

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	20MHz
Connectivity	-
Peripherals	POR, WDT
Number of I/O	11
Program Memory Size	1.5KB (1K x 12)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	67 x 8
Voltage - Supply (Vcc/Vdd)	2V ~ 5.5V
Data Converters	A/D 3x8b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	14-TSSOP (0.173", 4.40mm Width)
Supplier Device Package	14-TSSOP
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16f526-e-st

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Table of Contents

1.0	General Description	7
2.0	PIC16F526 Device Varieties	. 9
3.0	Architectural Overview	11
4.0	Memory Organization	15
5.0	Flash Data Memory Control	23
6.0	I/O Port	27
7.0	Timer0 Module and TMR0 Register	37
8.0	Special Features of the CPU	43
9.0	Analog-to-Digital (A/D) Converter	59
10.0	Comparator(s)	63
11.0	Comparator Voltage Reference Module	69
12.0	Instruction Set Summary	71
13.0	Development Support	79
14.0	Electrical Characteristics	83
15.0	DC and AC Characteristics Graphs and Charts	97
16.0	Packaging Information	107
The N	/icrochip Web Site	115
Custo	omer Change Notification Service	115
Custo	mer Support	115
Read	er Response	116
Index		117
Produ	uct Identification System	119

TO OUR VALUED CUSTOMERS

It is our intention to provide our valued customers with the best documentation possible to ensure successful use of your Microchip products. To this end, we will continue to improve our publications to better suit your needs. Our publications will be refined and enhanced as new volumes and updates are introduced.

If you have any questions or comments regarding this publication, please contact the Marketing Communications Department via E-mail at **docerrors@mail.microchip.com** or fax the **Reader Response Form** in the back of this data sheet to (480) 792-4150. We welcome your feedback.

Most Current Data Sheet

To obtain the most up-to-date version of this data sheet, please register at our Worldwide Web site at:

http://www.microchip.com

You can determine the version of a data sheet by examining its literature number found on the bottom outside corner of any page. The last character of the literature number is the version number, (e.g., DS30000A is version A of document DS30000).

Errata

An errata sheet, describing minor operational differences from the data sheet and recommended workarounds, may exist for current devices. As device/documentation issues become known to us, we will publish an errata sheet. The errata will specify the revision of silicon and revision of document to which it applies.

To determine if an errata sheet exists for a particular device, please check with one of the following:

- · Microchip's Worldwide Web site; http://www.microchip.com
- Your local Microchip sales office (see last page)
- The Microchip Corporate Literature Center; U.S. FAX: (480) 792-7277

When contacting a sales office or the literature center, please specify which device, revision of silicon and data sheet (include literature number) you are using.

Customer Notification System

Register on our web site at www.microchip.com/cn to receive the most current information on all of our products.

NOTES:

5.0 FLASH DATA MEMORY CONTROL

The Flash data memory is readable and writable during normal operation (full VDD range). This memory is not directly mapped in the register file space. Instead, it is indirectly addressed through the Special Function Registers (SFRs).

5.1 Reading Flash Data Memory

To read a Flash data memory location the user must:

- Write the EEADR register
- · Set the RD bit of the EECON register

The value written to the EEADR register determines which Flash data memory location is read. Setting the RD bit of the EECON register initiates the read. Data from the Flash data memory read is available in the EEDATA register immediately. The EEDATA register will hold this value until another read is initiated or it is modified by a write operation. Program execution is suspended while the read cycle is in progress. Execution will continue with the instruction following the one that sets the WR bit. See Example 1 for sample code.

EXAMPLE 1: READING FROM FLASH DATA MEMORY

BANKSEL EEADR	;
MOVF DATA_EE_ADDR, W	;
MOVWF EEADR	;Data Memory
	;Address to read
BANKSEL EECON1	;
BSF EECON, RD	;EE Read
MOVF EEDATA, W	;W = EEDATA

Note: Only a BSF command will work to enable the Flash data memory read documented in Example 1. No other sequence of commands will work, no exceptions.

5.2 Writing and Erasing Flash Data Memory

Flash data memory is erased one row at a time and written one byte at a time. The 64-byte array is made up of eight rows. A row contains eight sequential bytes. Row boundaries exist every eight bytes.

Generally, the procedure to write a byte of data to Flash data memory is:

- 1. Identify the row containing the address where the byte will be written.
- 2. If there is other information in that row that must be saved, copy those bytes from Flash data memory to RAM.

- 3. Perform a row erase of the row of interest.
- 4. Write the new byte of data and any saved bytes back to the appropriate addresses in Flash data memory.

To prevent accidental corruption of the Flash data memory, an unlock sequence is required to initiate a write or erase cycle. This sequence requires that the bit set instructions used to configure the EECON register happen exactly as shown in Example 2 and Example 3, depending on the operation requested.

5.2.1 ERASING FLASH DATA MEMORY

A row must be manually erased before writing new data. The following sequence must be performed for a single row erase.

- 1. Load EEADR with an address in the row to be erased.
- 2. Set the FREE bit to enable the erase.
- 3. Set the WREN bit to enable write access to the array.
- 4. Set the WR bit to initiate the erase cycle.

If the WREN bit is not set in the instruction cycle after the FREE bit is set, the FREE bit will be cleared in hardware.

If the WR bit is not set in the instruction cycle after the WREN bit is set, the WREN bit will be cleared in hardware.

Sample code that follows this procedure is included in Example 2.

