E·XFL

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	20MHz
Connectivity	-
Peripherals	POR, WDT
Number of I/O	11
Program Memory Size	1.5KB (1K x 12)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	67 x 8
Voltage - Supply (Vcc/Vdd)	2V ~ 5.5V
Data Converters	A/D 3x8b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	14-SOIC (0.154", 3.90mm Width)
Supplier Device Package	14-SOIC
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16f526t-i-sl

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Note the following details of the code protection feature on Microchip devices:

- Microchip products meet the specification contained in their particular Microchip Data Sheet.
- Microchip believes that its family of products is one of the most secure families of its kind on the market today, when used in the intended manner and under normal conditions.
- There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our knowledge, require using the Microchip products in a manner outside the operating specifications contained in Microchip's Data Sheets. Most likely, the person doing so is engaged in theft of intellectual property.
- Microchip is willing to work with the customer who is concerned about the integrity of their code.
- Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not mean that we are guaranteeing the product as "unbreakable."

Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our products. Attempts to break Microchip's code protection feature may be a violation of the Digital Millennium Copyright Act. If such acts allow unauthorized access to your software or other copyrighted work, you may have a right to sue for relief under that Act.

Information contained in this publication regarding device applications and the like is provided only for your convenience and may be superseded by updates. It is your responsibility to ensure that your application meets with your specifications. MICROCHIP MAKES NO REPRESENTATIONS OR WARRANTIES OF ANY KIND WHETHER EXPRESS OR IMPLIED, WRITTEN OR ORAL, STATUTORY OR OTHERWISE, RELATED TO THE INFORMATION, INCLUDING BUT NOT LIMITED TO ITS CONDITION. QUALITY, PERFORMANCE, MERCHANTABILITY OR FITNESS FOR PURPOSE. Microchip disclaims all liability arising from this information and its use. Use of Microchip devices in life support and/or safety applications is entirely at the buyer's risk, and the buyer agrees to defend, indemnify and hold harmless Microchip from any and all damages, claims, suits, or expenses resulting from such use. No licenses are conveyed, implicitly or otherwise, under any Microchip intellectual property rights.

QUALITY MANAGEMENT SYSTEM CERTIFIED BY DNV ISO/TS 16949:2002

Trademarks

The Microchip name and logo, the Microchip logo, dsPIC, KEELOQ, KEELOQ logo, MPLAB, PIC, PICmicro, PICSTART, PIC³² logo, rfPIC and UNI/O are registered trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

FilterLab, Hampshire, HI-TECH C, Linear Active Thermistor, MXDEV, MXLAB, SEEVAL and The Embedded Control Solutions Company are registered trademarks of Microchip Technology Incorporated in the U.S.A.

Analog-for-the-Digital Age, Application Maestro, CodeGuard, dsPICDEM, dsPICDEM.net, dsPICworks, dsSPEAK, ECAN, ECONOMONITOR, FanSense, HI-TIDE, In-Circuit Serial Programming, ICSP, Mindi, MiWi, MPASM, MPLAB Certified logo, MPLIB, MPLINK, mTouch, Octopus, Omniscient Code Generation, PICC, PICC-18, PICDEM, PICDEM.net, PICkit, PICtail, REAL ICE, rfLAB, Select Mode, Total Endurance, TSHARC, UniWinDriver, WiperLock and ZENA are trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

SQTP is a service mark of Microchip Technology Incorporated in the U.S.A.

All other trademarks mentioned herein are property of their respective companies.

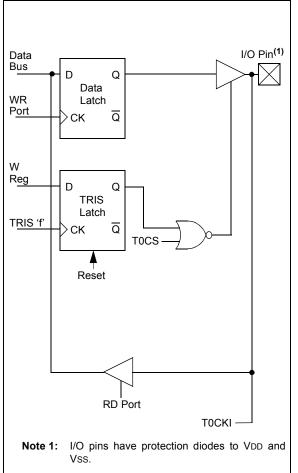
© 2010, Microchip Technology Incorporated, Printed in the U.S.A., All Rights Reserved.

ISBN: 978-1-60932-355-4

Microchip received ISO/TS-16949:2002 certification for its worldwide headquarters, design and wafer fabrication facilities in Chandler and Tempe, Arizona; Gresham, Oregon and design centers in California and India. The Company's quality system processes and procedures are for its PIC® MCUs and dsPIC® DSCs, KEELOQ® code hopping devices, Serial EEPROMs, microperipherals, nonvolatile memory and analog products. In addition, Microchip's quality system for the design and manufacture of development systems is ISO 9001:2000 certified.

