

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Details	
Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	20MHz
Connectivity	-
Peripherals	POR, WDT
Number of I/O	11
Program Memory Size	1.5KB (1K x 12)
Program Memory Type	FLASH
EEPROM Size	
RAM Size	67 x 8
Voltage - Supply (Vcc/Vdd)	2V ~ 5.5V
Data Converters	A/D 3x8b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	14-TSSOP (0.173", 4.40mm Width)
Supplier Device Package	14-TSSOP
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16f526t-i-st

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Note the following details of the code protection feature on Microchip devices:

- Microchip products meet the specification contained in their particular Microchip Data Sheet.
- Microchip believes that its family of products is one of the most secure families of its kind on the market today, when used in the intended manner and under normal conditions.
- There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our knowledge, require using the Microchip products in a manner outside the operating specifications contained in Microchip's Data Sheets. Most likely, the person doing so is engaged in theft of intellectual property.
- Microchip is willing to work with the customer who is concerned about the integrity of their code.
- Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not mean that we are guaranteeing the product as "unbreakable."

Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our products. Attempts to break Microchip's code protection feature may be a violation of the Digital Millennium Copyright Act. If such acts allow unauthorized access to your software or other copyrighted work, you may have a right to sue for relief under that Act.

Information contained in this publication regarding device applications and the like is provided only for your convenience and may be superseded by updates. It is your responsibility to ensure that your application meets with your specifications. MICROCHIP MAKES NO REPRESENTATIONS OR WARRANTIES OF ANY KIND WHETHER EXPRESS OR IMPLIED, WRITTEN OR ORAL, STATUTORY OR OTHERWISE, RELATED TO THE INFORMATION, INCLUDING BUT NOT LIMITED TO ITS CONDITION. QUALITY, PERFORMANCE, MERCHANTABILITY OR FITNESS FOR PURPOSE. Microchip disclaims all liability arising from this information and its use. Use of Microchip devices in life support and/or safety applications is entirely at the buyer's risk, and the buyer agrees to defend, indemnify and hold harmless Microchip from any and all damages, claims, suits, or expenses resulting from such use. No licenses are conveyed, implicitly or otherwise, under any Microchip intellectual property rights.

QUALITY MANAGEMENT SYSTEM CERTIFIED BY DNV ISO/TS 16949:2002

Trademarks

The Microchip name and logo, the Microchip logo, dsPIC, KEELOQ, KEELOQ logo, MPLAB, PIC, PICmicro, PICSTART, PIC³² logo, rfPIC and UNI/O are registered trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

FilterLab, Hampshire, HI-TECH C, Linear Active Thermistor, MXDEV, MXLAB, SEEVAL and The Embedded Control Solutions Company are registered trademarks of Microchip Technology Incorporated in the U.S.A.

Analog-for-the-Digital Age, Application Maestro, CodeGuard, dsPICDEM, dsPICDEM.net, dsPICworks, dsSPEAK, ECAN, ECONOMONITOR, FanSense, HI-TIDE, In-Circuit Serial Programming, ICSP, Mindi, MiWi, MPASM, MPLAB Certified logo, MPLIB, MPLINK, mTouch, Octopus, Omniscient Code Generation, PICC, PICC-18, PICDEM, PICDEM.net, PICkit, PICtail, REAL ICE, rfLAB, Select Mode, Total Endurance, TSHARC, UniWinDriver, WiperLock and ZENA are trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

SQTP is a service mark of Microchip Technology Incorporated in the U.S.A.

All other trademarks mentioned herein are property of their respective companies.

© 2010, Microchip Technology Incorporated, Printed in the U.S.A., All Rights Reserved.

ISBN: 978-1-60932-355-4

Microchip received ISO/TS-16949:2002 certification for its worldwide headquarters, design and wafer fabrication facilities in Chandler and Tempe, Arizona; Gresham, Oregon and design centers in California and India. The Company's quality system processes and procedures are for its PIC® MCUs and dsPIC® DSCs, KEELOQ® code hopping devices, Serial EEPROMs, microperipherals, nonvolatile memory and analog products. In addition, Microchip's quality system for the design and manufacture of development systems is ISO 9001:2000 certified.

4.5 OSCCAL Register

The Oscillator Calibration (OSCCAL) register is used to calibrate the 8 MHz internal oscillator macro. It contains 7 bits of calibration that uses a two's complement scheme for controlling the oscillator speed. See Register 4-3 for details.