Program execution is suspended while the erase cycle is in progress. Execution will continue with the instruction following the one that sets the WR bit.

EXAMPLE 2: ERASING A FLASH DATA MEMORY ROW

BANKSEL	EEADR	
MOVLW	EE_ADR_ERASE	; LOAD ADDRESS OF ROW TO
		; ERASE
MOVWF	EEADR	;
BSF	EECON, FREE	; SELECT ERASE
BSF	EECON, WREN	; ENABLE WRITES
BSF	EECON, WR	; INITITATE ERASE

- Note 1: The FREE bit may be set by any command normally used by the core. However, the WREN and WR bits can only be set using a series of BSF commands, as documented in Example 1. No other sequence of commands will work, no exceptions.
 - **2:** Bits <5:3> of the EEADR register indicate which row is to be erased.

6.4 I/O Interfacing

The equivalent circuit for an I/O port pin is shown in Figure 6-1. All port pins, except RB3 which is inputonly, may be used for both input and output operations. For input operations, these ports are non-latching. Any input must be present until read by an input instruction (e.g., MOVF PORTB, W). The outputs are latched and remain unchanged until the output latch is rewritten. To use a port pin as output, the corresponding direction control bit in TRIS must be cleared (= 0). For use as an input, the corresponding TRIS bit must be set. Any I/O pin (except RB3) can be programmed individually as input or output.

7.0 TIMER0 MODULE AND TMR0 REGISTER

The Timer0 module has the following features:

- 8-bit timer/counter register, TMR0
- Readable and writable
- 8-bit software programmable prescaler
- · Internal or external clock select:
- Edge select for external clock

Figure 7-1 is a simplified block diagram of the Timer0 module.

Timer mode is selected by clearing the T0CS bit of the OPTION register. In Timer mode, the Timer0 module will increment every instruction cycle (without prescaler). If TMR0 register is written, the increment is inhibited for the following two cycles (Figure 7-2 and Figure 7-3). The user can work around this by writing an adjusted value to the TMR0 register.

There are two types of Counter mode. The first Counter mode uses the T0CKI pin to increment Timer0. It is selected by setting the T0CS bit of the OPTION register, setting the <u>C1T0CS</u> bit of the CM1CON0 register and setting the <u>C1OUTEN</u> bit of the CM1CON0 register. In this mode, Timer0 will increment either on every rising or falling edge of pin T0CKI. The T0SE bit of the OPTION register determines the source edge. Clearing the T0SE bit selects the rising edge. Restrictions on the external clock input are discussed in detail in **Section 7.1 "Using Timer0 with an External Clock"**.

The second Counter mode uses the output of the comparator to increment Timer0. It can be entered in two different ways. The first way is selected by setting the T0CS bit of the OPTION register, and clearing the C1T0CS bit of the CM1CON0 register (C10UTEN [CM1CON0<6>] does not affect this mode of operation). This enables an internal connection between the comparator and the Timer0.

The prescaler may be used by either the Timer0 module or the Watchdog Timer, but not both. The prescaler assignment is controlled in software by the control bit, PSA of the OPTION register. Clearing the PSA bit will assign the prescaler to Timer0. The prescaler is not readable or writable. When the prescaler is assigned to the Timer0 module, prescale values of 1:2, 1:4,..., 1:256 are selectable. **Section 7.2 "Prescaler"** details the operation of the prescaler.

A summary of registers associated with the Timer0 module is found in Table 7-1.

TABLE 8-2: CAPACITOR SELECTION FOR CRYSTAL OSCILLATOR⁽²⁾

Osc Type	Resonator Freq.	Cap. Range C1	Cap. Range C2
LP	32 kHz ⁽¹⁾	15 pF	15 pF
ХТ	200 kHz 1 MHz 4 MHz	47-68 pF 15 pF 15 pF	47-68 pF 15 pF 15 pF
HS	20 MHz	15-47 pF	15-47 pF
Note 1:	For VDD > 4.5V, C1 = C2 \approx 30 pF is recommended.		
2:	These values are for design guidance only. Rs may be required to avoid over- driving crystals with low drive level specifi- cation. Since each crystal has its own characteristics, the user should consult		

8.2.3 EXTERNAL CRYSTAL OSCILLATOR CIRCUIT

the crystal manufacturer for appropriate values of external components.

Either a prepackaged oscillator or a simple oscillator circuit with TTL gates can be used as an external crystal oscillator circuit. Prepackaged oscillators provide a wide operating range and better stability. A well-designed crystal oscillator will provide good performance with TTL gates. Two types of crystal oscillator circuits can be used: one with parallel resonance, or one with series resonance.

Figure 8-3 shows implementation of a parallel resonant oscillator circuit. The circuit is designed to use the fundamental frequency of the crystal. The 74AS04 inverter performs the 180-degree phase shift that a parallel oscillator requires. The 4.7 k Ω resistor provides the negative feedback for stability. The 10 k Ω potentiometers bias the 74AS04 in the linear region. This circuit could be used for external oscillator designs.

FIGURE 8-3: EXTERNAL PARALLEL RESONANT CRYSTAL OSCILLATOR CIRCUIT

Figure 8-4 shows a series resonant oscillator circuit. This circuit is also designed to use the fundamental frequency of the crystal. The inverter performs a 180-degree phase shift in a series resonant oscillator circuit. The 330 Ω resistors provide the negative feedback to bias the inverters in their linear region.

