E·XFL

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Details	
Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	20MHz
Connectivity	-
Peripherals	POR, WDT
Number of I/O	11
Program Memory Size	1.5KB (1K x 12)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	67 x 8
Voltage - Supply (Vcc/Vdd)	2V ~ 5.5V
Data Converters	A/D 3x8b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	14-SOIC (0.154", 3.90mm Width)
Supplier Device Package	14-SOIC
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16f526-i-sl

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

2.0 PIC16F526 DEVICE VARIETIES

A variety of packaging options are available. Depending on application and production requirements, the proper device option can be selected using the information in this section. When placing orders, please use the PIC16F526 Product Identification System at the back of this data sheet to specify the correct part number.

2.1 Quick Turn Programming (QTP) Devices

Microchip offers a QTP programming service for factory production orders. This service is made available for users who choose not to program medium-to-high quantity units and whose code patterns have stabilized. The devices are identical to the Flash devices but with all Flash locations and fuse options already programmed by the factory. Certain code and prototype verification procedures do apply before production shipments are available. Please contact your local Microchip Technology sales office for more details.

2.2 Serialized Quick Turn ProgrammingSM (SQTPSM) Devices

Microchip offers a unique programming service, where a few user-defined locations in each device are programmed with different serial numbers. The serial numbers may be random, pseudo-random or sequential.

Serial programming allows each device to have a unique number, which can serve as an entry code, password or ID number.

Addr	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on Power-on Reset	Page #
N/A	TRIS	_	—	I/O Control	Register (PC	ORTB, PORT	IC)			11 1111	27
N/A	OPTION	Contains co	ontrol bits to c	onfigure Tim	ner0 and Tim	er0/WDT pre	escaler			1111 1111	19
00h	INDF	Uses conte	nts of FSR to	Address Da	ata Memory (i	not a physica	al register)			XXXX XXXX	22
01h/41h	TMR0	Timer0 Mo	dule Register							XXXX XXXX	37
02h ⁽¹⁾	PCL	Low order	3 bits of PC							1111 1111	21
03h	STATUS	RBWUF	CWUF	PA0	TO	PD	Z	DC	С	0001 1xxx	18
04h	FSR	Indirect Da	ta Memory Ac	Idress Pointe	er		•			100x xxxx	22
05h/45h	OSCCAL	CAL6	CAL5	CAL4	CAL3	CAL2	CAL1	CAL0	_	1111 111-	20
06h/46h	PORTB	—	—	RB5	RB4	RB3	RB2	RB1	RB0	xx xxxx	27
07h	PORTC		_	RC5	RC4	RC3	RC2	RC1	RC0	xx xxxx	28
08h	CM1CON0	C1OUT	C10UTEN	C1POL	C1T0CS	C10N	C1NREF	C1PREF	C1WU	q111 1111	63
09h	ADCON0	ANS1	ANS0	ADCS1	ADCS0	CHS1	CHS0	GO/DONE	ADON	1111 1100	61
0Ah	ADRES	ADC Conve	ersion Result				•			XXXX XXXX	62
0Bh	CM2CON0	C2OUT	C2OUTEN	C2POL	C2PREF2	C2ON	C2NREF	C2PREF1	C2WU	q111 1111	64
0Ch	VRCON	VREN	VROE	VRR		VR3	VR2	VR1	VR0	001- 1111	69
21h/61h	EECON	—	—	_	FREE	WRERR	WREN	WR	RD	0 x000	23
25h/65h	EEDATA	SELF REA	SELF READ/WRITE DATA							XXXX XXXX	23
26h/66h	EEADR		—	SELF REA	D/WRITE AD	DRESS				xx xxxx	23

TABLE 4-1: SPECIAL FUNCTION REGISTER (SFR) SUMMARY

 Legend:
 x = unknown, u = unchanged, - = unimplemented, read as '0' (if applicable), q = value depends on condition. Shaded cells = unimplemented or unused

 Note 1:
 The upper byte of the Program Counter is not directly accessible. See Section 4.6 "Program Counter" for an explanation of how to

access these bits.

5.2.2 WRITING TO FLASH DATA MEMORY

Once a cell is erased, new data can be written. Program execution is suspended during the write cycle. The following sequence must be performed for a single byte write.

- 1. Load EEADR with the address.
- 2. Load EEDATA with the data to write.
- 3. Set the WREN bit to enable write access to the array.
- 4. Set the WR bit to initiate the erase cycle.

If the WR bit is not set in the instruction cycle after the WREN bit is set, the WREN bit will be cleared in hardware.

Sample code that follows this procedure is included in Example 3.

EXAMPLE 3: WRITING A FLASH DATA MEMORY ROW

BANKSEL	EEADR		
MOVLW	EE_ADR_WRITE	;	LOAD ADDRESS
MOVWF	EEADR	;	
MOVLW	EE_DATA_TO_WRITE	;	LOAD DATA
MOVWF	EEDATA	;	INTO EEDATA REGISTER
BSF	EECON, WREN	;	ENABLE WRITES
BSF	EECON,WR	;	INITITATE ERASE

- Note 1: Only a series of BSF commands will work to enable the memory write sequence documented in Example 2. No other sequence of commands will work, no exceptions.
 - 2: For reads, erases and writes to the Flash data memory, there is no need to insert a NOP into the user code as is done on mid-range devices. The instruction immediately following the "BSF EECON, WR/RD" will be fetched and executed properly.

