'f'. If 'd' is '0', the result is stored in the W register. If 'd' is '1', the result is stored back in register 'f'.								

RRF	Rotate Right f through Carry
Syntax:	[<i>label</i>] RRF f,d
Operands:	$\begin{array}{l} 0\leq f\leq 31\\ d\in [0,1] \end{array}$
Operation:	See description below
Status Affected:	С
Description:	The contents of register 'f' are rotated one bit to the right through the Carry flag. If 'd' is '0', the result is placed in the W register. If 'd' is '1', the result is placed back in register 'f'.

SWAPF	Swap Nibbles in f
Syntax:	[<i>label</i>] SWAPF f,d
Operands:	$\begin{array}{l} 0\leq f\leq 31\\ d\in [0,1] \end{array}$
Operation:	(f<3:0>) → (dest<7:4>); (f<7:4>) → (dest<3:0>)
Status Affected:	None
Description:	The upper and lower nibbles of register 'f' are exchanged. If 'd' is '0', the result is placed in W register. If 'd' is '1', the result is placed in register 'f'.

13.11 PICkit 2 Development Programmer/Debugger and PICkit 2 Debug Express

The PICkit[™] 2 Development Programmer/Debugger is a low-cost development tool with an easy to use interface for programming and debugging Microchip's Flash families of microcontrollers. The full featured Windows® programming interface supports baseline (PIC10F, PIC12F5xx, PIC16F5xx), midrange (PIC12F6xx, PIC16F), PIC18F, PIC24, dsPIC30, dsPIC33, and PIC32 families of 8-bit, 16-bit, and 32-bit microcontrollers, and many Microchip Serial EEPROM products. With Microchip's powerful MPLAB Integrated Development Environment (IDE) the PICkit[™] 2 enables in-circuit debugging on most PIC[®] microcontrollers. In-Circuit-Debugging runs, halts and single steps the program while the PIC microcontroller is embedded in the application. When halted at a breakpoint, the file registers can be examined and modified.

The PICkit 2 Debug Express include the PICkit 2, demo board and microcontroller, hookup cables and CDROM with user's guide, lessons, tutorial, compiler and MPLAB IDE software.

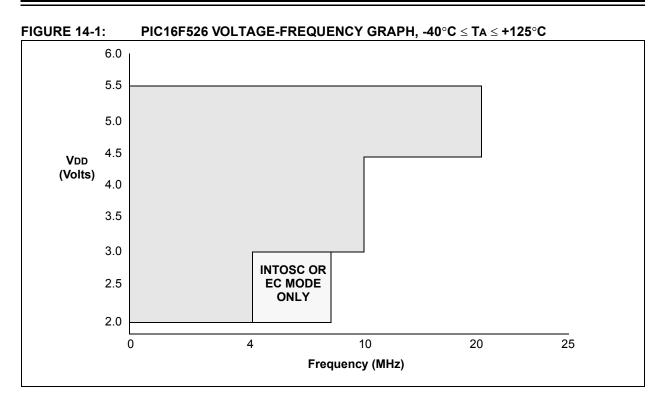
13.12 MPLAB PM3 Device Programmer

The MPLAB PM3 Device Programmer is a universal, CE compliant device programmer with programmable voltage verification at VDDMIN and VDDMAX for maximum reliability. It features a large LCD display (128 x 64) for menus and error messages and a modular, detachable socket assembly to support various package types. The ICSP™ cable assembly is included as a standard item. In Stand-Alone mode, the MPLAB PM3 Device Programmer can read, verify and program PIC devices without a PC connection. It can also set code protection in this mode. The MPLAB PM3 connects to the host PC via an RS-232 or USB cable. The MPLAB PM3 has high-speed communications and optimized algorithms for quick programming of large memory devices and incorporates an MMC card for file storage and data applications.

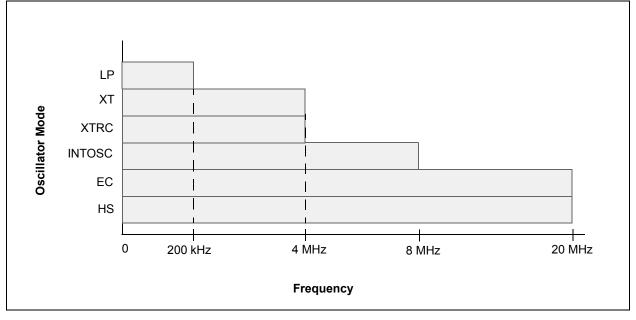
13.13 Demonstration/Development Boards, Evaluation Kits, and Starter Kits

A wide variety of demonstration, development and evaluation boards for various PIC MCUs and dsPIC DSCs allows quick application development on fully functional systems. Most boards include prototyping areas for adding custom circuitry and provide application firmware and source code for examination and modification.