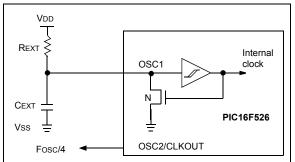
NOTES:

Addr	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on Power-on Reset	Page #
N/A	TRIS	_	—	I/O Control	Register (PC	ORTB, PORT	IC)			11 1111	27
N/A	OPTION	Contains co	ontrol bits to c	onfigure Tim	ner0 and Tim	er0/WDT pre	escaler			1111 1111	19
00h	INDF	Uses conte	nts of FSR to	Address Da	ata Memory (i	not a physica	al register)			XXXX XXXX	22
01h/41h	TMR0	Timer0 Mo	dule Register							XXXX XXXX	37
02h ⁽¹⁾	PCL	Low order	3 bits of PC							1111 1111	21
03h	STATUS	RBWUF	CWUF	PA0	TO	PD	Z	DC	С	0001 1xxx	18
04h	FSR	Indirect Da	Indirect Data Memory Address Pointer							100x xxxx	22
05h/45h	OSCCAL	CAL6	CAL5	CAL4	CAL3	CAL2	CAL1	CAL0	_	1111 111-	20
06h/46h	PORTB	—	—	RB5	RB4	RB3	RB2	RB1	RB0	xx xxxx	27
07h	PORTC		_	RC5	RC4	RC3	RC2	RC1	RC0	xx xxxx	28
08h	CM1CON0	C1OUT	C10UTEN	C1POL	C1T0CS	C10N	C1NREF	C1PREF	C1WU	q111 1111	63
09h	ADCON0	ANS1	ANS0	ADCS1	ADCS0	CHS1	CHS0	GO/DONE	ADON	1111 1100	61
0Ah	ADRES	ADC Conve	ADC Conversion Result						XXXX XXXX	62	
0Bh	CM2CON0	C2OUT	C2OUTEN	C2POL	C2PREF2	C2ON	C2NREF	C2PREF1	C2WU	q111 1111	64
0Ch	VRCON	VREN	VROE	VRR		VR3	VR2	VR1	VR0	001- 1111	69
21h/61h	EECON	—	—	_	FREE	WRERR	WREN	WR	RD	0 x000	23
25h/65h	EEDATA	SELF REA	D/WRITE DA	ΓA	•		•			XXXX XXXX	23
26h/66h	EEADR		—	SELF REA	D/WRITE AD	DRESS				xx xxxx	23


TABLE 4-1: SPECIAL FUNCTION REGISTER (SFR) SUMMARY

 Legend:
 x = unknown, u = unchanged, - = unimplemented, read as '0' (if applicable), q = value depends on condition. Shaded cells = unimplemented or unused

 Note 1:
 The upper byte of the Program Counter is not directly accessible. See Section 4.6 "Program Counter" for an explanation of how to


access these bits.

Also, see the Electrical Specifications section for variation of oscillator frequency due to VDD for given REXT/CEXT values, as well as frequency variation due to operating temperature for given R, C and VDD values.

FIGURE 8-5: EXTERNAL RC OSCILLATOR MODE

8.2.5 INTERNAL 4/8 MHz RC OSCILLATOR

The internal RC oscillator provides a fixed 4/8 MHz (nominal) system clock at VDD = 5V and $25^{\circ}C$, (see **Section 14.0** "**Electrical Characteristics**" for information on variation over voltage and temperature).

In addition, a calibration instruction is programmed into the last address of memory, which contains the calibration value for the internal RC oscillator. This location is always non-code protected, regardless of the codeprotect settings. This value is programmed as a MOVLW XX instruction where XX is the calibration value, and is placed at the Reset vector. This will load the W register with the calibration value upon Reset and the PC will then roll over to the users program at address 0x000. The user then has the option of writing the value to the OSCCAL Register (05h) or ignoring it.

OSCCAL, when written to with the calibration value, will "trim" the internal oscillator to remove process variation from the oscillator frequency.

Note: Erasing the device will also erase the preprogrammed internal calibration value for the internal oscillator. The calibration value must be read prior to erasing the part so it can be reprogrammed correctly later.

For the PIC16F526 device, only bits 7:1 of OSCCAL are used for calibration. See Register 4-3 for more information.

Note: The bit 0 of the OSCCAL register is unimplemented and should be written as '0' when modifying OSCCAL for compatibility with future devices.

8.9 Power-down Mode (Sleep)

A device may be powered down (Sleep) and later powered up (wake-up from Sleep).

8.9.1 SLEEP

The Power-Down mode is entered by executing a SLEEP instruction.

If enabled, the Watchdog Timer will be cleared but keeps running, the TO bit of the STATUS register is set, the PD bit of the STATUS register is cleared and the oscillator driver is turned off. The I/O ports maintain the status they had before the SLEEP instruction was executed (driving high, driving low or high-impedance).

Note: A Reset generated by a WDT time-out does not drive the MCLR pin low.