5.3 Write Verify

Depending on the application, good programming practice may dictate that data written to the Flash data memory be verified. Example 4 is an example of a write verify.

EXAMPLE 4: WRITE VERIFY OF FLASH DATA MEMORY

MOVF	EEDATA, W	;EEDATA has not changed
		;from previous write
BSF	EECON, RD	;Read the value written
XORWF	EEDATA, W	;
BTFSS	STATUS, Z	;Is data the same
GOTO	WRITE_ERR	;No, handle error
		;Yes, continue

REGISTER 5-1: EEDATA: FLASH DATA REGISTER

| R/W-x |
|---------|---------|---------|---------|---------|---------|---------|---------|
| EEDATA7 | EEDATA6 | EEDATA5 | EEDATA4 | EEDATA3 | EEDATA2 | EEDATA1 | EEDATA0 |
| bit 7 | | | | | | | bit 0 |

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	d as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 7-0 EEDATA<7:0>: 8-bits of data to be read from/written to data Flash

REGISTER 5-2: EEADR: FLASH ADDRESS REGISTER

U-0	U-0	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x
—	—	EEADR5	EEADR4	EEADR3	EEADR2	EEADR1	EEADR0
bit 7							bit 0

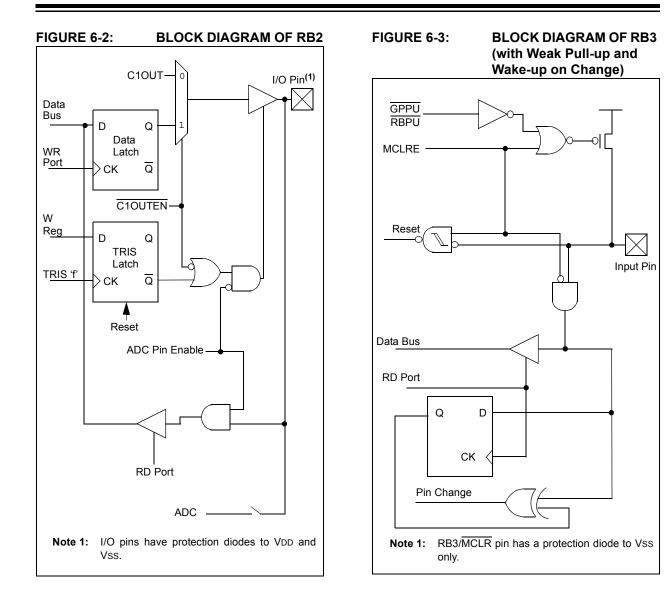
Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 7-6 Unimplemented: Read as '0'.

bit 5-0 EEADR<5:0>: 6-bits of data to be read from/written to data Flash

REGISTER 6-2: PORTC: PORTC REGISTER

– RC5							
1.00	RC4	RC3	RC2	RC1	RC0		
	·	- ·	·		bit 0		
R = Readable bit W = Writable bit			U = Unimplemented bit, read as '0'				
-n = Value at POR '1' = Bit is set		'0' = Bit is cleared x = Bit is unknown					
-					• •		


bit 7-6 Unimplemented: Read as '0'

bit 5-0 RC<5:0>: PORTC I/O Pin bits

1 = Port pin is >VIH min.

0 = Port pin is <VIL max.

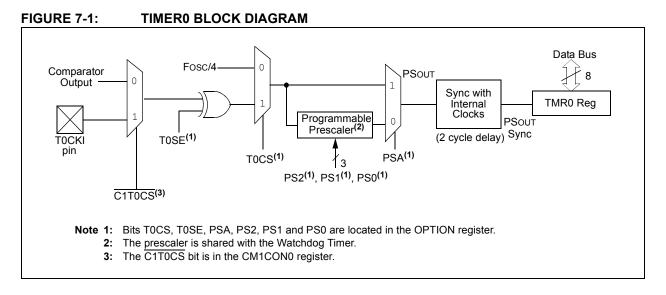
PIC16F526

7.0 TIMER0 MODULE AND TMR0 REGISTER

The Timer0 module has the following features:

- 8-bit timer/counter register, TMR0
- Readable and writable
- 8-bit software programmable prescaler
- · Internal or external clock select:
- Edge select for external clock

Figure 7-1 is a simplified block diagram of the Timer0 module.


Timer mode is selected by clearing the T0CS bit of the OPTION register. In Timer mode, the Timer0 module will increment every instruction cycle (without prescaler). If TMR0 register is written, the increment is inhibited for the following two cycles (Figure 7-2 and Figure 7-3). The user can work around this by writing an adjusted value to the TMR0 register.

There are two types of Counter mode. The first Counter mode uses the T0CKI pin to increment Timer0. It is selected by setting the T0CS bit of the OPTION register, setting the <u>C1T0CS</u> bit of the CM1CON0 register and setting the <u>C1OUTEN</u> bit of the CM1CON0 register. In this mode, Timer0 will increment either on every rising or falling edge of pin T0CKI. The T0SE bit of the OPTION register determines the source edge. Clearing the T0SE bit selects the rising edge. Restrictions on the external clock input are discussed in detail in **Section 7.1 "Using Timer0 with an External Clock"**.