8.2.4 EXTERNAL RC OSCILLATOR

For timing insensitive applications, the RC device option offers additional cost savings. The RC oscillator frequency is a function of the supply voltage, the resistor (REXT) and capacitor (CEXT) values, and the operating temperature. In addition to this, the oscillator frequency will vary from unit-to-unit due to normal process parameter variation. Furthermore, the difference in lead frame capacitance between package types will also affect the oscillation frequency, especially for low CEXT values. The user also needs to take into account variation due to tolerance of external R and C components used.

Figure 8-5 shows how the R/C combination is connected to the PIC16F526 device. For REXT values below 3.0 k Ω , the oscillator operation may become unstable, or stop completely. For very high REXT values (e.g., 1 M Ω), the oscillator becomes sensitive to noise, humidity and leakage. Thus, we recommend keeping REXT between 5.0 k Ω and 100 k Ω .

Although the oscillator will operate with no external capacitor (CEXT = 0 pF), we recommend using values above 20 pF for noise and stability reasons. With no or small external capacitance, the oscillation frequency can vary dramatically due to changes in external capacitances, such as PCB trace capacitance or package lead frame capacitance.

Section 14.0 "Electrical Characteristics" shows RC frequency variation from part-to-part due to normal process variation. The variation is larger for larger values of R (since leakage current variation will affect RC frequency more for large R) and for smaller values of C (since variation of input capacitance will affect RC frequency more).

8.3 Reset

The device differentiates between various kinds of Reset:

- Power-on Reset (POR)
- MCLR Reset during normal operation
- MCLR Reset during Sleep
- WDT Time-out Reset during normal operation
- WDT Time-out Reset during Sleep
- · Wake-up from Sleep on pin change

Some registers are not reset in any way, they are unknown on POR and unchanged in any other Reset. Most other registers are reset to "Reset state" on Power-on Reset (POR), MCLR, WDT or Wake-up on pin change Reset during normal operation. They are not affected by a WDT Reset during Sleep or MCLR Reset during Sleep, since these Resets are viewed as resumption of normal operation. The exceptions to this are TO, PD and RBWUF bits. They are set or cleared differently in different Reset situations. These bits are used in software to determine the nature of Reset. See Table 8-3 for a full description of Reset states of all registers.

Register	Address	Power-on Reset	MCLR Reset, WDT Time-out, Wake-up On Pin Change
W	_	qqqq qqq 0⁽¹⁾	qqqq qqq0 ⁽¹⁾
INDF	00h	XXXX XXXX	սսսս սսսս
TMR0	01h	XXXX XXXX	սսսս սսսս
PCL	02h	1111 1111	1111 1111
STATUS	03h	0001 1xxx	qq0q quuu ⁽²⁾
FSR	04h	100x xxxx	1uuu uuuu
OSCCAL	05h	1111 111-	uuuu uuu-
PORTB	06h	xx xxxx	uu uuuu
PORTC	07h	xx xxxx	uu uuuu
CMICON0	08h	q111 1111	quuu uuuu
ADCON0	09h	1111 1100	1111 1100
ADRES	0Ah	XXXX XXXX	սսսս սսսս
CM2CON0	0Bh	q111 1111	quuu uuuu
VRCON	0Ch	001-1111	นนน-นนนน
OPTION	—	1111 1111	1111 1111
TRISB	—	11 1111	11 1111
TRISC	-	11 1111	11 1111
EECON	21h/61h	0 x000	0 q000
EEDATA	25h/65h	XXXX XXXX	นนนน นนนน
EEADR	26h/66h	xx xxxx	uu uuuu

TABLE 8-3: RESET CONDITIONS FOR REGISTERS

Legend: u = unchanged, x = unknown, – = unimplemented bit, read as '0', q = value depends on condition.

Note 1: Bits <7:1> of W register contain oscillator calibration values due to MOVLW XX instruction at top of memory.

2: See Table 8-4 for Reset value for specific conditions.

FIGURE 8-9: TIME-OUT SEQUENCE ON POWER-UP (MCLR TIED TO VDD): FAST VDD RISE TIME

11.0 COMPARATOR VOLTAGE REFERENCE MODULE

The Comparator Voltage Reference module also allows the selection of an internally generated voltage reference for one of the C2 comparator inputs. The VRCON register (Register 11-1) controls the Voltage Reference module shown in Figure 11-1.

11.1 Configuring The Voltage Reference

The voltage reference can output 32 voltage levels; 16 in a high range and 16 in a low range.

Equation 11-1 determines the output voltages:

EQUATION 11-1:

 $VRR = 1 (low range): CVREF = (VR < 3:0 > /24) \times VDD$ VRR = 0 (high range):CVREF = (VDD/4) + (VR < 3:0 > x VDD/32)

11.2 Voltage Reference Accuracy/Error

The full range of VSS to VDD cannot be realized due to construction of the module. The transistors on the top and bottom of the resistor ladder network (Figure 11-1) keep CVREF from approaching VSS or VDD. The exception is when the module is disabled by clearing the VREN bit of the VRCON register. When disabled, the reference voltage is VSS when VR<3:0> is '0000' and the VRR bit of the VRCON register is set. This allows the comparator to detect a zero-crossing and not consume the CVREF module current.

The voltage reference is VDD derived and, therefore, the CVREF output changes with fluctuations in VDD. The tested absolute accuracy of the comparator voltage reference can be found in **Section 14.0 "Electrical Characteristics"**.

