
E·XFL

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	20MHz
Connectivity	-
Peripherals	POR, WDT
Number of I/O	11
Program Memory Size	1.5KB (1K x 12)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	67 x 8
Voltage - Supply (Vcc/Vdd)	2V ~ 5.5V
Data Converters	A/D 3x8b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	16-VFQFN Exposed Pad
Supplier Device Package	16-QFN (3x3)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16f526t-i-mg

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

14-Pin, 8-Bit Flash Microcontroller

High-Performance RISC CPU:

- Only 33 Single-Word Instructions
- All Single-Cycle Instructions except for Program Branches which are Two-Cycle
- Two-Level Deep Hardware Stack
- Direct, Indirect and Relative Addressing modes for Data and Instructions
- · Operating Speed:
 - DC 20 MHz crystal oscillator
 - DC 200 ns instruction cycle
- On-chip Flash Program Memory:
- 1024 x 12
- · General Purpose Registers (SRAM):
- 67 x 8
- · Flash Data Memory:
 - 64 x 8

Special Microcontroller Features:

- 8 MHz Precision Internal Oscillator:
 - Factory calibrated to ±1%
- In-Circuit Serial Programming[™] (ICSP[™])
- In-Circuit Debugging (ICD) Support
- Power-On Reset (POR)
- Device Reset Timer (DRT)
- Watchdog Timer (WDT) with Dedicated On-Chip RC Oscillator for Reliable Operation
- Programmable Code Protection
- Multiplexed MCLR Input Pin
- Internal Weak Pull-ups on I/O Pins
- · Power-Saving Sleep mode
- Wake-Up from Sleep on Pin Change
- Selectable Oscillator Options:
 - INTRC: 4 MHz or 8 MHz precision Internal RC oscillator
 - EXTRC: External low-cost RC oscillator
 - XT: Standard crystal/resonator
 - HS: High-speed crystal/resonator
 - LP: Power-saving, low-frequency crystal
 - EC: High-speed external clock input

Low-Power Features/CMOS Technology:

- Standby current:
- 100 nA @ 2.0V, typical
- Operating current:
 - 11 μA @ 32 kHz, 2.0V, typical
 - 175 μA @ 4 MHz, 2.0V, typical
- Watchdog Timer current:
 - 1 μA @ 2.0V, typical
 - 7 μA @ 5.0V, typical
- High Endurance Program and Flash Data Memory cells:
 - 100,000 write Program Memory endurance
 - 1,000,000 write Flash Data Memory endurance
 - Program and Flash Data retention: >40 years
- Fully Static Design
- Wide Operating Voltage Range: 2.0V to 5.5V:
 - Wide temperature range
 - Industrial: -40°C to +85°C
 - Extended: -40°C to +125°C

Peripheral Features:

- 12 I/O Pins:
 - 11 I/O pins with individual direction control
 - 1 input-only pin
 - High current sink/source for direct LED drive
 - Wake-up on change
 - Weak pull-ups
- 8-bit Real-time Clock/Counter (TMR0) with 8-bit Programmable Prescaler
- Two Analog Comparators:
 - Comparator inputs and output accessible externally
 - One comparator with 0.6V fixed on-chip absolute voltage reference (VREF)
 - One comparator with programmable on-chip voltage reference (VREF)
- Analog-to-Digital (A/D) Converter:
 - 8-bit resolution
 - 3-channel external programmable inputs
 - 1-channel internal input to internal absolute 0.6 voltage reference

Dovico	Program Memory	Data Me	mory	I/O	Comparators	Timers 8-bit	8-bit A/D
Device	Device Flash (words) SRAM (bytes)		Flash (bytes)	1/0	Comparators		Channels
PIC16F526	526 1024 67		64	12	2	1	3

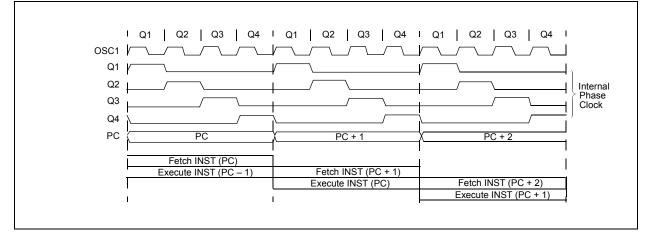
NOTES:

Name	Function	Input Type	Output Type	Description
RB0//C1IN+/AN0/ ICSPDAT	RB0	TTL	CMOS	Bidirectional I/O pin. Can be software programmed for internal weak pull-up and wake-up from Sleep on pin change.
	C1IN+	AN		Comparator 1 input.
	AN0	AN		ADC channel input.
	ICSPDAT	ST	CMOS	ICSP™ mode Schmitt Trigger.
RB1/C1IN-/AN1/ ICSPCLK	RB1	TTL	CMOS	Bidirectional I/O pin. Can be software programmed for internal weak pull-up and wake-up from Sleep on pin change.
	C1IN-	AN		Comparator 1 input.
	AN1	AN		ADC channel input.
	ICSPCLK	ST	CMOS	ICSP mode Schmitt Trigger.
RB2/C1OUT/AN2	RB2	TTL	CMOS	Bidirectional I/O pin.
	C10UT	_	CMOS	Comparator 1 output.
	AN2	AN	—	ADC channel input.
RB3/MCLR/VPP	RB3	TTL	—	Input pin. Can be software programmed for internal weak pull-up and wake-up from Sleep on pin change.
	MCLR	ST	_	Master Clear (Reset). When configured as MCLR, this pin is an active-low Reset to the device. Voltage on MCLR/VPP must not exceed VDD during normal device operation or the device will enter Programming mode. Weak pull-up always on if configured as MCLR.
	VPP	HV	_	Programming voltage input.
RB4/OSC2/CLKOUT	RB4	TTL	CMOS	Bidirectional I/O pin. Can be software programmed for internal weak pull-up and wake-up from Sleep on pin change.
	OSC2	—	XTAL	Oscillator crystal output. Connections to crystal or resonator in Crystal Oscillator mode (XT, HS and LP modes only, PORTB in other modes).
	CLKOUT		CMOS	EXTRC/INTRC CLKOUT pin (Fosc/4).
RB5/OSC1/CLKIN	RB5	TTL	CMOS	Bidirectional I/O pin.
	OSC1	XTAL		Oscillator crystal input.
	CLKIN	ST		External clock source input.
RC0/C2IN+	RC0	TTL	CMOS	Bidirectional I/O port.
	C2IN+	AN		Comparator 2 input.
RC1/C2IN-	RC1	TTL	CMOS	Bidirectional I/O port.
	C2IN-	AN	—	Comparator 2 input.
RC2/CVREF	RC2	TTL	CMOS	Bidirectional I/O port.
	CVREF		AN	Programmable Voltage Reference output.
RC3	RC3	TTL	CMOS	Bidirectional I/O port.
RC4/C2OUT	RC4	TTL	CMOS	Bidirectional I/O port.
	C2OUT		CMOS	Comparator 2 output.
RC5/T0CKI	RC5	TTL	CMOS	Bidirectional I/O port.
	TOCKI	ST		Timer0 Schmitt Trigger input pin.
Vdd	Vdd		Р	Positive supply for logic and I/O pins.
Vss	Vss		Р	Ground reference for logic and I/O pins.

TABLE 3-2: PIC16F526 PINOUT DESCRIPTION

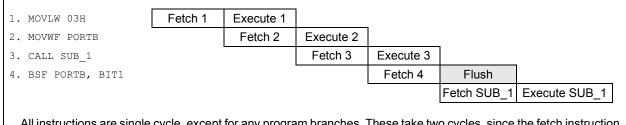
Legend: I = Input, O = Output, I/O = Input/Output, P = Power, — = Not used, TTL = TTL input, ST = Schmitt Trigger input, HV = High Voltage

3.1 Clocking Scheme/Instruction Cycle


The clock input (OSC1/CLKIN pin) is internally divided by four to generate four non-overlapping quadrature clocks, namely Q1, Q2, Q3 and Q4. Internally, the PC is incremented every Q1 and the instruction is fetched from program memory and latched into the instruction register in Q4. It is decoded and executed during the following Q1 through Q4. The clocks and instruction execution flow is shown in Figure 3-2 and Example 3-1.

3.2 Instruction Flow/Pipelining

An instruction cycle consists of four Q cycles (Q1, Q2, Q3 and Q4). The instruction fetch and execute are pipelined such that fetch takes one instruction cycle, while decode and execute take another instruction cycle. However, due to the pipelining, each instruction effectively executes in one cycle. If an instruction causes the PC to change (e.g., GOTO), then two cycles are required to complete the instruction (Example 3-1).


A fetch cycle begins with the PC incrementing in Q1.

In the execution cycle, the fetched instruction is latched into the Instruction Register (IR) in cycle Q1. This instruction is then decoded and executed during the Q2, Q3 and Q4 cycles. Data memory is read during Q2 (operand read) and written during Q4 (destination write).

FIGURE 3-2: CLOCK/INSTRUCTION CYCLE

EXAMPLE 3-1: INSTRUCTION PIPELINE FLOW

All instructions are single cycle, except for any program branches. These take two cycles, since the fetch instruction is "flushed" from the pipeline, while the new instruction is being fetched and then executed.

5.2.2 WRITING TO FLASH DATA MEMORY

Once a cell is erased, new data can be written. Program execution is suspended during the write cycle. The following sequence must be performed for a single byte write.

- 1. Load EEADR with the address.
- 2. Load EEDATA with the data to write.
- 3. Set the WREN bit to enable write access to the array.
- 4. Set the WR bit to initiate the erase cycle.

If the WR bit is not set in the instruction cycle after the WREN bit is set, the WREN bit will be cleared in hardware.