The second Counter mode uses the output of the comparator to increment Timer0. It can be entered in two different ways. The first way is selected by setting the T0CS bit of the OPTION register, and clearing the C1T0CS bit of the CM1CON0 register (C10UTEN [CM1CON0<6>] does not affect this mode of operation). This enables an internal connection between the comparator and the Timer0.

The prescaler may be used by either the Timer0 module or the Watchdog Timer, but not both. The prescaler assignment is controlled in software by the control bit, PSA of the OPTION register. Clearing the PSA bit will assign the prescaler to Timer0. The prescaler is not readable or writable. When the prescaler is assigned to the Timer0 module, prescale values of 1:2, 1:4,..., 1:256 are selectable. **Section 7.2 "Prescaler"** details the operation of the prescaler.

A summary of registers associated with the Timer0 module is found in Table 7-1.

7.2 Prescaler

An 8-bit counter is available as a prescaler for the Timer0 module or as a postscaler for the Watchdog Timer (WDT), respectively (see **Section 8.6** "Watchdog Timer (WDT)"). For simplicity, this counter is being referred to as "prescaler" throughout this data sheet.

Note:	The prescaler may be used by either the Timer0 module or the WDT, but not both.
	Thus, a prescaler assignment for the Timer0 module means that there is no
	prescaler for the WDT and vice versa.

The PSA and PS<2:0> bits of the OPTION register determine prescaler assignment and prescale ratio.

When assigned to the Timer0 module, all instructions writing to the TMR0 register (e.g., CLRF TMR0, MOVWF TMR0, etc.) will clear the prescaler. When assigned to WDT, a CLRWDT instruction will clear the prescaler along with the WDT. The prescaler is neither readable nor writable. On a Reset, the prescaler contains all '0's.

7.2.1 SWITCHING PRESCALER ASSIGNMENT

The prescaler assignment is fully under software control (i.e., it can be changed "on-the-fly" during program execution). To avoid an unintended device Reset, the following instruction sequence (Example 7-1) must be executed when changing the prescaler assignment from Timer0 to the WDT.

EXAMPLE 7-1: CHANGING PRESCALER (TIMER0 \rightarrow WDT)

CLRWDT		;Clear WDT
CLRF	TMR0	;Clear TMR0 & Prescaler
MOVLW	b'00xx1111'	
CLRWDT		;PS<2:0> are 000 or 001
MOVLW	b'00xx1xxx'	;Set Postscaler to
OPTION		;desired WDT rate

To change the prescaler from the WDT to the Timer0 module, use the sequence shown in Example 7-2. This sequence must be used even if the WDT is disabled. A CLRWDT instruction should be executed before switching the prescaler.

EXAMPLE 7-2:	CHANGING PRESCALER
	(WDT \rightarrow TIMER0)

CLRWDT		;Clear WDT and
		;prescaler
MOVLW b	'xxxx0xxx'	;Select TMR0, new
		;prescale value and
		;clock source
OPTION		

TABLE 8-2: CAPACITOR SELECTION FOR CRYSTAL OSCILLATOR⁽²⁾

Osc Type	Resonator Freq.	Cap. Range C1	Cap. Range C2
LP	32 kHz ⁽¹⁾	15 pF	15 pF
ХТ	200 kHz 1 MHz 4 MHz	47-68 pF 15 pF 15 pF	47-68 pF 15 pF 15 pF
HS	20 MHz	15-47 pF	15-47 pF
Note 1:	For VDD > 4 recommend	.5V, C1 = C2 ≈ ed.	30 pF is
2:	only. Rs ma driving cryst cation. Sinc	es are for design y be required to als with low drive e each crystal h ics, the user sho	avoid over- ve level specifi- as its own

8.2.3 EXTERNAL CRYSTAL OSCILLATOR CIRCUIT

the crystal manufacturer for appropriate values of external components.

Either a prepackaged oscillator or a simple oscillator circuit with TTL gates can be used as an external crystal oscillator circuit. Prepackaged oscillators provide a wide operating range and better stability. A well-designed crystal oscillator will provide good performance with TTL gates. Two types of crystal oscillator circuits can be used: one with parallel resonance, or one with series resonance.

Figure 8-3 shows implementation of a parallel resonant oscillator circuit. The circuit is designed to use the fundamental frequency of the crystal. The 74AS04 inverter performs the 180-degree phase shift that a parallel oscillator requires. The 4.7 k Ω resistor provides the negative feedback for stability. The 10 k Ω potentiometers bias the 74AS04 in the linear region. This circuit could be used for external oscillator designs.

FIGURE 8-3: EXTERNAL PARALLEL RESONANT CRYSTAL OSCILLATOR CIRCUIT

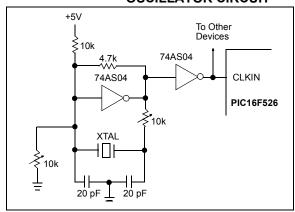
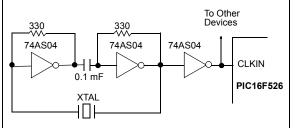
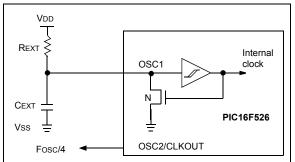



Figure 8-4 shows a series resonant oscillator circuit. This circuit is also designed to use the fundamental frequency of the crystal. The inverter performs a 180-degree phase shift in a series resonant oscillator circuit. The 330 Ω resistors provide the negative feedback to bias the inverters in their linear region.