REGISTER 11-1: VRCON: VOLTAGE REFERENCE CONTROL REGISTER

R/W-0	R/W-0	R/W-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0
VREN	VROE	VRR	—	VR3	VR2	VR1	VR0
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 7	VREN: CVREF Enable bit
	1 = CVREF is powered on
	0 = CVREF is powered down, no current is drawn
bit 6	VROE: CVREF Output Enable bit ⁽¹⁾
	1 = CVREF output is enabled
	0 = CVREF output is disabled
bit 5	VRR: CVREF Range Selection bit
	1 = Low range
	0 = High range
bit 4	Unimplemented: Read as '0'
bit 3-0	VR<3:0> CVREF Value Selection bit
	When VRR = 1: CVREF= (VR<3:0>/24)*VDD
	When VRR = 0: CVREF= VDD/4+(VR<3:0>/32)*VDD

Note 1: When this bit is set, the TRIS for the CVREF pin is overridden and the analog voltage is placed on the CVREF pin.

ADDWF	Add W and f
Syntax:	[<i>label</i>]ADDWF f,d
Operands:	$ \begin{array}{l} 0 \leq f \leq 31 \\ d \in [0,1] \end{array} $
Operation:	(W) + (f) \rightarrow (dest)
Status Affected:	C, DC, Z
Description:	Add the contents of the W register and register 'f'. If 'd' is'0', the result is stored in the W register. If 'd' is '1', the result is stored back in register 'f'.

BCF	Bit Clear f
Syntax:	[<i>label</i>] BCF f,b
Operands:	$\begin{array}{l} 0 \leq f \leq 31 \\ 0 \leq b \leq 7 \end{array}$
Operation:	$0 \rightarrow (f \le b >)$
Status Affected:	None
Description:	Bit 'b' in register 'f' is cleared.

ANDLW	AND literal with W
Syntax:	[<i>label</i>] ANDLW k
Operands:	$0 \leq k \leq 255$
Operation:	(W).AND. (k) \rightarrow (W)
Status Affected:	Z
Description:	The contents of the W register are AND'ed with the eight-bit literal 'k'. The result is placed in the W register.

BSF	Bit Set f
Syntax:	[<i>label</i>] BSF f,b
Operands:	$\begin{array}{l} 0 \leq f \leq 31 \\ 0 \leq b \leq 7 \end{array}$
Operation:	$1 \rightarrow (f \le b >)$
Status Affected:	None
Description:	Bit 'b' in register 'f' is set.

ANDWF	AND W with f
Syntax:	[<i>label</i>] ANDWF f,d
Operands:	$\begin{array}{l} 0\leq f\leq 31\\ d\in [0,1] \end{array}$
Operation:	(W) .AND. (f) \rightarrow (dest)
Status Affected:	Z
Description:	The contents of the W register are AND'ed with register 'f'. If 'd' is '0', the result is stored in the W register. If 'd' is '1', the result is stored back in register 'f'.

BTFSC	Bit Test f, Skip if Clear
Syntax:	[<i>label</i>] BTFSC f,b
Operands:	$\begin{array}{l} 0 \leq f \leq 31 \\ 0 \leq b \leq 7 \end{array}$
Operation:	skip if (f) = 0
Status Affected:	None
Description:	If bit 'b' in register 'f' is '0', then the next instruction is skipped.
	If bit 'b' is '0', then the next instruc- tion fetched during the current instruction execution is discarded, and a NOP is executed instead, making this a two-cycle instruction.

BTFSS	Bit Test f, Skip if Set
Syntax:	[label] BTFSS f,b
Operands:	$\begin{array}{l} 0 \leq f \leq 31 \\ 0 \leq b < 7 \end{array}$
Operation:	skip if (f) = 1
Status Affected:	None
Description:	If bit 'b' in register 'f' is '1', then the next instruction is skipped.
	If bit 'b' is '1', then the next instruc- tion fetched during the current instruction execution, is discarded and a NOP is executed instead, making this a two-cycle instruction.

CLRW	Clear W
Syntax:	[label] CLRW
Operands:	None
Operation:	$\begin{array}{l} \text{00h} \rightarrow (\text{W}); \\ 1 \rightarrow \text{Z} \end{array}$
Status Affected:	Z
Description:	The W register is cleared. Zero bit (Z) is set.

CALL	Subroutine Call
Syntax:	[<i>label</i>] CALL k
Operands:	$0 \leq k \leq 255$
Operation:	(PC) + 1 \rightarrow Top-of-Stack; k \rightarrow PC<7:0>; (STATUS<6:5>) \rightarrow PC<10:9>; 0 \rightarrow PC<8>
Status Affected:	None
Description:	Subroutine call. First, return address (PC + 1) is PUSHed onto the stack. The eight-bit immediate address is loaded into PC bits <7:0>. The upper bits PC<10:9> are loaded from STATUS<6:5>, PC<8> is cleared. CALL is a two-cycle instruction.

CLRWDT	Clear Watchdog Timer
Syntax:	[label] CLRWDT
Operands:	None
Operation:	00h \rightarrow WDT; 0 \rightarrow WDT prescaler (if assigned); 1 \rightarrow TO; 1 \rightarrow PD
Status Affected:	TO, PD
Description:	The CLRWDT instruction resets the WDT. It also resets the prescaler, if the prescaler is assigned to the WDT and not Timer0. Status bits TO and PD are set.