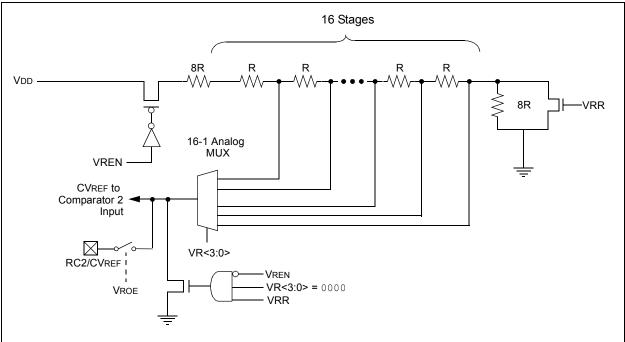
For lowest current consumption while powered down, the T0CKI input should be at VDD or VSS and the RB3/ MCLR/VPP pin must be at a logic high level if MCLR is enabled.

8.9.2 WAKE-UP FROM SLEEP

The device can wake-up from Sleep through one of the following events:

- 1. An external Reset input on RB3/MCLR/VPP pin, when configured as MCLR.
- 2. A Watchdog Timer Time-out Reset (if WDT was enabled).
- 3. A change on input pin RB0, RB1, RB3 or RB4 when wake-up on change is enabled.
- A change in one of the comparator output bits, C1OUT or C2OUT (if comparator wake-up is enabled).

These events cause a device Reset. The $\overline{\text{TO}}$, $\overline{\text{PD}}$ and CWUF/RBWUF bits can be used to determine the cause of device Reset. The $\overline{\text{TO}}$ bit is cleared if a WDT time-out occurred (and caused wake-up). The $\overline{\text{PD}}$ bit, which is set on power-up, is cleared when SLEEP is invoked. The CWUF bit indicates a change in a comparator output state while the device was in Sleep. The RBWUF bit indicates a change in state while in Sleep at pins RB0, RB1, RB3 or RB4 (since the last file or bit operation on RB port).


Note:	Caution: Right before entering Sleep,
	read the input pins. When in Sleep,
	wake-up occurs when the values at the
	pins change from the state they were in at
	the last reading. If a wake-up on change
	occurs and the pins are not read before
	re-entering Sleep, a wake-up will occur
	immediately even if no pins change while
	in Sleep mode.

The WDT is cleared when the device wakes from Sleep, regardless of the wake-up source.

Note: Caution: Right before entering Sleep, read the comparator Configuration register(s) CM1CON0 and CM2CON0. When in Sleep, wake-up occurs when the comparator output bit C1OUT and C2OUT change from the state they were in at the last reading. If a wake-up on comparator change occurs and the pins are not read before re-entering Sleep, a wake-up will occur immediately, even if no pins change while in Sleep mode.

NOTES:

TABLE 11-1: REGISTERS ASSOCIATED WITH COMPARATOR VOLTAGE REFERENCE

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR	Value on all other Resets
VRCON	VREN	VROE	VRR	—	VR3	VR2	VR1	VR0	001- 1111	uuu- uuuu
CM1CON0	C1OUT	C10UTEN	C1POL	C1T0CS	C10N	C1NREF	C1PREF	C1WU	q111 1111	quuu uuuu
CM2CON0	C2OUT	C2OUTEN	C2POL	C2PREF2	C2ON	C2NREF	C2PREF1	C2WU	q111 1111	quuu uuuu

Legend: x = unknown, u = unchanged, - = unimplemented, read as '0', q = value depends on condition.

12.0 INSTRUCTION SET SUMMARY

The PIC16 instruction set is highly orthogonal and is comprised of three basic categories.

- Byte-oriented operations
- Bit-oriented operations
- Literal and control operations

Each PIC16 instruction is a 12-bit word divided into an **opcode**, which specifies the instruction type, and one or more **operands** which further specify the operation of the instruction. The formats for each of the categories is presented in Figure 12-1, while the various opcode fields are summarized in Table 12-1.

For **byte-oriented** instructions, 'f' represents a file register designator and 'd' represents a destination designator. The file register designator specifies which file register is to be used by the instruction.

The destination designator specifies where the result of the operation is to be placed. If 'd' is '0', the result is placed in the W register. If 'd' is '1', the result is placed in the file register specified in the instruction.

For **bit-oriented** instructions, 'b' represents a bit field designator which selects the number of the bit affected by the operation, while 'f' represents the number of the file in which the bit is located.

For **literal and control** operations, 'k' represents an 8 or 9-bit constant or literal value.