8.2.4 EXTERNAL RC OSCILLATOR

For timing insensitive applications, the RC device option offers additional cost savings. The RC oscillator frequency is a function of the supply voltage, the resistor (REXT) and capacitor (CEXT) values, and the operating temperature. In addition to this, the oscillator frequency will vary from unit-to-unit due to normal process parameter variation. Furthermore, the difference in lead frame capacitance between package types will also affect the oscillation frequency, especially for low CEXT values. The user also needs to take into account variation due to tolerance of external R and C components used.


Figure 8-5 shows how the R/C combination is connected to the PIC16F526 device. For REXT values below 3.0 k Ω , the oscillator operation may become unstable, or stop completely. For very high REXT values (e.g., 1 M Ω), the oscillator becomes sensitive to noise, humidity and leakage. Thus, we recommend keeping REXT between 5.0 k Ω and 100 k Ω .

Although the oscillator will operate with no external capacitor (CEXT = 0 pF), we recommend using values above 20 pF for noise and stability reasons. With no or small external capacitance, the oscillation frequency can vary dramatically due to changes in external capacitances, such as PCB trace capacitance or package lead frame capacitance.

Section 14.0 "Electrical Characteristics" shows RC frequency variation from part-to-part due to normal process variation. The variation is larger for larger values of R (since leakage current variation will affect RC frequency more for large R) and for smaller values of C (since variation of input capacitance will affect RC frequency more).

Also, see the Electrical Specifications section for variation of oscillator frequency due to VDD for given REXT/CEXT values, as well as frequency variation due to operating temperature for given R, C and VDD values.

FIGURE 8-5: EXTERNAL RC OSCILLATOR MODE

8.2.5 INTERNAL 4/8 MHz RC OSCILLATOR

The internal RC oscillator provides a fixed 4/8 MHz (nominal) system clock at VDD = 5V and $25^{\circ}C$, (see **Section 14.0** "**Electrical Characteristics**" for information on variation over voltage and temperature).

In addition, a calibration instruction is programmed into the last address of memory, which contains the calibration value for the internal RC oscillator. This location is always non-code protected, regardless of the codeprotect settings. This value is programmed as a MOVLW XX instruction where XX is the calibration value, and is placed at the Reset vector. This will load the W register with the calibration value upon Reset and the PC will then roll over to the users program at address 0x000. The user then has the option of writing the value to the OSCCAL Register (05h) or ignoring it.

OSCCAL, when written to with the calibration value, will "trim" the internal oscillator to remove process variation from the oscillator frequency.

Note: Erasing the device will also erase the preprogrammed internal calibration value for the internal oscillator. The calibration value must be read prior to erasing the part so it can be reprogrammed correctly later.

For the PIC16F526 device, only bits 7:1 of OSCCAL are used for calibration. See Register 4-3 for more information.

Note: The bit 0 of the OSCCAL register is unimplemented and should be written as '0' when modifying OSCCAL for compatibility with future devices.

8.3 Reset

The device differentiates between various kinds of Reset:

- Power-on Reset (POR)
- MCLR Reset during normal operation
- MCLR Reset during Sleep
- WDT Time-out Reset during normal operation
- WDT Time-out Reset during Sleep
- · Wake-up from Sleep on pin change

Some registers are not reset in any way, they are unknown on POR and unchanged in any other Reset. Most other registers are reset to "Reset state" on Power-on Reset (POR), MCLR, WDT or Wake-up on pin change Reset during normal operation. They are not affected by a WDT Reset during Sleep or MCLR Reset during Sleep, since these Resets are viewed as resumption of normal operation. The exceptions to this are TO, PD and RBWUF bits. They are set or cleared differently in different Reset situations. These bits are used in software to determine the nature of Reset. See Table 8-3 for a full description of Reset states of all registers.

Register	Address	Power-on Reset	MCLR Reset, WDT Time-out, Wake-up On Pin Change
W	_	qqqq qqq 0⁽¹⁾	qqqq qqq0 ⁽¹⁾
INDF	00h	XXXX XXXX	սսսս սսսս
TMR0	01h	XXXX XXXX	սսսս սսսս
PCL	02h	1111 1111	1111 1111
STATUS	03h	0001 1xxx	qq0q quuu ⁽²⁾
FSR	04h	100x xxxx	1uuu uuuu
OSCCAL	05h	1111 111-	uuuu uuu-
PORTB	06h	xx xxxx	uu uuuu
PORTC	07h	xx xxxx	uu uuuu
CMICON0	08h	q111 1111	quuu uuuu
ADCON0	09h	1111 1100	1111 1100
ADRES	0Ah	XXXX XXXX	นนนน นนนน
CM2CON0	0Bh	q111 1111	quuu uuuu
VRCON	0Ch	001-1111	นนน-นนนน
OPTION	-	1111 1111	1111 1111
TRISB	-	11 1111	11 1111
TRISC	-	11 1111	11 1111
EECON	21h/61h	0 x000	0 q000
EEDATA	25h/65h	XXXX XXXX	սսսս սսսս
EEADR	26h/66h	xx xxxx	uu uuuu

TABLE 8-3: RESET CONDITIONS FOR REGISTERS

Legend: u = unchanged, x = unknown, – = unimplemented bit, read as '0', q = value depends on condition.