CLRF	Clear f
Syntax:	[<i>label</i>] CLRF f
Operands:	$0 \leq f \leq 31$
Operation:	$\begin{array}{l} 00h \rightarrow (f); \\ 1 \rightarrow Z \end{array}$
Status Affected:	Z
Description:	The contents of register 'f' are cleared and the Z bit is set.

COMF	Complement f
Syntax:	[<i>label</i>] COMF f,d
Operands:	$\begin{array}{l} 0\leq f\leq 31\\ d\in [0,1] \end{array}$
Operation:	$(\overline{f}) \rightarrow (\text{dest})$
Status Affected:	Z
Description:	The contents of register 'f' are complemented. If 'd' is '0', the result is stored in the W register. If 'd' is '1', the result is stored back in register 'f'.

DECF	Decrement f
Syntax:	[<i>label</i>] DECF f,d
Operands:	$\begin{array}{l} 0 \leq f \leq 31 \\ d \in [0,1] \end{array}$
Operation:	$(f) - 1 \rightarrow (dest)$
Status Affected:	Z
Description:	Decrement register 'f'. If 'd' is '0', the result is stored in the W register. If 'd' is '1', the result is stored back in register 'f'.

Decrement f, Skip if 0

[label] DECFSZ f,d

(f) $-1 \rightarrow d$; skip if result = 0

The contents of register 'f' are decremented. If 'd' is '0', the result is placed in the W register. If 'd' is '1', the result is placed back in

If the result is '0', the next instruc-

tion, which is already fetched, is

discarded and a NOP is executed instead making it a two-cycle

 $\begin{array}{l} 0 \leq f \leq 31 \\ d \, \in \, [0,1] \end{array}$

None

register 'f'.

instruction.

DECFSZ

Operands:

Operation:

Description:

Status Affected:

Syntax:

INCF	Increment f
Syntax:	[<i>label</i>] INCF f,d
Operands:	$\begin{array}{l} 0\leq f\leq 31\\ d\in [0,1] \end{array}$
Operation:	(f) + 1 \rightarrow (dest)
Status Affected:	Z
Description:	The contents of register 'f' are incremented. If 'd' is '0', the result is placed in the W register. If 'd' is '1', the result is placed back in register 'f'.
INCFSZ	Increment f, Skip if 0
INCFSZ Syntax:	Increment f, Skip if 0 [label] INCFSZ f,d
INCFSZ Syntax: Operands:	Increment f, Skip if 0 [<i>label</i>] INCFSZ f,d $0 \le f \le 31$ $d \in [0,1]$
INCFSZ Syntax: Operands: Operation:	Increment f, Skip if 0 [<i>label</i>] INCFSZ f,d $0 \le f \le 31$ $d \in [0,1]$ (f) + 1 \rightarrow (dest), skip if result = 0
INCFSZ Syntax: Operands: Operation: Status Affected:	Increment f, Skip if 0 [<i>label</i>] INCFSZ f,d $0 \le f \le 31$ $d \in [0,1]$ (f) + 1 \rightarrow (dest), skip if result = 0 None

If the result is '0', then the next instruction, which is already fetched, is discarded and a NOP is executed instead making it a two-cycle instruction.

GOTO	Unconditional Branch
Syntax:	[<i>label</i>] GOTO k
Operands:	$0 \leq k \leq 511$
Operation:	k → PC<8:0>; STATUS<6:5> → PC<10:9>
Status Affected:	None
Description:	GOTO is an unconditional branch. The 9-bit immediate value is loaded into PC bits <8:0>. The upper bits of PC are loaded from STATUS<6:5>. GOTO is a two- cycle instruction.

IORLW	Inclusive OR literal with W					
Syntax:	[<i>label</i>] IORLW k					
Operands:	$0 \leq k \leq 255$					
Operation:	(W) .OR. (k) \rightarrow (W)					
Status Affected:	Z					
Description:	The contents of the W register are OR'ed with the eight-bit literal 'k'. The result is placed in the W register.					

13.2 MPLAB C Compilers for Various Device Families

The MPLAB C Compiler code development systems are complete ANSI C compilers for Microchip's PIC18, PIC24 and PIC32 families of microcontrollers and the dsPIC30 and dsPIC33 families of digital signal controllers. These compilers provide powerful integration capabilities, superior code optimization and ease of use.

For easy source level debugging, the compilers provide symbol information that is optimized to the MPLAB IDE debugger.

13.3 HI-TECH C for Various Device Families

The HI-TECH C Compiler code development systems are complete ANSI C compilers for Microchip's PIC family of microcontrollers and the dsPIC family of digital signal controllers. These compilers provide powerful integration capabilities, omniscient code generation and ease of use.

For easy source level debugging, the compilers provide symbol information that is optimized to the MPLAB IDE debugger.

The compilers include a macro assembler, linker, preprocessor, and one-step driver, and can run on multiple platforms.

13.4 MPASM Assembler

The MPASM Assembler is a full-featured, universal macro assembler for PIC10/12/16/18 MCUs.

The MPASM Assembler generates relocatable object files for the MPLINK Object Linker, Intel[®] standard HEX files, MAP files to detail memory usage and symbol reference, absolute LST files that contain source lines and generated machine code and COFF files for debugging.