TABLE 12-1: OPCODE FIELD DESCRIPTIONS

Field	Description
f	Register file address (0x00 to 0x7F)
W	Working register (accumulator)
b	Bit address within an 8-bit file register
k	Literal field, constant data or label
х	Don't care location (= 0 or 1) The assembler will generate code with x = 0 . It is the recommended form of use for compatibility with all Microchip software tools.
d	Destination select; d = 0 (store result in W) d = 1 (store result in file register 'f') Default is d = 1
label	Label name
TOS	Top-of-Stack
PC	Program Counter
WDT	Watchdog Timer counter
TO	Time-out bit
PD	Power-down bit
dest	Destination, either the W register or the specified register file location
[]	Options
()	Contents
Æ	Assigned to
< >	Register bit field
Œ	In the set of
italics	User defined term (font is courier)

All instructions are executed within a single instruction cycle, unless a conditional test is true or the program counter is changed as a result of an instruction. In this case, the execution takes two instruction cycles. One instruction cycle consists of four oscillator periods. Thus, for an oscillator frequency of 4 MHz, the normal instruction execution time is 1 μ s. If a conditional test is true or the program counter is changed as a result of an instruction, the instruction execution time is 2 μ s.

Figure 12-1 shows the three general formats that the instructions can have. All examples in the figure use the following format to represent a hexadecimal number:

0xhhh

where 'h' signifies a hexadecimal digit.

FIGURE 12-1: GENERAL FORMAT FOR INSTRUCTIONS

Byte-o	riented file regi	ster	oper	ations		
11	6	5	4		0	
	OPCODE	d		f (FILE #)		
d	d = 0 for destination W d = 1 for destination f f = 5-bit file register address					
Bit-ori	ented file regist	er op	erat	ions		
11	8	7	5	4	0	
	OPCODE	b (Bl	T #)	f (FILE #)		
	and control op					
11		8	7		0	
	OPCODE			k (literal)		
k	= 8-bit immedia	ite va	lue			
Literal	and control op	eratio	ons -	- GOTO instruct	ion	
11		9	8		0	
11			-		•	
	OPCODE			k (literal)		

ADDWF	Add W and f
Syntax:	[<i>label</i>] ADDWF f,d
Operands:	$\begin{array}{l} 0 \leq f \leq 31 \\ d \in [0,1] \end{array}$
Operation:	$(W) + (f) \to (dest)$
Status Affected:	C, DC, Z
Description:	Add the contents of the W register and register 'f'. If 'd' is'0', the result is stored in the W register. If 'd' is '1', the result is stored back in register 'f'.

BCF	Bit Clear f
Syntax:	[<i>label</i>] BCF f,b
Operands:	$\begin{array}{l} 0 \leq f \leq 31 \\ 0 \leq b \leq 7 \end{array}$
Operation:	$0 \rightarrow (f \le b >)$
Status Affected:	None
Description:	Bit 'b' in register 'f' is cleared.

ANDLW	AND literal with W
Syntax:	[<i>label</i>] ANDLW k
Operands:	$0 \leq k \leq 255$
Operation:	(W).AND. (k) \rightarrow (W)
Status Affected:	Z
Description:	The contents of the W register are AND'ed with the eight-bit literal 'k'. The result is placed in the W register.

BSF	Bit Set f
Syntax:	[<i>label</i>] BSF f,b
Operands:	$\begin{array}{l} 0 \leq f \leq 31 \\ 0 \leq b \leq 7 \end{array}$
Operation:	$1 \rightarrow (f \le b >)$
Status Affected:	None
Description:	Bit 'b' in register 'f' is set.

ANDWF	AND W with f
Syntax:	[<i>label</i>] ANDWF f,d
Operands:	$\begin{array}{l} 0\leq f\leq 31\\ d\in [0,1] \end{array}$
Operation:	(W) .AND. (f) \rightarrow (dest)
Status Affected:	Z
Description:	The contents of the W register are AND'ed with register 'f'. If 'd' is '0', the result is stored in the W register. If 'd' is '1', the result is stored back in register 'f'.

BTFSC	Bit Test f, Skip if Clear
Syntax:	[label] BTFSC f,b
Operands:	$\begin{array}{l} 0 \leq f \leq 31 \\ 0 \leq b \leq 7 \end{array}$
Operation:	skip if (f) = 0
Status Affected:	None
Description:	If bit 'b' in register 'f' is '0', then the next instruction is skipped.
	If bit 'b' is '0', then the next instruc- tion fetched during the current instruction execution is discarded, and a NOP is executed instead, making this a two-cycle instruction.

BTFSS	Bit Test f, Skip if Set
Syntax:	[<i>label</i>] BTFSS f,b
Operands:	$\begin{array}{l} 0 \leq f \leq 31 \\ 0 \leq b < 7 \end{array}$
Operation:	skip if (f) = 1
Status Affected:	None
Description:	If bit 'b' in register 'f' is '1', then the next instruction is skipped.
	If bit 'b' is '1', then the next instruc- tion fetched during the current instruction execution, is discarded and a NOP is executed instead, making this a two-cycle instruction.