Note 1: Bits <7:1> of W register contain oscillator calibration values due to MOVLW XX instruction at top of memory.

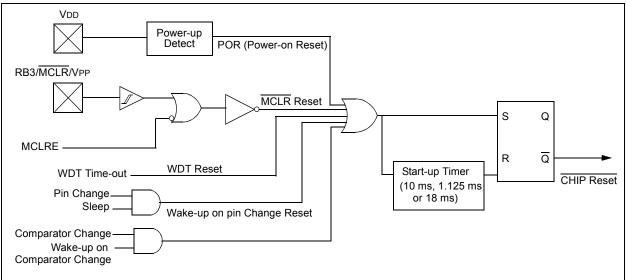
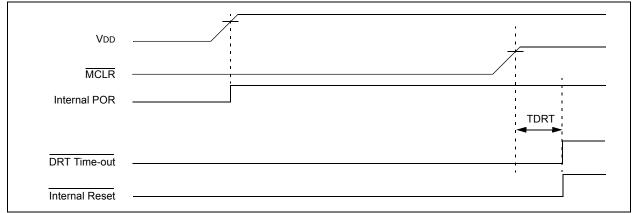

2: See Table 8-4 for Reset value for specific conditions.

TABLE 8-4: RESET CONDITION FOR SPECIAL REGISTERS


	STATUS Addr: 03h
Power-on Reset	0001 1xxx
MCLR Reset during normal operation	000u uuuu
MCLR Reset during Sleep	0001 Ouuu
WDT Reset during Sleep	0000 Ouuu
WDT Reset normal operation	0000 uuuu
Wake-up from Sleep on pin change	1001 Ouuu
Wake-up from Sleep on comparator change	0101 0uuu

Legend: u = unchanged, x = unknown, – = unimplemented bit, read as '0'.

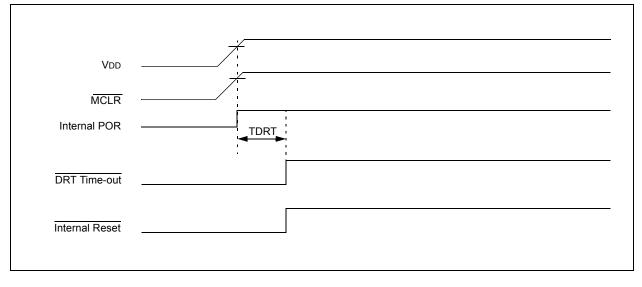


FIGURE 8-9: TIME-OUT SEQUENCE ON POWER-UP (MCLR TIED TO VDD): FAST VDD RISE TIME

PIC16F526

9.1.5 SLEEP

This ADC does not have a dedicated ADC clock, and therefore, no conversion in Sleep is possible. If a conversion is underway and a Sleep command is executed, the GO/DONE and ADON bit will be cleared. This will stop any conversion in process and powerdown the ADC module to conserve power. Due to the nature of the conversion process, the ADRES may contain a partial conversion. At least 1 bit must have been converted prior to Sleep to have partial conversion data in ADRES. The ADCS and CHS bits are reset to their default condition; ANS<1:0> = 11 and CHS<1:0> = 11.

- For accurate conversions, TAD must meet the following:
- + 500 ns < TAD < 50 μs
- TAD = 1/(FOSC/divisor)

Shaded areas indicate TAD out of range for accurate conversions. If analog input is desired at these frequencies, use INTOSC/8 for the ADC clock source.

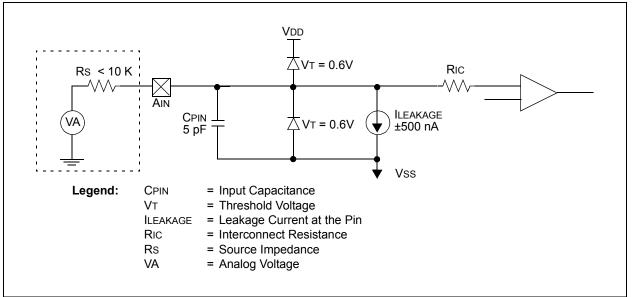

Source	ADCS <1:0>	Divisor	20 MHz	16 MHz	8 MHz	4 MHz	1 MHz	500 kHz	350 kHz	200 kHz	100 kHz	32 kHz
INTOSC	11	4			.5 μs	1 μs					_	
FOSC	10	4	.2 μs	.25 μs	.5 μs	1 μs	4 μs	8 μ s	11 μs	20 μs	40 μs	125 μs
FOSC	01	8	.4 μs	.5 μs	1 μs	2 μs	8 μs	16 μs	23 μs	40 μs	80 μs	250 μs
FOSC	00	16	.8 μs	1 μs	2 μ s	4 μs	16 μs	32 μ s	46 μs	80 µS	160 μs	500 μs

TABLE 9-2: TAD FOR ADCS SETTINGS WITH VARIOUS OSCILLATORS

TABLE 9-3: EFFECTS OF SLEEP ON ADCON0

	ANS1	ANS0	ADCS1	ADCS0	CHS1	CHS0	GO/DONE	ADON
Entering Sleep	Unchanged	Unchanged	1	1	1	1	0	0
Wake or Reset	1	1	1	1	1	1	0	0

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR	Value on All Other Resets
STATUS	RBWUF	CWUF	PA0	TO	PD	Z	DC	С	0001 1xxx	qq0q quuu
CM1CON0	C1OUT	C10UTEN	C1POL	C1T0CS	C10N	C1NREF	C1PREF	C1WU	q111 1111	quuu uuuu
CM2CON0	C2OUT	C2OUTEN	C2POL	C2PREF2	C2ON	C2NREF	C2PREF1	C2WU	q111 1111	quuu uuuu
TRIS	_	—	I/O Contro	I/O Control Register (PORTB, PORTC)					11 1111	11 1111

Legend: x = Unknown, u = Unchanged, - = Unimplemented, read as '0', q = Depends on condition.