Sample code that follows this procedure is included in Example 3.

EXAMPLE 3: WRITING A FLASH DATA MEMORY ROW

BANKSEL	EEADR		
MOVLW	EE_ADR_WRITE	;	LOAD ADDRESS
MOVWF	EEADR	;	
MOVLW	EE_DATA_TO_WRITE	;	LOAD DATA
MOVWF	EEDATA	;	INTO EEDATA REGISTER
BSF	EECON, WREN	;	ENABLE WRITES
BSF	EECON,WR	;	INITITATE ERASE

- Note 1: Only a series of BSF commands will work to enable the memory write sequence documented in Example 2. No other sequence of commands will work, no exceptions.
 - 2: For reads, erases and writes to the Flash data memory, there is no need to insert a NOP into the user code as is done on mid-range devices. The instruction immediately following the "BSF EECON, WR/RD" will be fetched and executed properly.

5.3 Write Verify

Depending on the application, good programming practice may dictate that data written to the Flash data memory be verified. Example 4 is an example of a write verify.

EXAMPLE 4: WRITE VERIFY OF FLASH DATA MEMORY

MOVF	EEDATA, W	;EEDATA has not changed
		;from previous write
BSF	EECON, RD	;Read the value written
XORWF	EEDATA, W	;
BTFSS	STATUS, Z	;Is data the same
GOTO	WRITE_ERR	;No, handle error
		;Yes, continue

REGISTER 5-1: EEDATA: FLASH DATA REGISTER

| R/W-x |
|---------|---------|---------|---------|---------|---------|---------|---------|
| EEDATA7 | EEDATA6 | EEDATA5 | EEDATA4 | EEDATA3 | EEDATA2 | EEDATA1 | EEDATA0 |
| bit 7 | | | | | | | bit 0 |

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	d as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 7-0 EEDATA<7:0>: 8-bits of data to be read from/written to data Flash

REGISTER 5-2: EEADR: FLASH ADDRESS REGISTER

U-0	U-0	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x
—	—	EEADR5	EEADR4	EEADR3	EEADR2	EEADR1	EEADR0
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 7-6 Unimplemented: Read as '0'.

bit 5-0 EEADR<5:0>: 6-bits of data to be read from/written to data Flash

U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
_	_	—	FREE	WRERR	WREN	WR	RD
bit 7							bit (
Legend:							
S = Bit can o	onlv be set						
R = Readab	•	W = Writable k	oit	U = Unimpler	nented bit, read	as '0'	
-n = Value a	at POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	nown
bit 7-5	Unimpleme	nted: Read as '0)'.				
		Data Maman / D					
dit 4	FREE: Flash	Data Memory F	kow Erase Er	iable Bit			
bit 4	1 = Program	m memory row b	eing pointed	to by EEADR w			cycle. No writ
DIT 4	1 = Program will be	m memory row b performed. This	eing pointed	to by EEADR w			cycle. No writ
	1 = Program will be p 0 = Perform	m memory row b performed. This n write only	eing pointed bit is cleared	to by EEADR w			cycle. No writ
	1 = Program will be p 0 = Perforn WRERR: Wr	m memory row b performed. This n write only ite Error Flag bit	eing pointed bit is cleared	to by EEADR w at the complet	ion of the erase		cycle. No writ
	1 = Program will be 0 = Perform WRERR: Wr 1 = A write	m memory row b performed. This n write only ite Error Flag bit operation termir	eing pointed bit is cleared nated premati	to by EEADR w at the complet urely (by device	ion of the erase		cycle. No writ
bit 3	 Program will be p Perform WRERR: Wr A write Write o 	m memory row b performed. This n write only ite Error Flag bit operation termin peration comple	eing pointed bit is cleared nated premati	to by EEADR w at the complet urely (by device	ion of the erase		cycle. No writ
bit 3	 Program will be p Perform WRERR: Wr A write Write o WREN: Write 	m memory row b performed. This n write only ite Error Flag bit operation termin peration comple e Enable bit	eing pointed bit is cleared nated premate ted successfu	to by EEADR w at the complet urely (by device ully	ion of the erase		cycle. No writ
bit 3	 Program will be point with a second with the point will be point will be point with the point will be point wi	m memory row b performed. This n write only ite Error Flag bit operation termin peration comple e Enable bit write cycle to Fla	eing pointed bit is cleared nated prematu ted successfu	to by EEADR w at the complet urely (by device ully nory	ion of the erase		cycle. No writ
bit 3	 Program will be point with a second with the point will be point will be point with the point will be point wi	m memory row b performed. This n write only ite Error Flag bit operation termin peration comple e Enable bit	eing pointed bit is cleared nated prematu ted successfu	to by EEADR w at the complet urely (by device ully nory	ion of the erase		cycle. No writ
bit 3 bit 2	 Program will be point with a second with the point will be point will be point with the point will be point wi	m memory row b performed. This n write only ite Error Flag bit operation termin peration comple e Enable bit write cycle to Fla write cycle to Fla	eing pointed bit is cleared nated prematu ted successfu	to by EEADR w at the complet urely (by device ully nory	ion of the erase		cycle. No writ
bit 3 bit 2	 Programwill be point Perform WRERR: Write A write Write of WREN: Write Allows Inhibits WR: Write C 	m memory row b performed. This n write only ite Error Flag bit operation termin peration comple e Enable bit write cycle to Fla write cycle to Fla	eing pointed bit is cleared nated premati ted successfi ash data men ash data mer	to by EEADR w at the complet urely (by device ully nory	ion of the erase		cycle. No writ
bit 3 bit 2	 Programwill be point Perform WRERR: Write A write Write of WREN: Write Allows Inhibits WR: Write Content Initiate 	m memory row b performed. This n write only ite Error Flag bit operation termin peration comple e Enable bit write cycle to Fla write cycle to Fla ontrol bit	eing pointed bit is cleared nated premati ted successfi ash data men ash data mer cycle	to by EEADR w at the complet urely (by device ully nory	ion of the erase		cycle. No writ
bit 3 bit 2 bit 1	 Programwill be point Perform WRERR: Write A write Write of WREN: Write Allows Inhibits WR: Write Content Initiate 	m memory row b performed. This n write only ite Error Flag bit operation termin peration complete Enable bit write cycle to Fla write cycle to Fla ontrol bit a erase or write trase cycle is cor	eing pointed bit is cleared nated premati ted successfi ash data men ash data mer cycle	to by EEADR w at the complet urely (by device ully nory	ion of the erase		cycle. No writ
bit 3 bit 2 bit 1 bit 0	 Programwill be point Perform Perform WRERR: Write Write o Write o WREN: Write Allows Inhibits WR: Write C Initiate Write/E RD: Read Communication 	m memory row b performed. This n write only ite Error Flag bit operation termin peration complete Enable bit write cycle to Fla write cycle to Fla ontrol bit a erase or write trase cycle is cor	eing pointed bit is cleared nated prematu ted successfu ash data men ash data men cycle mplete	to by EEADR w at the complet urely (by device ully nory mory	ion of the erase		cycle. No writ