The MPASM Assembler features include:

- · Integration into MPLAB IDE projects
- User-defined macros to streamline assembly code
- Conditional assembly for multi-purpose source files
- Directives that allow complete control over the assembly process

13.5 MPLINK Object Linker/ MPLIB Object Librarian

The MPLINK Object Linker combines relocatable objects created by the MPASM Assembler and the MPLAB C18 C Compiler. It can link relocatable objects from precompiled libraries, using directives from a linker script.

The MPLIB Object Librarian manages the creation and modification of library files of precompiled code. When a routine from a library is called from a source file, only the modules that contain that routine will be linked in with the application. This allows large libraries to be used efficiently in many different applications.

The object linker/library features include:

- Efficient linking of single libraries instead of many smaller files
- Enhanced code maintainability by grouping related modules together
- Flexible creation of libraries with easy module listing, replacement, deletion and extraction

13.6 MPLAB Assembler, Linker and Librarian for Various Device Families

MPLAB Assembler produces relocatable machine code from symbolic assembly language for PIC24, PIC32 and dsPIC devices. MPLAB C Compiler uses the assembler to produce its object file. The assembler generates relocatable object files that can then be archived or linked with other relocatable object files and archives to create an executable file. Notable features of the assembler include:

- · Support for the entire device instruction set
- · Support for fixed-point and floating-point data
- Command line interface
- · Rich directive set
- Flexible macro language
- · MPLAB IDE compatibility

DC Characteristics			Standard Operating Conditions (unless otherwise specified) Operating Temperature -40°C \leq TA \leq +85°C (industrial)						
Param No.	Sym.	Characteristic	Min.	Тур. ⁽¹⁾	Max.	Units	Conditions		
D001	Vdd	Supply Voltage	2.0		5.5	V	See Figure 14-1		
D002	Vdr	RAM Data Retention Voltage ⁽²⁾		1.5*		V	Device in Sleep mode		
D003	VPOR	VDD Start Voltage to ensure Power-on Reset	—	Vss		V	See Section 8.4 "Power-on Reset (POR)" for details		
D004	SVDD	VDD Rise Rate to ensure Power-on Reset	0.05*	-		V/ms	See Section 8.4 "Power-on Reset (POR)" for details		
D005	IDDP	Supply Current During Prog/ Erase	—	250*		μA			
D010	IDD	Supply Current ^(3, 4, 6)		175 400	250 700	μA μA	Fosc = 4 MHz, VDD = 2.0V Fosc = 4 MHz, VDD = 5.0V		
			_	250 0.75	400 1.2	μA mA	Fosc = 8 MHz, VDD = 2.0V Fosc = 8 MHz, VDD = 5.0V		
				1.4	2.2	mA	Fosc = 20 MHz, VDD = 5.0V		
			_	11 38	22 55	μA μA	Fosc = 32 kHz, VDD = 2.0V Fosc = 32 kHz, VDD = 5.0V		
D020	IPD	Power-down Current ⁽⁵⁾		0.1 0.35	1.2 2.2	μA μA	VDD = 2.0V VDD = 5.0V		
D022	Iwdt	WDT Current ⁽⁵⁾	_	1.0 7.0	3.0 16.0	μA μA	VDD = 2.0V VDD = 5.0V		
D023	ICMP	Comparator Current ⁽⁵⁾	_	15 60	26 76	μA μA	VDD = 2.0V (per comparator) VDD = 5.0V (per comparator)		
D022	ICVREF	CVREF Current ⁽⁵⁾		30 75	75 135	μA μA	VDD = 2.0V (high range) VDD = 5.0V (high range)		
D023	IFVR	Internal 0.6V Fixed Voltage Reference Current ⁽⁵⁾		100	120	μA	VDD = 2.0V (reference and 1 comparator enabled)		
			-	175	205	μA	VDD = 5.0V (reference and 1 comparator enabled)		
D024	ΔIAD^*	A/D Conversion Current		120	150	μA	2.0V		
			—	200	250	μA	5.0V		

14.1 DC Characteristics: PIC16F526 (Industrial)

* These parameters are characterized but not tested.

Note 1: Data in the Typical ("Typ") column is based on characterization results at 25°C. This data is for design guidance only and is not tested.

2: This is the limit to which VDD can be lowered in Sleep mode without losing RAM data.

3: The supply current is mainly a function of the operating voltage and frequency. Other factors such as bus loading, oscillator type, bus rate, internal code execution pattern and temperature also have an impact on the current consumption.

4: The test conditions for all IDD measurements in Active Operation mode are: OSC1 = external square wave, from rail-to-rail; all I/O pins tri-stated, pulled to Vss, T0CKI = VDD, MCLR = VDD; WDT enabled/disabled as specified.

5: For standby current measurements, the conditions are the same as IDD, except that the device is in Sleep mode. If a module current is listed, the current is for that specific module enabled and the device in Sleep.

6: For EXTRC mode, does not include current through REXT. The current through the resistor can be estimated by the formula:

I = VDD/2REXT (mA) with REXT in $k\Omega$.