The boards support a variety of features, including LEDs, temperature sensors, switches, speakers, RS-232 interfaces, LCD displays, potentiometers and additional EEPROM memory.


The demonstration and development boards can be used in teaching environments, for prototyping custom circuits and for learning about various microcontroller applications.

In addition to the PICDEM[™] and dsPICDEM[™] demonstration/development board series of circuits, Microchip has a line of evaluation kits and demonstration software for analog filter design, KEELOQ[®] security ICs, CAN, IrDA[®], PowerSmart battery management, SEEVAL[®] evaluation system, Sigma-Delta ADC, flow rate sensing, plus many more.


Also available are starter kits that contain everything needed to experience the specified device. This usually includes a single application and debug capability, all on one board.

Check the Microchip web page (www.microchip.com) for the complete list of demonstration, development and evaluation kits.

PIC16F526

TABLE 14-2: COMPARATOR SPECIFICATIONS.

Comparator Specifications		Standard Operating Conditions (unless otherwise stated) Operating temperature -40°C to 125°C							
Characteristics	Sym.	Sym. Min. Typ. Max. Units Commen							
Internal Voltage Reference	VIVRF	0.50	0.60	0.70	V				
Input offset voltage	Vos	_	± 5.0	± 10	mV				
Input common mode voltage*	Vсм	0	—	Vdd – 1.5	V				
CMRR*	CMRR	55	—	_	db				
Response Time ^{(1)*}	Trt	_	150	400	ns				
Comparator Mode Change to Output Valid*	TMC2COV	_	_	10	μS				

* These parameters are characterized but not tested.

Note 1: Response time measured with one comparator input at (VDD - 1.5)/2 while the other input transitions from Vss to VDD - 1.5V.

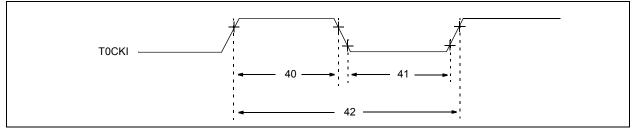
Sym.	Characteristics	Min.	Тур.	Max.	Units	Comments
CVRES	Resolution		VDD/24* VDD/32	_	LSb LSb	Low Range (VRR = 1) High Range (VRR = 0)
	Absolute Accuracy ⁽²⁾			±1/2* ±1/2*	LSb LSb	Low Range (VRR = 1) High Range (VRR = 0)
	Unit Resistor Value (R)		2K*	—	Ω	
	Settling Time ⁽¹⁾	_	—	10*	μS	

* These parameters are characterized but not tested.

Note 1: Settling time measured while VRR = 1 and VR<3:0> transitions from 0000 to 1111.

2: Do not use reference externally when VDD < 2.7V. Under this condition, reference should only be used with comparator Voltage Common mode observed.

TABLE 14-7: CALIBRATED INTERNAL RC FREQUENCIES


AC CHARACTERISTICS			Operating	lemper /oltage	ature - - VDD ran	40°C ≤ 40°C ≤ ge is de	$TA \le +8$ $TA \le +1$ escribed	otherwise specified) 5°C (industrial), 25°C (extended) in 6F526 (Industrial)"
Param No.	Sym.	Characteristic	Freq. Min. Typ.† Max. Units Conditions					
F10	Fosc	Internal Calibrated INTOSC Frequency ⁽¹⁾	± 1% ± 2%	7.92 7.84	8.00 8.00	8.08 8.16	MHz	$3.5V, +25^{\circ}C$ $2.5V \le VDD \le 5.5V$ $0^{\circ}C \le TA \le +85^{\circ}C$
			± 5%	7.60	8.00	8.40	MHz	$\begin{array}{l} 2.0V \leq V \text{DD} \leq 5.5V \\ -40^{\circ}\text{C} \leq \text{TA} \leq +85^{\circ}\text{C} \ (\text{Ind.}) \\ -40^{\circ}\text{C} \leq \text{TA} \leq +125^{\circ}\text{C} \ (\text{Ext.}) \end{array}$

* These parameters are characterized but not tested.