EECON ELASH CONTROL DECISTED DECISTED 5.3.

Code Protection Code protection does not prevent the CPU from

5.4

performing read or write operations on the Flash data memory. Refer to the code protection chapter for more information.

6.4 I/O Interfacing

The equivalent circuit for an I/O port pin is shown in Figure 6-1. All port pins, except RB3 which is inputonly, may be used for both input and output operations. For input operations, these ports are non-latching. Any input must be present until read by an input instruction (e.g., MOVF PORTB, W). The outputs are latched and remain unchanged until the output latch is rewritten. To use a port pin as output, the corresponding direction control bit in TRIS must be cleared (= 0). For use as an input, the corresponding TRIS bit must be set. Any I/O pin (except RB3) can be programmed individually as input or output.

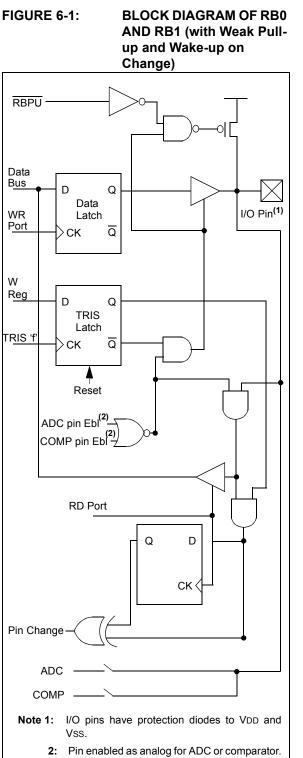


TABLE 6-2: SUMMARY OF PORT REGISTERS

Addr	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on Power-On Reset	Value on All Other Resets
N/A	TRIS			I/O Cont	rol Regis	ster (PO	RTB, P	ORTC)		11 1111	11 1111
N/A	OPTION	RBWU	RBPU	TOCS	TOSE	PSA	PS2	PS1	PS0	1111 1111	1111 1111
03h	STATUS	RBWUF	CWUF	PA0	TO	PD	Z	DC	С	0001 1xxx	qq0q quuu (1)
06h	PORTB	_	_	RB5	RB4	RB3	RB2	RB1	RB0	xx xxxx	uu uuuu
07h	PORTC		_	RC5	RC4	RC3	RC2	RC1	RC0	xx xxxx	uu uuuu

Legend: Shaded cells are not used by PORT registers, read as '0'. – = unimplemented, read as '0', x = unknown, u = unchanged,

q = depends on condition.

Note 1: If Reset was due to wake-up on pin change, then bit 7 = 1. All other Resets will cause bit 7 = 0.