TABLE 14-1: DC CHARACTERISTICS: PIC16F526 (Industrial, Extended)

			$\begin{array}{llllllllllllllllllllllllllllllllllll$							
Param No.	Sym.	Characteristic	Min.	Typ.†	Max.	Units	Conditions			
	VIL	Input Low Voltage								
		I/O ports								
D030		with TTL buffer	Vss	_	0.8	V	For all $4.5 \le VDD \le 5.5V$			
D030A			Vss	—	0.15 Vdd	V	Otherwise			
D031		with Schmitt Trigger buffer	Vss	_	0.15 VDD	V				
D032		MCLR, TOCKI	Vss	_	0.15 VDD	V				
D033		OSC1 (EXTRC mode), EC ⁽¹⁾	Vss	_	0.15 VDD	V				
D033		OSC1 (HS mode)	Vss	_	0.3 VDD	V				
D033		OSC1 (XT and LP modes)	Vss	_	0.3	v				
	VIH	Input High Voltage								
		I/O ports		_						
D040		with TTL buffer	2.0	_	Vdd	v	$4.5 \leq V \text{DD} \leq 5.5 V$			
D040A			0.25VDD	_	Vdd	v	Otherwise			
			+ 0.8V							
D041		with Schmitt Trigger buffer	0.85VDD	—	Vdd	V	For entire VDD range			
D042		MCLR, T0CKI	0.85VDD	—	Vdd	V				
D042A		OSC1 (EXTRC mode), EC ⁽¹⁾	0.85VDD	—	Vdd	V				
D042A		OSC1 (HS mode)	0.7VDD	—	Vdd	V				
D043		OSC1 (XT and LP modes)	1.6	_	Vdd	V				
D070	IPUR	PORTB weak pull-up current ⁽⁴⁾	50	250	400	μA	VDD = 5V, VPIN = VSS			
	lı∟	Input Leakage Current ^(2,5)								
D060		I/O ports	—	_	±1	μA	$Vss \leq V \text{PIN} \leq V \text{DD}, \text{Pin at high-impedance}$			
D061		RB3/MCLR ⁽³⁾	—	±0.7	±5	μA	$Vss \leq V \text{PIN} \leq V \text{DD}$			
D063		OSC1	_	_	±5	μA	$Vss \leq V\text{PIN} \leq V\text{DD}, XT, HS$ and LP osc			
							configuration			
	Vol	Output Low Voltage	1			1				
D080		I/O ports/CLKOUT	—	_	0.6	V	IOL = 8.5 mA, VDD = 4.5V, –40°C to +85°C			
D080A			—	_	0.6	V	IOL = 7.0 mA, VDD = 4.5V, -40°C to +125°C			
	Vон	Output High Voltage	1		r	1				
D090		I/O ports/CLKOUT	VDD - 0.7	_	—	V	ЮН = -3.0 mA, VDD = 4.5V, –40°С to +85°С			
D090A			VDD - 0.7	—	_	V	ЮН = -2.5 mA, VDD = 4.5V, -40°С to +125°С			
		Capacitive Loading Specs on Output	acitive Loading Specs on Output Pins							
D100	COSC2	OSC2 pin	—	_	15	pF	In XT, HS and LP modes when external clock is used to drive OSC1.			
D101	CIO	All I/O pins and OSC2	—	—	50	pF				
		Flash Data Memory								
D120	ED	Byte endurance	100K	1M	—	E/W	$-40^{\circ}C \le TA \le +85^{\circ}C$			
D120A	ED	Byte endurance	10K	100K	—	E/W	$+85^{\circ}C \le TA \le +125^{\circ}C$			
D121	Vdrw	VDD for read/write	VMIN	—	5.5	V				

Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.
 Note 1: In EXTRC oscillator configuration, the OSC1/CLKIN pin is a Schmitt Trigger input. It is not recommended that the PIC16F526 be driven with external clock in RC mode.

2: Negative current is defined as coming out of the pin.

3: This spec. applies to RB3/MCLR configured as RB3 with pull-up disabled.

4: This spec. applies to all weak pull-up devices, including the weak pull-up found on RB3/MCLR. The current value listed will be the same whether or not the pin is configured as RB3 with pull-up enabled or as MCLR.

5: The leakage current on the nMCLR pin is strongly dependent on the applied voltage level. The specified levels represent normal operating conditions. Higher leakage may be measured at different input voltages.

15.0 DC AND AC CHARACTERISTICS GRAPHS AND CHARTS

The graphs and tables provided in this section are for **design guidance** and are **not tested**.

In some graphs or tables, the data presented are **outside specified operating range** (i.e., outside specified VDD range). This is for **information only** and devices are ensured to operate properly only within the specified range

Note: The graphs and tables provided following this note are a statistical summary based on a limited number of samples and are provided for informational purposes only. The performance characteristics listed herein are not tested or guaranteed. In some graphs or tables, the data presented may be outside the specified operating range (e.g., outside specified power supply range) and therefore, outside the warranted range.

"Typical" represents the mean of the distribution at 25°C. "Maximum" or "minimum" represents (mean + 3σ) or (mean - 3σ) respectively, where s is a standard deviation, over each temperature range.

FIGURE 15-1: IDD vs. Fosc Over VDD (HS Mode)

14-Lead Plastic Thin Shrink Small Outline (ST) – 4.4 mm Body [TSSOP]

	Units			MILLIMETERS			
Dimensio	n Limits	MIN	NOM	MAX			
Number of Pins	Ν	14					
Pitch	е	0.65 BSC					
Overall Height	А	_	-	1.20			
Molded Package Thickness	A2	0.80	1.00	1.05			
Standoff	A1	0.05	-	0.15			
Overall Width	Е	6.40 BSC					
Molded Package Width	E1	4.30	4.40	4.50			
Molded Package Length	D	4.90	5.00	5.10			
Foot Length	L	0.45	0.60	0.75			
Footprint	L1	1.00 REF					
Foot Angle	ф	0°	-	8°			
Lead Thickness	С	0.09	_	0.20			
Lead Width	b	0.19	-	0.30			

Notes:

Note:

- 1. Pin 1 visual index feature may vary, but must be located within the hatched area.
- Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed 0.15 mm per side.
 Dimensioning and tolerancing per ASME Y14.5M.
 - BSC: Basic Dimension. Theoretically exact value shown without tolerances.
 - REF: Reference Dimension, usually without tolerance, for information purposes only.