† Data in the Typical ("Typ") column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: To ensure these oscillator frequency tolerances, VDD and VSS must be capacitively decoupled as close to the device as possible. 0.1 uF and 0.01 uF values in parallel are recommended.

FIGURE 14-7: TIMER0 CLOCK TIMINGS

TABLE 14-10: TIMER0 CLOCK REQUIREMENT

AC CHARACTERISTICS Standard Operating Conditions (unless otherwise specified) Operating Temperature -40°C ≤ TA ≤ +85°C (industrial) -40°C ≤ TA ≤ +125°C (extended) Operating Voltage VDD range is described in Section 14.1 "DC Characteristics: PIC16F526 (Industrial)"								
Param No. Sym. Characteristic				Min.	Тур. ⁽¹⁾	Max.	Units	Conditions
40	Tt0H	T0CKI High Pulse	No Prescaler	0.5 Tcy + 20*	_	_	ns	
Width		With Prescaler	10*	_	_	ns		
41	Tt0L	T0CKI Low Pulse	No Prescaler	0.5 Tcy + 20*	_	—	ns	
	Width		With Prescaler	10*	—		ns	
42 Tt0P T0CKI Period		20 or Tcy + 40* N			ns	Whichever is greater. N = Prescale Value (1, 2, 4,, 256)		

* These parameters are characterized but not tested.

Note 1: Data in the Typical ("Typ") column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

15.0 DC AND AC CHARACTERISTICS GRAPHS AND CHARTS

The graphs and tables provided in this section are for **design guidance** and are **not tested**.

In some graphs or tables, the data presented are **outside specified operating range** (i.e., outside specified VDD range). This is for **information only** and devices are ensured to operate properly only within the specified range

Note: The graphs and tables provided following this note are a statistical summary based on a limited number of samples and are provided for informational purposes only. The performance characteristics listed herein are not tested or guaranteed. In some graphs or tables, the data presented may be outside the specified operating range (e.g., outside specified power supply range) and therefore, outside the warranted range.

"Typical" represents the mean of the distribution at 25°C. "Maximum" or "minimum" represents (mean + 3σ) or (mean - 3σ) respectively, where s is a standard deviation, over each temperature range.

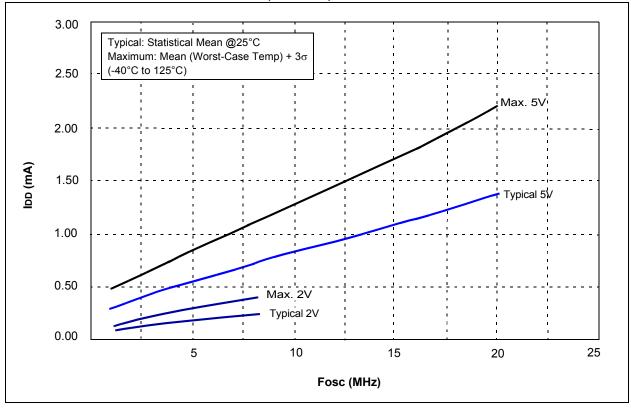


FIGURE 15-1: IDD vs. Fosc Over VDD (HS Mode)