TABLE 6-3: I/O PINS ORDER OF PRECEDENCE

Priority	RB0	RB1	RB2	RB3	RC0	RC1	RC2	RC4	RC5
1	AN0	AN1	AN2	RB3/MCLR	C2IN+	C2IN-	CVREF	C2OUT	T0CKI
2	C1IN+	C1IN-	C10UT		TRISC	TRISC	TRISC	TRISC	TRISC
3	TRISB	TRISB	TRISB		_				

6.5 I/O Programming Considerations

6.5.1 BIDIRECTIONAL I/O PORTS

Some instructions operate internally as read followed by write operations. The BCF and BSF instructions, for example, read the entire port into the CPU, execute the bit operation and rewrite the result. Caution must be used when these instructions are applied to a port where one or more pins are used as input/outputs. For example, a BSF operation on bit 5 of PORTB will cause all eight bits of PORTB to be read into the CPU, bit 5 to be set and the PORTB value to be written to the output latches. If another bit of PORTB is used as a bidirectional I/O pin (say bit 0) and it is defined as an input at this time, the input signal present on the pin itself would be read into the CPU and rewritten to the data latch of this particular pin, overwriting the previous content. As long as the pin stays in the Input mode, no problem occurs. However, if bit 0 is switched into Output mode later on, the content of the data latch may now be unknown.

Example 6-1 shows the effect of two sequential Read-Modify-Write instructions (e.g., BCF, BSF, etc.) on an I/O port.

A pin actively outputting a high or a low should not be driven from external devices at the same time in order to change the level on this pin ("wired OR", "wired AND"). The resulting high output currents may damage the chip.

EXAMPLE 6-1: READ-MODIFY-WRITE INSTRUCTIONS ON AN I/O PORT(e.g. DSTEMP)

;Initial PORTB Se ;PORTB<5:3> Input ;PORTB<2:0> Output	ts	
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;	PORTB latch PORTB pins	
,	;01 -ppp11 pppp ;10 -ppp11 pppp	
TRIS PORTB	;10 -ppp11 pppp	
be '00	may have expected the pin values to pppp'. The 2nd BCF caused RB5 to as the pin value (High).	

6.5.2 SUCCESSIVE OPERATIONS ON I/O PORTS

The actual write to an I/O port happens at the end of an instruction cycle, whereas for reading, the data must be valid at the beginning of the instruction cycle (Figure 6-11). Therefore, care must be exercised if a write followed by a read operation is carried out on the same I/O port. The sequence of instructions should allow the pin voltage to stabilize (load dependent) before the next instruction causes that file to be read into the CPU. Otherwise, the previous state of that pin may be read into the CPU rather than the new state. When in doubt, it is better to separate these instructions with a NOP or another instruction not accessing this I/O port.

	PC	X PC + 1	(PC + 2	PC + 3	This example shows a write to POI
Struction Fetched	MOVWF PORTB	MOVF PORTB, W	NOP	NOP	followed by a read from PORTB. Data setup time = (0.25 Tcy – TPD) where: Tcy = instruction cycle.
R8<5:0>		<u> </u>	(<u>;</u> ;		TPD = propagation delay
		Port pin written here	Port pin sampled here		Therefore, at higher clock frequencies, a write followed by a read may be problema
nstruction Executed		MOVWF PORTB (Write to PORTB)	MOVF PORTB,W (Read PORTB)	NOP	
1		1 I	1		

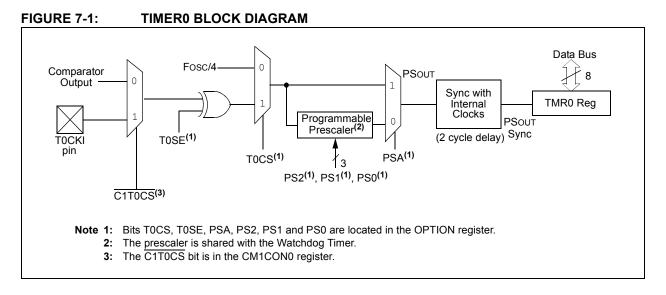
FIGURE 6-11: SUCCESSIVE I/O OPERATION

7.0 TIMER0 MODULE AND TMR0 REGISTER

The Timer0 module has the following features:

- 8-bit timer/counter register, TMR0
- Readable and writable
- 8-bit software programmable prescaler
- · Internal or external clock select:
- Edge select for external clock

Figure 7-1 is a simplified block diagram of the Timer0 module.


Timer mode is selected by clearing the T0CS bit of the OPTION register. In Timer mode, the Timer0 module will increment every instruction cycle (without prescaler). If TMR0 register is written, the increment is inhibited for the following two cycles (Figure 7-2 and Figure 7-3). The user can work around this by writing an adjusted value to the TMR0 register.