Microchip Technology Drawing C04-087B

WORLDWIDE SALES AND SERVICE

AMERICAS

Corporate Office 2355 West Chandler Blvd. Chandler, AZ 85224-6199 Tel: 480-792-7200 Fax: 480-792-7277 Technical Support: http://support.microchip.com Web Address: www.microchip.com

Atlanta Duluth, GA Tel: 678-957-9614 Fax: 678-957-1455

Boston Westborough, MA Tel: 774-760-0087 Fax: 774-760-0088

Chicago Itasca, IL Tel: 630-285-0071 Fax: 630-285-0075

Cleveland Independence, OH Tel: 216-447-0464 Fax: 216-447-0643

Dallas Addison, TX Tel: 972-818-7423 Fax: 972-818-2924

Detroit Farmington Hills, MI Tel: 248-538-2250 Fax: 248-538-2260

Kokomo Kokomo, IN Tel: 765-864-8360 Fax: 765-864-8387

Los Angeles Mission Viejo, CA Tel: 949-462-9523 Fax: 949-462-9608

Santa Clara Santa Clara, CA Tel: 408-961-6444 Fax: 408-961-6445

Toronto Mississauga, Ontario, Canada Tel: 905-673-0699 Fax: 905-673-6509

ASIA/PACIFIC

Asia Pacific Office Suites 3707-14, 37th Floor Tower 6, The Gateway Harbour City, Kowloon Hong Kong Tel: 852-2401-1200 Fax: 852-2401-3431

Australia - Sydney Tel: 61-2-9868-6733 Fax: 61-2-9868-6755

China - Beijing Tel: 86-10-8528-2100 Fax: 86-10-8528-2104

China - Chengdu Tel: 86-28-8665-5511 Fax: 86-28-8665-7889

China - Chongqing Tel: 86-23-8980-9588 Fax: 86-23-8980-9500

China - Hong Kong SAR Tel: 852-2401-1200 Fax: 852-2401-3431

China - Nanjing Tel: 86-25-8473-2460

Fax: 86-25-8473-2470 China - Qingdao Tel: 86-532-8502-7355 Fax: 86-532-8502-7205

China - Shanghai Tel: 86-21-5407-5533 Fax: 86-21-5407-5066

China - Shenyang Tel: 86-24-2334-2829 Fax: 86-24-2334-2393

China - Shenzhen Tel: 86-755-8203-2660 Fax: 86-755-8203-1760

China - Wuhan Tel: 86-27-5980-5300 Fax: 86-27-5980-5118

China - Xian Tel: 86-29-8833-7252 Fax: 86-29-8833-7256

China - Xiamen Tel: 86-592-2388138 Fax: 86-592-2388130

China - Zhuhai Tel: 86-756-3210040 Fax: 86-756-3210049

ASIA/PACIFIC

India - Bangalore Tel: 91-80-3090-4444 Fax: 91-80-3090-4123

India - New Delhi Tel: 91-11-4160-8631 Fax: 91-11-4160-8632

India - Pune Tel: 91-20-2566-1512 Fax: 91-20-2566-1513

Japan - Yokohama Tel: 81-45-471- 6166 Fax: 81-45-471-6122

Korea - Daegu Tel: 82-53-744-4301 Fax: 82-53-744-4302

Korea - Seoul Tel: 82-2-554-7200 Fax: 82-2-558-5932 or 82-2-558-5934

Malaysia - Kuala Lumpur Tel: 60-3-6201-9857 Fax: 60-3-6201-9859

Malaysia - Penang Tel: 60-4-227-8870 Fax: 60-4-227-4068

Philippines - Manila Tel: 63-2-634-9065 Fax: 63-2-634-9069

Singapore Tel: 65-6334-8870 Fax: 65-6334-8850

Taiwan - Hsin Chu Tel: 886-3-6578-300 Fax: 886-3-6578-370

Taiwan - Kaohsiung Tel: 886-7-536-4818 Fax: 886-7-536-4803

Taiwan - Taipei Tel: 886-2-2500-6610 Fax: 886-2-2508-0102

Thailand - Bangkok Tel: 66-2-694-1351 Fax: 66-2-694-1350

EUROPE

Austria - Wels Tel: 43-7242-2244-39 Fax: 43-7242-2244-393 Denmark - Copenhagen Tel: 45-4450-2828 Fax: 45-4485-2829

France - Paris Tel: 33-1-69-53-63-20 Fax: 33-1-69-30-90-79

Germany - Munich Tel: 49-89-627-144-0 Fax: 49-89-627-144-44

Italy - Milan Tel: 39-0331-742611 Fax: 39-0331-466781

Netherlands - Drunen Tel: 31-416-690399 Fax: 31-416-690340

Spain - Madrid Tel: 34-91-708-08-90 Fax: 34-91-708-08-91

UK - Wokingham Tel: 44-118-921-5869 Fax: 44-118-921-5820

01/05/10