CLRW	Clear W
Syntax:	[label] CLRW
Operands:	None
Operation:	$\begin{array}{l} 00h \rightarrow (W); \\ 1 \rightarrow Z \end{array}$
Status Affected:	Z
Description:	The W register is cleared. Zero bit (Z) is set.

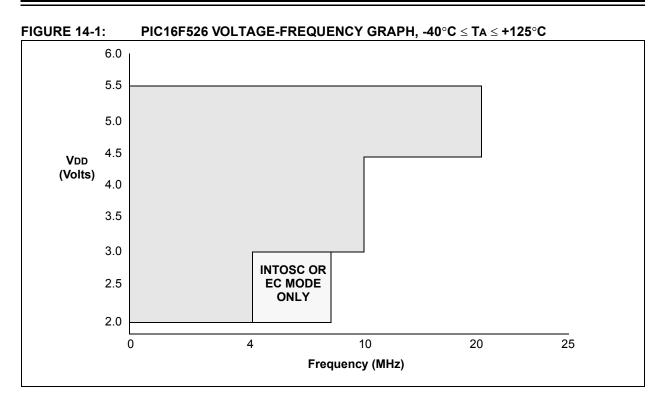
CALL	Subroutine Call
Syntax:	[<i>label</i>] CALL k
Operands:	$0 \leq k \leq 255$
Operation:	(PC) + 1 \rightarrow Top-of-Stack; k \rightarrow PC<7:0>; (STATUS<6:5>) \rightarrow PC<10:9>; 0 \rightarrow PC<8>
Status Affected:	None
Description:	Subroutine call. First, return address (PC + 1) is PUSHed onto the stack. The eight-bit immediate address is loaded into PC bits <7:0>. The upper bits PC<10:9> are loaded from STATUS<6:5>, PC<8> is cleared. CALL is a two-cycle instruction.

CLRWDT	Clear Watchdog Timer
Syntax:	[label] CLRWDT
Operands:	None
Operation:	00h \rightarrow WDT; 0 \rightarrow WDT prescaler (if assigned); 1 \rightarrow TO; 1 \rightarrow PD
Status Affected:	TO, PD
Description:	The CLRWDT instruction resets the WDT. It also resets the prescaler, if the prescaler is assigned to the WDT and not Timer0. Status bits \overline{TO} and \overline{PD} are set.

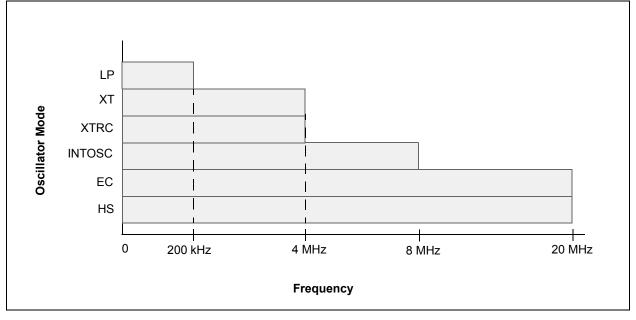
CLRF	Clear f
Syntax:	[<i>label</i>] CLRF f
Operands:	$0 \leq f \leq 31$
Operation:	$\begin{array}{l} 00h \rightarrow (f); \\ 1 \rightarrow Z \end{array}$
Status Affected:	Z
Description:	The contents of register 'f' are cleared and the Z bit is set.

COMF	Complement f
Syntax:	[<i>label</i>] COMF f,d
Operands:	$\begin{array}{l} 0\leq f\leq 31\\ d\in [0,1] \end{array}$
Operation:	$(\overline{f}) \rightarrow (dest)$
Status Affected:	Z
Description:	The contents of register 'f' are complemented. If 'd' is '0', the result is stored in the W register. If 'd' is '1', the result is stored back in register 'f'.

IORWF	Inclusive OR W with f
Syntax:	[<i>label</i>] IORWF f,d
Operands:	$\begin{array}{l} 0\leq f\leq 31\\ d\in [0,1] \end{array}$
Operation:	(W).OR. (f) \rightarrow (dest)
Status Affected:	Z
Description:	Inclusive OR the W register with register 'f'. If 'd' is '0', the result is placed in the W register. If 'd' is '1', the result is placed back in register 'f'.


MOVWF	Move W to f
Syntax:	[<i>label</i>] MOVWF f
Operands:	$0 \leq f \leq 31$
Operation:	$(W) \rightarrow (f)$
Status Affected:	None
Description:	Move data from the W register to register 'f'.