There are two types of Counter mode. The first Counter mode uses the T0CKI pin to increment Timer0. It is selected by setting the T0CS bit of the OPTION register, setting the <u>C1T0CS</u> bit of the CM1CON0 register and setting the <u>C1OUTEN</u> bit of the CM1CON0 register. In this mode, Timer0 will increment either on every rising or falling edge of pin T0CKI. The T0SE bit of the OPTION register determines the source edge. Clearing the T0SE bit selects the rising edge. Restrictions on the external clock input are discussed in detail in **Section 7.1 "Using Timer0 with an External Clock"**.

The second Counter mode uses the output of the comparator to increment Timer0. It can be entered in two different ways. The first way is selected by setting the T0CS bit of the OPTION register, and clearing the C1T0CS bit of the CM1CON0 register (C10UTEN [CM1CON0<6>] does not affect this mode of operation). This enables an internal connection between the comparator and the Timer0.

The prescaler may be used by either the Timer0 module or the Watchdog Timer, but not both. The prescaler assignment is controlled in software by the control bit, PSA of the OPTION register. Clearing the PSA bit will assign the prescaler to Timer0. The prescaler is not readable or writable. When the prescaler is assigned to the Timer0 module, prescale values of 1:2, 1:4,..., 1:256 are selectable. **Section 7.2 "Prescaler"** details the operation of the prescaler.

A summary of registers associated with the Timer0 module is found in Table 7-1.

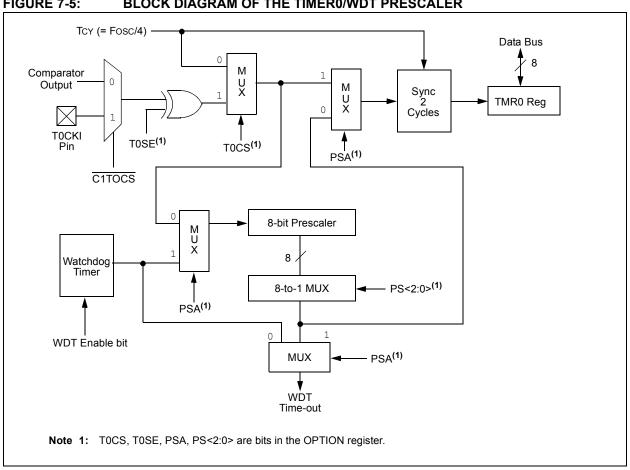
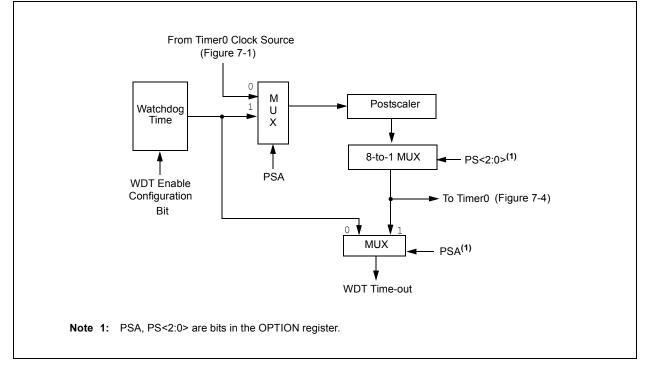


FIGURE 7-5: **BLOCK DIAGRAM OF THE TIMER0/WDT PRESCALER**


NOTES:

REGISTER 8-1: CONFIG: CONFIGURATION WORD REGISTER

CPDF	IOSCFS	MCLRE	CP	WDTE	FOSC2	FOSC1	FOSC0
bit 7	100010	MOLILE	01	WDIE	10002	10001	bit 0
bit 7	CPDF : Code 1 = Code prot 0 = Code prot		Flash Data N	lemory			
bit 6	1 = 8 MHz IN	rnal Oscillator I TOSC frequend TOSC frequend	cy c	lect bit			
bit 5	1 = RB3/MCL	ter Clear Enab R pin functions R pin functions	as MCLR	_R internally tio	ed to VDD		
bit 4	CP : Code Pro 1 = Code prot 0 = Code prot		ser Program N	lemory			
bit 3	WDTE: Watch 1 = WDT enal 0 = WDT disa		able bit				
bit 2-0	000 = LP osc 001 = XT osc 010 = HS osc 011 = EC osc 100 = INTRC 101 = INTRC 110 = EXTRC	with RB4 funct with CLKOUT with RB4 funct	is DRT is DRT is DRT I function on F ion on RB4/C function on R tion on RB4/C	SC2/CLKOUT B4/OSC2/CLK SSC2/CLKOU	KOUT and 1 ms and 1 ms DRT (OUT and 1 ms T and 1 ms DR KOUT and 1 ms	(1) DRT ⁽¹⁾ T ⁽¹⁾	
Note 1:	Refer to the "PIC: Configuration Wor		y Programmir	ng Specificatio	<i>n</i> ", DS41317 to	determine how	to access the

2: DRT length (18 ms or 1 ms) is a function of Clock mode selection. It is the responsibility of the application designer to ensure the use of either 18 ms (nominal) DRT or the 1 ms (nominal) DRT will result in acceptable operation. Refer to Section 14.1 "DC Characteristics: PIC16F526 (Industrial)" and Section 14.2 "DC Characteristics: PIC16F526 (Extended)" for VDD rise time and stability requirements for this mode of operation.