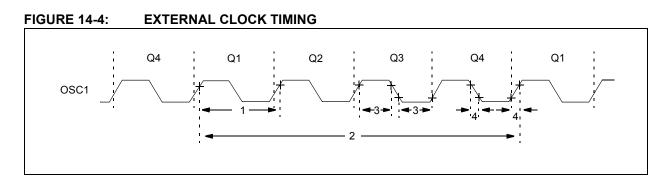
14.2 DC Characteristics: PIC16F526 (Extended)

DC Cha	aracteris	tics					has (unless otherwise specified) $\leq TA \leq +125^{\circ}C$ (extended)
Param No.	Sym.	Characteristic	Min.	Тур. ⁽¹⁾	Max.	Units	Conditions
D001	Vdd	Supply Voltage	2.0		5.5	V	See Figure 14-1
D002	Vdr	RAM Data Retention Voltage ⁽²⁾		1.5*		V	Device in Sleep mode
D003	VPOR	VDD Start Voltage to ensure Power-on Reset	-	Vss		V	See Section 8.4 "Power-on Reset (POR)" for details
D004	SVDD	VDD Rise Rate to ensure Power-on Reset	0.05*	—		V/ms	See Section 8.4 "Power-on Reset (POR)" for details
D005	IDDP	Supply Current During Prog/ Erase	—	250*		μA	
D010	IDD	Supply Current ^(3,4,6)	_	175 400	250 700	μΑ μΑ	Fosc = 4 MHz, Vdd = 2.0V Fosc = 4 MHz, Vdd = 5.0V
			_	250 0.75	400 1.2	μA mA	Fosc = 8 MHz, VDD = 2.0V Fosc = 8 MHz, VDD = 5.0V
				1.4	2.2	mA	Fosc = 20 MHz, VDD = 5.0V
			_	11 38	26 110	μA μA	Fosc = 32 kHz, VDD = 2.0V Fosc = 32 kHz, VDD = 5.0V
D020	IPD	Power-down Current ⁽⁵⁾	_	0.1 0.35	9.0 15.0	μΑ μΑ	VDD = 2.0V VDD = 5.0V
D022	Iwdt	WDT Current ⁽⁵⁾	_	1.0 7.0	18 22	μΑ μΑ	VDD = 2.0V VDD = 5.0V
D023	ICMP	Comparator Current ⁽⁵⁾	_	15 60	26 76	μΑ μΑ	VDD = 2.0V (per comparator) VDD = 5.0V (per comparator)
D022	ICVREF	CvREF Current ⁽⁵⁾	_	30 75	75 135	μΑ μΑ	VDD = 2.0V (high range) VDD = 5.0V (high range)
D023	IFVR	Internal 0.6V Fixed Voltage Reference Current ⁽⁵⁾		100 175	130 220	μΑ μΑ	V _{DD} = 2.0V (reference and 1 comparator enabled) V _{DD} = 5.0V (reference and 1
D004	414-5*			400	450	•	comparator enabled)
D024	ΔIAD^*	A/D Conversion Current		120	150	μA	2.0V
			—	200	250	μA	5.0V

* These parameters are characterized but not tested.

Note 1: Data in the Typical ("Typ") column is based on characterization results at 25°C. This data is for design guidance only and is not tested.

2: This is the limit to which VDD can be lowered in Sleep mode without losing RAM data.


3: The supply current is mainly a function of the operating voltage and frequency. Other factors such as bus loading, oscillator type, bus rate, internal code execution pattern and temperature also have an impact on the current consumption.

4: The test conditions for all IDD measurements in Active Operation mode are: OSC1 = external square wave, from rail-to-rail; all I/O pins tri-stated, pulled to Vss, T0CKI = VDD, MCLR = VDD; WDT enabled/disabled as specified.

5: For standby current measurements, the conditions are the same as IDD, except that the device is in Sleep mode. If a module current is listed, the current is for that specific module enabled and the device in Sleep.

6: For EXTRC mode, does not include current through REXT. The current through the resistor can be estimated by the formula:

I = VDD/2REXT (mA) with REXT in $k\Omega$.