MOVF	Move f
Syntax:	[<i>label</i>] MOVF f,d
Operands:	$\begin{array}{l} 0\leq f\leq 31\\ d\in [0,1] \end{array}$
Operation:	$(f) \rightarrow (dest)$
Status Affected:	Z
Description:	The contents of register 'f' are moved to destination 'd'. If 'd' is '0', destination is the W register. If 'd' is '1', the destination is file register 'f'. 'd' = 1 is useful as a test of a file register, since status flag Z is affected.


NOP	No Operation
Syntax:	[label] NOP
Operands:	None
Operation:	No operation
Status Affected:	None
Description:	No operation.

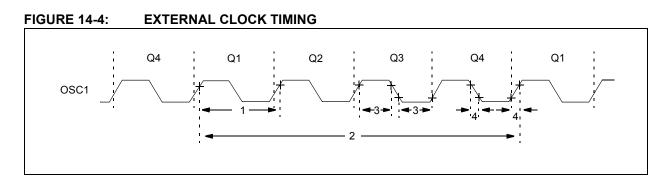
MOVLW	Move Literal to W
Syntax:	[<i>label</i>] MOVLW k
Operands:	$0 \le k \le 255$
Operation:	$k \rightarrow (W)$
Status Affected:	None
Description:	The eight-bit literal 'k' is loaded into the W register. The "don't cares" will assembled as '0's.

OPTION	Load OPTION Register
Syntax:	[label] OPTION
Operands:	None
Operation:	$(W) \rightarrow OPTION$
Status Affected:	None
Description:	The content of the W register is loaded into the OPTION register.

TABLE 14-2: COMPARATOR SPECIFICATIONS.

Comparator Specifications	Standard Operating Conditions (unless otherwise stated) Operating temperature -40°C to 125°C					
Characteristics	Sym.	Min.	Тур.	Max.	Units	Comments
Internal Voltage Reference	VIVRF	0.50	0.60	0.70	V	
Input offset voltage	Vos	_	± 5.0	± 10	mV	
Input common mode voltage*	Vсм	0	—	Vdd – 1.5	V	
CMRR*	CMRR	55	—	_	db	
Response Time ^{(1)*}	Trt	_	150	400	ns	
Comparator Mode Change to Output Valid*	TMC2COV	_	_	10	μS	

* These parameters are characterized but not tested.


Note 1: Response time measured with one comparator input at (VDD - 1.5)/2 while the other input transitions from Vss to VDD - 1.5V.

Sym.	Characteristics	Min.	Тур.	Max.	Units	Comments
CVRES	Resolution		VDD/24* VDD/32	_	LSb LSb	Low Range (VRR = 1) High Range (VRR = 0)
	Absolute Accuracy ⁽²⁾			±1/2* ±1/2*	LSb LSb	Low Range (VRR = 1) High Range (VRR = 0)
	Unit Resistor Value (R)		2K*	—	Ω	
	Settling Time ⁽¹⁾	_	—	10*	μS	

* These parameters are characterized but not tested.

Note 1: Settling time measured while VRR = 1 and VR<3:0> transitions from 0000 to 1111.

2: Do not use reference externally when VDD < 2.7V. Under this condition, reference should only be used with comparator Voltage Common mode observed.