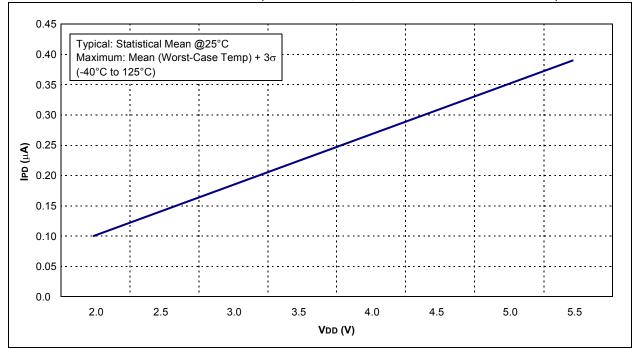
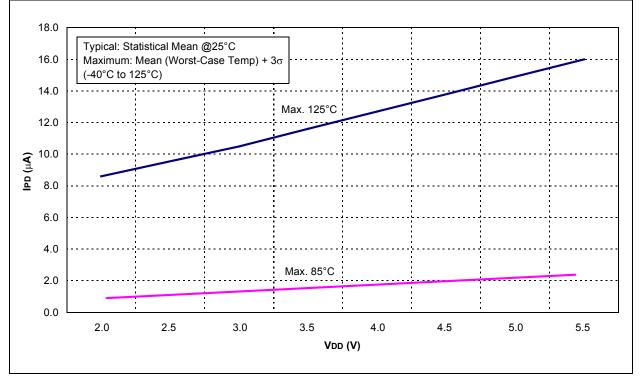
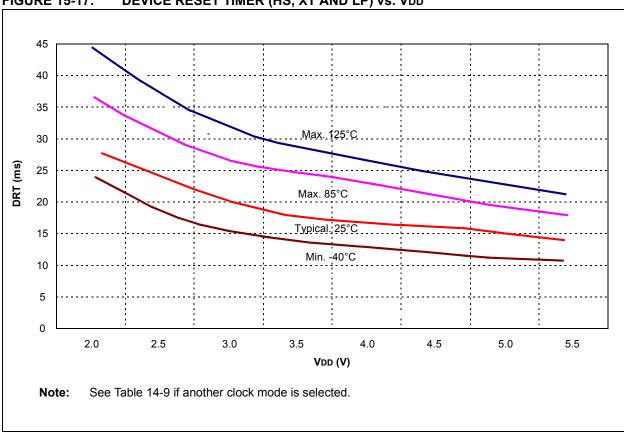




FIGURE 15-5: TYPICAL IPD vs. VDD (SLEEP MODE, ALL PERIPHERALS DISABLED)

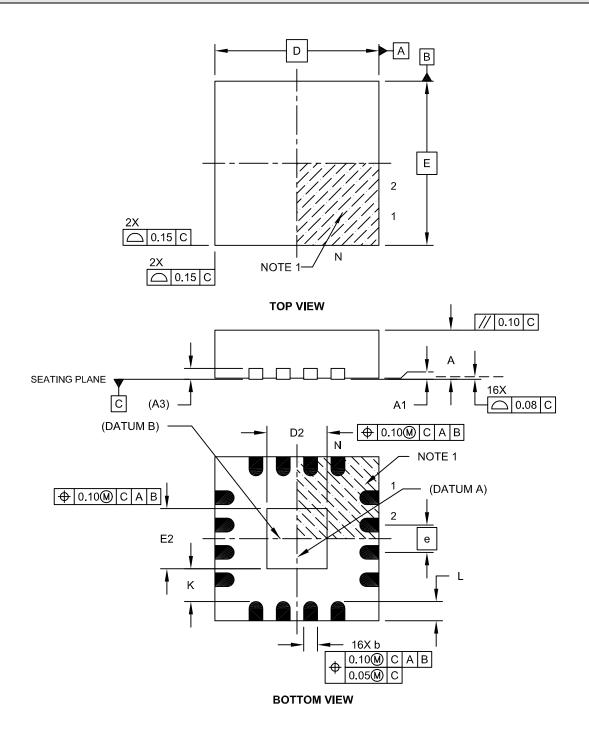
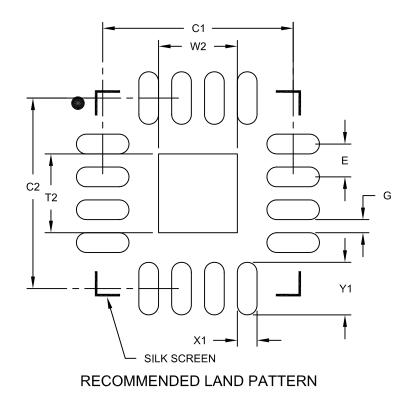

PIC16F526

FIGURE 15-17: DEVICE RESET TIMER (HS, XT AND LP) vs. VDD

16-Lead Plastic Quad Flat, No Lead Package (MG) - 3x3x0.9 mm Body [QFN]


Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

Microchip Technology Drawing C04-142A Sheet 1 of 2

16-Lead Plastic Quad Flat, No Lead Package (MG) – 3x3x0.9 mm Body [QFN]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	MILLIMETERS					
Dimensior	MIN	NOM	MAX			
Contact Pitch	E	0.50 BSC				
Optional Center Pad Width	W2			1.20		
Optional Center Pad Length	T2			1.20		
Contact Pad Spacing	C1		2.90			
Contact Pad Spacing	C2		2.90			
Contact Pad Width (X16)	X1			0.30		
Contact Pad Length (X16)	Y1			0.80		
Distance Between Pads	G	0.20				

Notes:

1. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing No. C04-2142A