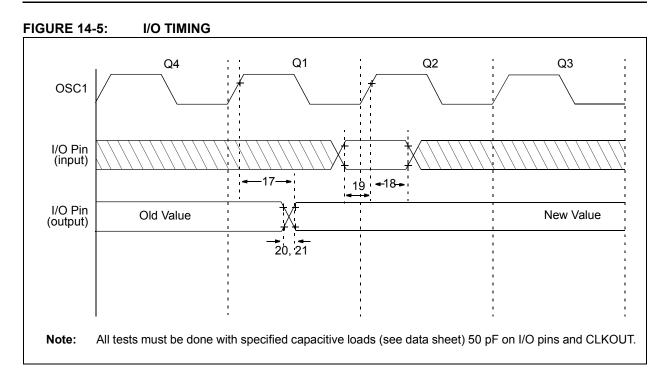

AC CH	ARACTE	ERISTICS	$\begin{array}{ll} \mbox{Standard Operating Conditions (unless otherwise specified)} \\ \mbox{Operating Temperature} & -40^\circ C \leq TA \leq +85^\circ C \mbox{ (industrial)}, \\ & -40^\circ C \leq TA \leq +125^\circ C \mbox{ (extended)} \end{array}$							
			Operating Voltage VDD range is described in Section 14.1 "DC Characteristics: PIC16F526 (Industrial)"							
Param No.	Sym.	Characteristic	Conditions							
1A	Fosc	External CLKIN Frequency ⁽²⁾	DC	—	4	MHz	XT Oscillator mode			
			DC	—	20	MHz	HS/EC Oscillator mode			
			DC	—	200	kHz	LP Oscillator mode			
		Oscillator Frequency ⁽²⁾	-	—	4	MHz	EXTRC Oscillator mode			
			0.1	—	4	MHz	XT Oscillator mode			
			4	—	20	MHz	HS/EC Oscillator mode			
			—	_	200	kHz	LP Oscillator mode			
1	Tosc	External CLKIN Period ⁽²⁾	250	—	—	ns	XT Oscillator mode			
			50	—	—	ns	HS/EC Oscillator mode			
			5	_	_	μS	LP Oscillator mode			
		Oscillator Period ⁽²⁾	250	—	—	ns	EXTRC Oscillator mode			
			250	—	10,000	ns	XT Oscillator mode			
			50	—	250	ns	HS/EC Oscillator mode			
			5	—	—	μS	LP Oscillator mode			
2	Тсү	Instruction Cycle Time	200	4/Fosc	—	ns				
3	TosL,	Clock in (OSC1) Low or High	50*	_	_	ns	XT Oscillator			
	TosH	Time	2*	—	—	μS	LP Oscillator			
			10*	—	—	ns	HS/EC Oscillator			
4	TosR,	Clock in (OSC1) Rise or Fall	—	_	25*	ns	XT Oscillator			
	TosF	Time	—	—	50*	ns	LP Oscillator			
			—	_	15*	ns	HS/EC Oscillator			

TABLE 14-6: EXTERNAL CLOCK TIMING REQUIREMENTS

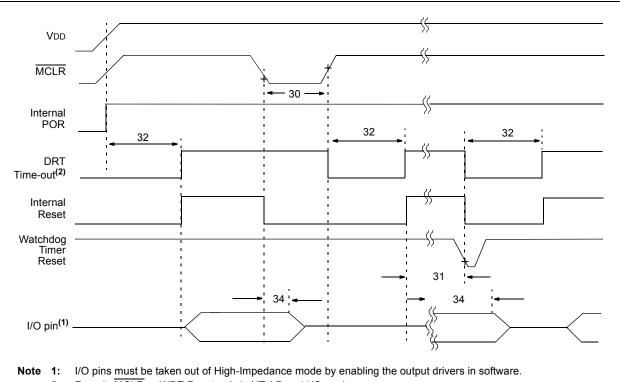
* These parameters are characterized but not tested.

Note 1: Data in the Typical ("Typ") column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

2: All specified values are based on characterization data for that particular oscillator type under standard operating conditions with the device executing code. Exceeding these specified limits may result in an unstable oscillator operation and/or higher than expected current consumption. When an external clock input is used, the "max" cycle time limit is "DC" (no clock) for all devices.

TABLE 14-8: TIMING REQUIREMENTS

AC Operating Temperature -40°C ≤ TA ≤ +85°C (industrial) -40°C ≤ TA ≤ +125°C (extended) Operating Voltage VDD range is described in Section 14.1 "DC Characteristics: PIC" (Industrial)"						16F526	
Param No.	Sym.	Characteristic Min. Typ. ⁽¹⁾ Max.					
17	TosH2ıoV	OSC1↑ (Q1 cycle) to Port Out Valid ^{(2), (3)}	_	_	100*	ns	
18	TosH2iol	OSC1 [↑] (Q2 cycle) to Port Input Invalid (I/O in hold time) ⁽²⁾	50	—	_	ns	
19	TIOV20sH	Port Input Valid to OSC1 [↑] (I/O in setup time)	20		_	ns	
20	20 TIOR Port Output Rise Time ⁽³⁾		_	10	50**	ns	
21 TIOF Port Output Fall Time ⁽³⁾			10	58**	ns		


* These parameters are characterized but not tested.

** These parameters are design targets and are not tested.

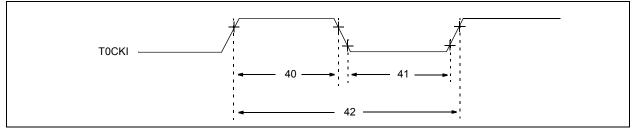
Note 1: Data in the Typical ("Typ") column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

2: Measurements are taken in EXTRC mode.

3: See Figure 14-3 for loading conditions.