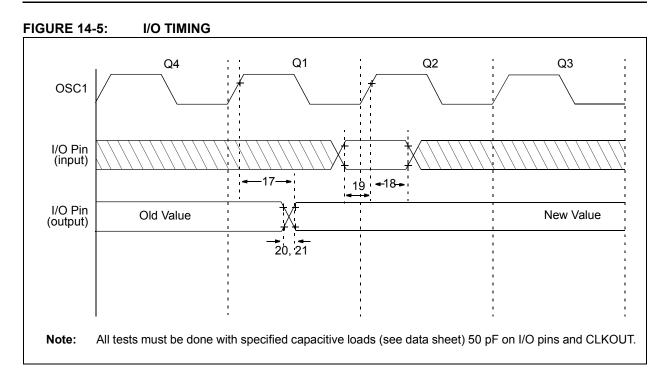

AC CHARACTERISTICS				$ \begin{array}{ll} \mbox{Standard Operating Conditions (unless otherwise specified)} \\ \mbox{Operating Temperature} & -40^\circ C \leq TA \leq +85^\circ C \mbox{ (industrial),} \\ & -40^\circ C \leq TA \leq +125^\circ C \mbox{ (extended)} \end{array} $						
			Operating Voltage VDD range is described in Section 14.1 "DC Characteristics: PIC16F526 (Industrial) "							
Param No.	Sym.	Characteristic	Min. Typ. ⁽¹⁾ Max. Units Conditions							
1A	Fosc	External CLKIN Frequency ⁽²⁾	DC		4	MHz	XT Oscillator mode			
			DC		20	MHz	HS/EC Oscillator mode			
			DC		200	kHz	LP Oscillator mode			
		Oscillator Frequency ⁽²⁾	-		4	MHz	EXTRC Oscillator mode			
			0.1	—	4	MHz	XT Oscillator mode			
			4		20	MHz	HS/EC Oscillator mode			
			—		200	kHz	LP Oscillator mode			
1	Tosc	External CLKIN Period ⁽²⁾	250		—	ns	XT Oscillator mode			
			50		—	ns	HS/EC Oscillator mode			
			5	_	—	μS	LP Oscillator mode			
		Oscillator Period ⁽²⁾	250	—	—	ns	EXTRC Oscillator mode			
			250		10,000	ns	XT Oscillator mode			
			50		250	ns	HS/EC Oscillator mode			
			5	—	—	μS	LP Oscillator mode			
2	Тсү	Instruction Cycle Time	200	4/Fosc	—	ns				
3	TosL,	Clock in (OSC1) Low or High	50*	_	—	ns	XT Oscillator			
	TosH	Time	2*		—	μS	LP Oscillator			
			10*	—	—	ns	HS/EC Oscillator			
4	TosR,	Clock in (OSC1) Rise or Fall	—		25*	ns	XT Oscillator			
	TosF	Time	—	—	50*	ns	LP Oscillator			
			—	—	15*	ns	HS/EC Oscillator			

TABLE 14-6: EXTERNAL CLOCK TIMING REQUIREMENTS

* These parameters are characterized but not tested.

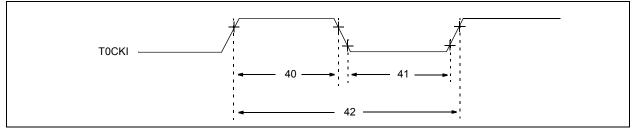
Note 1: Data in the Typical ("Typ") column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

2: All specified values are based on characterization data for that particular oscillator type under standard operating conditions with the device executing code. Exceeding these specified limits may result in an unstable oscillator operation and/or higher than expected current consumption. When an external clock input is used, the "max" cycle time limit is "DC" (no clock) for all devices.

TABLE 14-8: TIMING REQUIREMENTS

AC CHARAC	TERISTICS	Standard Operating Conditions (unless otherwise specified)Operating Temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ (industrial) $-40^{\circ}C \le TA \le +125^{\circ}C$ (extended)Operating Voltage VDD range is described in Section 14.1 "DC Characteristics: PIC16F526(Industrial)"						
Param No.	Sym.	Characteristic		Тур. ⁽¹⁾	Max.	Units		
17	TosH2ıoV	OSC1↑ (Q1 cycle) to Port Out Valid ^{(2), (3)}	_	_	100*	ns		
18	TosH2iol	OSC1 [↑] (Q2 cycle) to Port Input Invalid (I/O in hold time) ⁽²⁾	50	—	_	ns		
19	TIOV20sH	Port Input Valid to OSC1 [↑] (I/O in setup time)	20	_		ns		
20	TIOR	Port Output Rise Time ⁽³⁾		10	50**	ns		
21	TIOF	Port Output Fall Time ⁽³⁾	_	10	58**	ns		

* These parameters are characterized but not tested.


** These parameters are design targets and are not tested.

Note 1: Data in the Typical ("Typ") column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

2: Measurements are taken in EXTRC mode.

3: See Figure 14-3 for loading conditions.

FIGURE 14-7: TIMER0 CLOCK TIMINGS

TABLE 14-10: TIMER0 CLOCK REQUIREMENT

AC CHARACTERISTICS			Standard Operating Conditions (unless otherwise specified)Operating Temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ (industrial) $-40^{\circ}C \le TA \le +125^{\circ}C$ (extended)Operating Voltage VDD range is described inSection 14.1 "DC Characteristics: PIC16F526 (Industrial)"													
Param No.	Sym.	Characteristic		Min.	Тур. ⁽¹⁾	Max.	Units	Conditions								
40 Tt0H		H TOCKI High Pulse	No Prescaler	0.5 Tcy + 20*	_	_	ns									
		Width	With Prescaler	10*	_	_	ns									
41	Tt0L	T0CKI Low Pulse	No Prescaler	0.5 Tcy + 20*	_	—	ns									
										Width	With Prescaler	10*	—		ns	
42	Tt0P	T0CKI Period		20 or Tcy + 40* N			ns	Whichever is greater. N = Prescale Value (1, 2, 4,, 256)								

* These parameters are characterized but not tested.