FIGURE 8-11: WATCHDOG TIMER BLOCK DIAGRAM

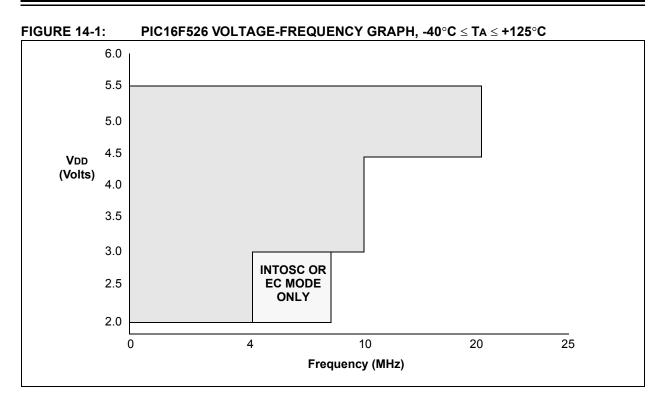
TABLE 8-6: SUMMARY OF REGISTERS ASSOCIATED WITH THE WATCHDOG TIMER

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on Power-On Reset	Value on All Other Resets
N/A	OPTION	RBWU	RBPU	TOCS	T0SE	PSA	PS2	PS1	PS0	1111 1111	1111 1111

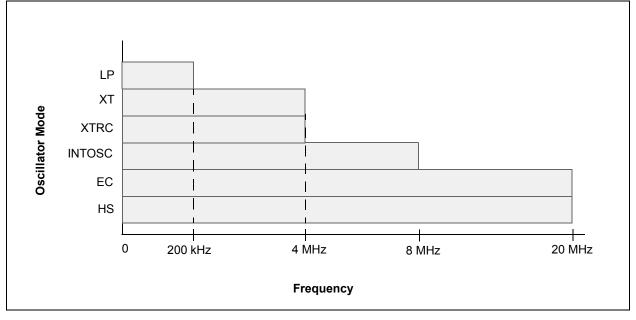
Legend: Shaded boxes = Not used by Watchdog Timer.

NOTES:

RETLW	Return with Literal in W	SLEEP
Syntax:	[<i>label</i>] RETLW k	Syntax:
Operands:	$0 \leq k \leq 255$	Operands:
Operation:	$k \rightarrow (W);$ TOS \rightarrow PC	Operation:
Status Affected:	None	
Description:	The W register is loaded with the eight-bit literal 'k'. The program counter is loaded from the top of the stack (the return address). This is a two-cycle instruction.	Status Affecte Description:


SLEEP	Enter SLEEP Mode
Syntax:	[label] SLEEP
Operands:	None
Operation:	$\begin{array}{l} 00h \rightarrow WDT; \\ 0 \rightarrow WDT \ prescaler; \\ 1 \rightarrow \overline{TO}; \\ 0 \rightarrow \overline{PD} \end{array}$
Status Affected:	TO, PD, RBWUF
Description:	Time-out Status bit (TO) is set. The Power-down Status bit (PD) is cleared. RBWUF is unaffected. The WDT and its prescaler are cleared.
	The processor is put into Sleep mode with the oscillator stopped. See Section 8.9 "Power-down Mode (Sleep)" on Sleep for more details.

RLF	Rotate Left f th	rough Carry
Syntax:	[label]	RLF f,d
Operands:	$\begin{array}{l} 0 \leq f \leq 31 \\ d \in [0,1] \end{array}$	
Operation:	See description	below
Status Affected:	С	
Description:	the Carry flag. I is placed in the '1', the result is register 'f'.	to the left through f 'd' is '0', the result W register. If 'd' is

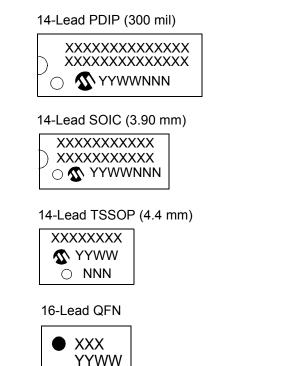

SUBWF	Subtract W from f
Syntax:	[<i>label</i>] SUBWF f,d
Operands:	$\begin{array}{l} 0\leq f\leq 31\\ d\in [0,1] \end{array}$
Operation:	$(f) - (W) \rightarrow (dest)$
Status Affected:	C, DC, Z
Description:	Subtract (2's complement method) the W register from register 'f'. If 'd' is '0', the result is stored in the W register. If 'd' is '1', the result is stored back in register 'f'.