FIGURE 14-6: **RESET, WATCHDOG TIMER AND DEVICE RESET TIMER TIMING**

Runs in MCLR or WDT Reset only in XT, LP and HS modes. 2:

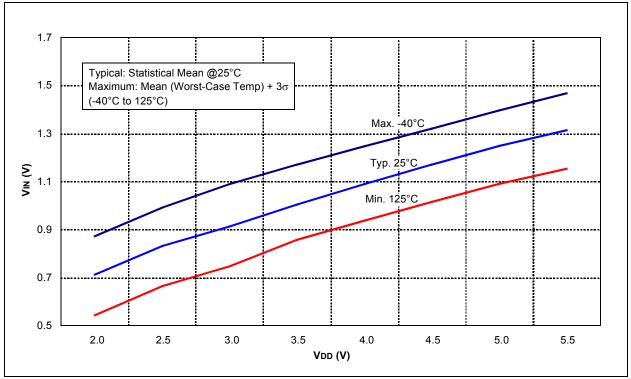

TABLE 14-9: RESET, WATCHDOG TIMER AND DEVICE RESET TIMER

			Standard Operating Conditions (unless otherwise specifiedOperating Temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ (industrial) $-40^{\circ}C \le TA \le +125^{\circ}C$ (extended)Operating Voltage VDD range is described inSection 14.1 "DC Characteristics: PIC16F526 (Industrial)"						
Sym.	Characteristic	Min.	Typ. ⁽¹⁾	Max.	Units	Conditions			
TMCL	MCLR Pulse Width (low)	2000*	_	_	ns	VDD = 5.0V			
Twdt	Watchdog Timer Time-out Period (no prescaler)	9* 9*	18* 18*	30* 40*	ms ms	VDD = 5.0V (Industrial) VDD = 5.0V (Extended)			
TDRT	Device Reset Timer Period								
	Standard	9* 9*	18* 18*	30* 40*	ms ms	VDD = 5.0V (Industrial) VDD = 5.0V (Extended)			
	Short	0.5* 0.5*	1.125* 1.125*	2* 2.5*	ms ms	VDD = 5.0V (Industrial) VDD = 5.0V (Extended)			
Tioz	I/O High-impedance from MCLR low	—	—	2000*	ns				
	Sym. TMCL TWDT TDRT	Sym.CharacteristicTMCLMCLR Pulse Width (low)TWDTWatchdog Timer Time-out Period (no prescaler)TDRTDevice Reset Timer PeriodStandardStandardShortI/O High-impedance from MCLR	ARACTERISTICS Operating Sym. Characteristic Operating TMCL MCLR Pulse Width (low) 2000* TWDT Watchdog Timer Time-out Period (no prescaler) 9* TDRT Device Reset Timer Period 9* Standard 9* 9* 9* Short 0.5* TIOZ I/O High-impedance from MCLR —	ARACTERISTICS Operating Temp Sym. Characteristic Min. Typ.(1) TMCL MCLR Pulse Width (low) 2000* — TWDT Watchdog Timer Time-out Period (no prescaler) 9* 18* TDRT Device Reset Timer Period 9* 18* Standard 9* 18* Short 0.5* 1.125* TIOZ I/O High-impedance from MCLR — —	ARACTERISTICSOperating Temperature Operating Voltage VDD in Section 14.1 "DC CharaSym.CharacteristicMin.Typ.(1)Max.TMCLMCLR Pulse Width (low)2000*TWDTWatchdog Timer Time-out Period (no prescaler)9*18*30* 40*TDRTDevice Reset Timer Period9*18*40*Standard9*18*40*Short0.5*1.125*2* 2.5*TIOZI/O High-impedance from MCLR2000*	Operating Temperature $-40^{\circ}C \le -40^{\circ}C \le -40^{\circ}C \le 0$ Operating Voltage VDD range is of Section 14.1 "UC CharacteristicSym.CharacteristicMin.Typ.(1)Max.UnitsTMCLMCLR Pulse Width (low) 2000° ——nsTWDTWatchdog Timer Time-out Period (no prescaler)9*18*30*msTDRTDevice Reset Timer Period9*18*40*msTDRTStandard9*18*40*msShort 0.5^{*} 1.125^{*} 2*msTIOZI/O High-impedance from MCLR——2000*ns			

These parameters are characterized but not tested.

Note 1: Data in the Typical ("Typ") column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

FIGURE 14-7: TIMER0 CLOCK TIMINGS


TABLE 14-10: TIMER0 CLOCK REQUIREMENT

AC CHARACTERISTICS			$\label{eq:standard operating Conditions (unless otherwise specified)} Operating Temperature -40°C \leq Ta \leq +85°C (industrial) \\ -40°C \leq Ta \leq +125°C (extended) \\ Operating Voltage VDD range is described in \\ Section 14.1 "DC Characteristics: PIC16F526 (Industrial)"$					
Param No.	Sym.	Characteristic		Min.	Тур. ⁽¹⁾	Max.	Units	Conditions
40	Tt0H	T0CKI High Pulse Width	No Prescaler	0.5 Tcy + 20*	_	_	ns	
			With Prescaler	10*	_	_	ns	
41	TtOL	T0CKI Low Pulse Width	No Prescaler	0.5 Tcy + 20*	_	—	ns	
			With Prescaler	10*	—		ns	
42	Tt0P	T0CKI Period		20 or Tcy + 40* N			ns	Whichever is greater. N = Prescale Value (1, 2, 4,, 256)

* These parameters are characterized but not tested.

Note 1: Data in the Typical ("Typ") column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