Note 1: Data in the Typical ("Typ") column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

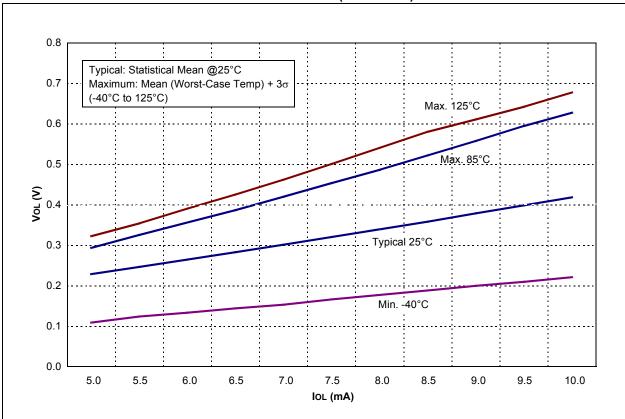
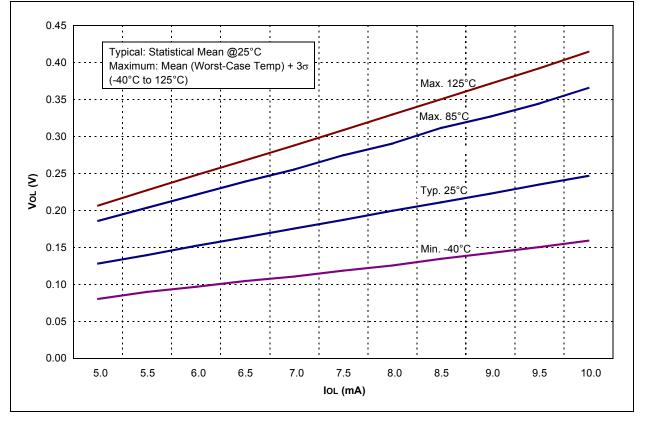
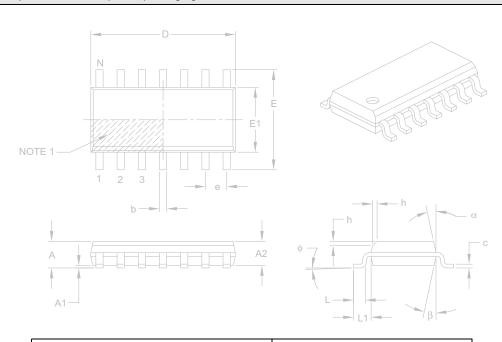




FIGURE 15-11: Vol vs. IoL OVER TEMPERATURE (VDD = 3.0V)

For the most current package drawings, please see the Microchip Packaging Specification located at

14-Lead Plastic Small Outline (SL) – Narrow, 3.90 mm Body [SOIC]

http://www.microchip.com/packaging

Units MILLIMETERS NOM **Dimension Limits** MIN MAX Number of Pins Ν 14 Pitch 1.27 BSC е **Overall Height** А 1.75 Molded Package Thickness A2 1.25 _ _ Standoff § A1 0.10 0.25 Overall Width 6.00 BSC Е Molded Package Width E1 3.90 BSC 8.65 BSC **Overall Length** D Chamfer (optional) 0.25 0.50 h Foot Length L 0.40 1.27 Footprint L1 1.04 REF Foot Angle Ô° 8° ø _ Lead Thickness 0.17 0.25 С _ Lead Width 0.31 0.51 b _ Mold Draft Angle Top 5° 15° α _ Mold Draft Angle Bottom 5° 15° β _

Notes:

Note:

1. Pin 1 visual index feature may vary, but must be located within the hatched area.

2. § Significant Characteristic.

3. Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed 0.15 mm per side.

4. Dimensioning and tolerancing per ASME Y14.5M.

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

REF: Reference Dimension, usually without tolerance, for information purposes only.

Microchip Technology Drawing C04-065B

READER RESPONSE

It is our intention to provide you with the best documentation possible to ensure successful use of your Microchip product. If you wish to provide your comments on organization, clarity, subject matter, and ways in which our documentation can better serve you, please FAX your comments to the Technical Publications Manager at (480) 792-4150.

Please list the following information, and use this outline to provide us with your comments about this document.

To:	Technical Publications Manager	Total Pages Sent
RE:	Reader Response	
From	i: Name	
	Company	
	Address	
	City / State / ZIP / Country	
	Telephone: ()	FAX: ()
Appli	cation (optional):	
Woul	ld you like a reply? <u>Y</u>	
Devi	ce: PIC16F526	Literature Number: DS41326E
Ques	stions:	
1. V	What are the best features of this do	cument?
2. ⊦	low does this document meet your l	hardware and software development needs?
_		
_		
3. E	Do you find the organization of this d	locument easy to follow? If not, why?
_		
_		
4. V	What additions to the document do y	you think would enhance the structure and subject?
_		
_		
5. V	What deletions from the document c	ould be made without affecting the overall usefulness?
-		
-		· · · · · · · · · · · · · · · · · · ·
6. I	s there any incorrect or misleading i	nformation (what and where)?
_		
7 1	low would you improve this desume	hat?
7. F	low would you improve this docume	211.1
_		
_		