RRF	Rotate Right f through Carry
Syntax:	[<i>label</i>] RRF f,d
Operands:	$\begin{array}{l} 0\leq f\leq 31\\ d\in [0,1] \end{array}$
Operation:	See description below
Status Affected:	С
Description:	The contents of register 'f' are rotated one bit to the right through the Carry flag. If 'd' is '0', the result is placed in the W register. If 'd' is '1', the result is placed back in register 'f'. C register 'f'

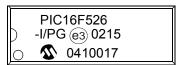
SWAPF	Swap Nibbles in f
Syntax:	[<i>label</i>] SWAPF f,d
Operands:	$\begin{array}{l} 0\leq f\leq 31\\ d\in [0,1] \end{array}$
Operation:	(f<3:0>) → (dest<7:4>); (f<7:4>) → (dest<3:0>)
Status Affected:	None
Description:	The upper and lower nibbles of register 'f' are exchanged. If 'd' is '0', the result is placed in W register. If 'd' is '1', the result is placed in register 'f'.

TABLE 14-7: CALIBRATED INTERNAL RC FREQUENCIES

			Operating	lemper /oltage	ature - - VDD ran	40°C ≤ 40°C ≤ ge is de	$TA \le +8$ $TA \le +1$ escribed	o therwise specified) 5°C (industrial), 25°C (extended) in 6F526 (Industrial)"
Param No.	Sym.	Characteristic	Freq. Tolerance	Min.	Typ.†	Max.	Units	Conditions
F10	Fosc	Internal Calibrated INTOSC Frequency ⁽¹⁾	± 1% ± 2%	7.92 7.84	8.00 8.00	8.08 8.16	MHz	$3.5V, +25^{\circ}C$ $2.5V \le VDD \le 5.5V$ $0^{\circ}C \le TA \le +85^{\circ}C$
			± 5%	7.60	8.00	8.40	MHz	$\begin{array}{l} 2.0V \leq V \text{DD} \leq 5.5V \\ -40^{\circ}\text{C} \leq \text{TA} \leq +85^{\circ}\text{C} \ (\text{Ind.}) \\ -40^{\circ}\text{C} \leq \text{TA} \leq +125^{\circ}\text{C} \ (\text{Ext.}) \end{array}$


* These parameters are characterized but not tested.

† Data in the Typical ("Typ") column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.


Note 1: To ensure these oscillator frequency tolerances, VDD and VSS must be capacitively decoupled as close to the device as possible. 0.1 uF and 0.01 uF values in parallel are recommended.

16.0 PACKAGING INFORMATION

16.1 Package Marking Information

Example

Example

•	
PIC16F526-E	
/SLG0125	
🐼 0431017	

Example

-
16F526-I
 0431
017

Example

TABLE 16-1: 16-LEAD 3X3 QFN (MG) TOP MARKING

NNN

Part Number	Marking
PIC16F526-I/MG	MG1
PIC16F526-E/MG	MG2

Legen	d: XXX Y YY WW NNN (e3) *	Customer-specific information Year code (last digit of calendar year) Year code (last 2 digits of calendar year) Week code (week of January 1 is week '01') Alphanumeric traceability code Pb-free JEDEC designator for Matte Tin (Sn) This package is Pb-free. The Pb-free JEDEC designator ((e3)) can be found on the outer packaging for this package.
Note:	In the event the full Microchip part number cannot be marked on one line, it will be carried over to the next line thus limiting the number of available characters for customer specific information.	

* Standard PIC[®] device marking consists of Microchip part number, year code, week code, and traceability code. For PIC device marking beyond this, certain price adders apply. Please check with your Microchip Sales Office. For QTP devices, any special marking adders are included in QTP price.

THE MICROCHIP WEB SITE

Microchip provides online support via our WWW site at www.microchip.com. This web site is used as a means to make files and information easily available to customers. Accessible by using your favorite Internet browser, the web site contains the following information:

- **Product Support** Data sheets and errata, application notes and sample programs, design resources, user's guides and hardware support documents, latest software releases and archived software
- General Technical Support Frequently Asked Questions (FAQ), technical support requests, online discussion groups, Microchip consultant program member listing
- Business of Microchip Product selector and ordering guides, latest Microchip press releases, listing of seminars and events, listings of Microchip sales offices, distributors and factory representatives

CUSTOMER CHANGE NOTIFICATION SERVICE

Microchip's customer notification service helps keep customers current on Microchip products. Subscribers will receive e-mail notification whenever there are changes, updates, revisions or errata related to a specified product family or development tool of interest.

To register, access the Microchip web site at www.microchip.com, click on Customer Change Notification and follow the registration instructions.

CUSTOMER SUPPORT

Users of Microchip products can receive assistance through several channels:

- Distributor or Representative
- Local Sales Office
- Field Application Engineer (FAE)
- Technical Support
- Development Systems Information Line

Customers should contact their distributor, representative or field application engineer (FAE) for support. Local sales offices are also available to help customers. A listing of sales offices and locations is included in the back of this document.

Technical support is available through the web site at: http://support.microchip.com