REGISTER 4-3: OSCCAL: OSCILLATOR CALIBRATION REGISTER

R/W-1	U-0						
CAL6	CAL5	CAL4	CAL3	CAL2	CAL1	CAL0	—
bit 7							bit 0

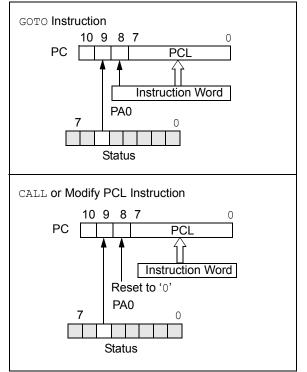
Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 7-1 CAL<6:0>: Oscillator Calibration bits 0111111 = Maximum frequency

bit 0

4.6 **Program Counter**

As a program instruction is executed, the Program Counter (PC) will contain the address of the next program instruction to be executed. The PC value is increased by one every instruction cycle, unless an instruction changes the PC.


For a GOTO instruction, bits 8:0 of the PC are provided by the GOTO instruction word. The Program Counter (PCL) is mapped to PC<7:0>. Bit 5 of the STATUS register provides page information to bit 9 of the PC (Figure 4-3).

For a CALL instruction, or any instruction where the PCL is the destination, bits 7:0 of the PC again are provided by the instruction word. However, PC<8> does not come from the instruction word, but is always cleared (Figure 4-3).

Instructions where the PCL is the destination, or modify PCL instructions, include MOVWF PCL, ADDWF PCL and BSF PCL, 5.

Note:	Because bit 8 of the PC is cleared in the CALL instruction or any modify PCL
	instruction, all subroutine calls or com- puted jumps are limited to the first 256 locations of any program memory page (512 words long).

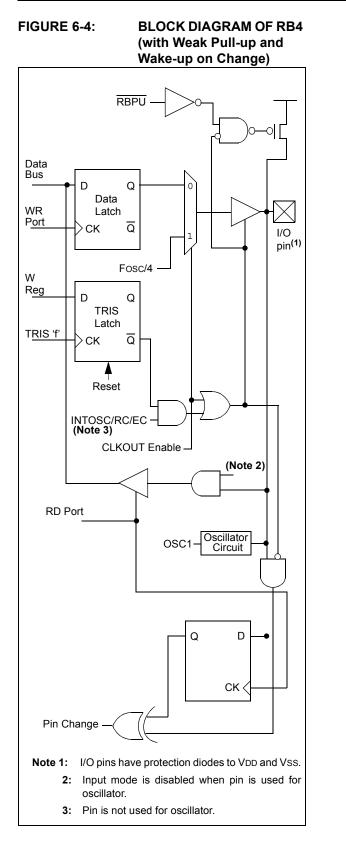
FIGURE 4-3: LOADING OF PC BRANCH INSTRUCTIONS

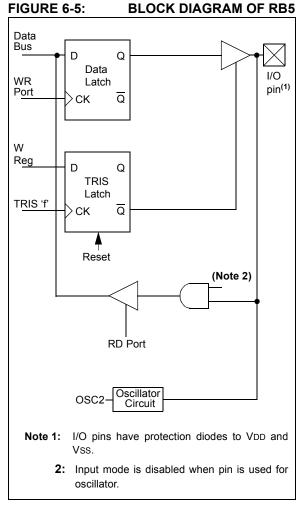
4.6.1 EFFECTS OF RESET

The PC is set upon a Reset, which means that the PC addresses the last location in the last page (i.e., the oscillator calibration instruction). After executing MOVLW XX, the PC will roll over to location 00h and begin executing user code.

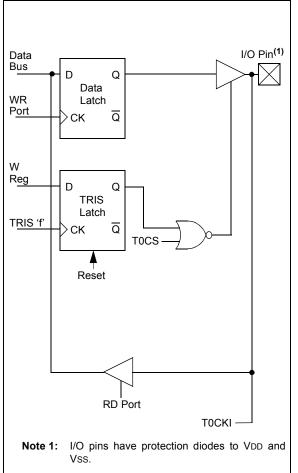
The STATUS register page preselect bits are cleared upon a Reset, which means that page 0 is pre-selected.

Therefore, upon a Reset, a GOTO instruction will automatically cause the program to jump to page 0 until the value of the page bits is altered.


4.7 Stack


The PIC16F526 device has a 2-deep, 12-bit wide hardware PUSH/POP stack.

A CALL instruction will PUSH the current value of Stack 1 into Stack 2 and then PUSH the current PC value, incremented by one, into Stack Level 1. If more than two sequential CALLs are executed, only the most recent two return addresses are stored.


A RETLW instruction will POP the contents of Stack Level 1 into the PC and then copy Stack Level 2 contents into Stack Level 1. If more than two sequential RETLWS are executed, the stack will be filled with the address previously stored in Stack Level 2. Note that the W register will be loaded with the literal value specified in the instruction. This is particularly useful for the implementation of data look-up tables within the program memory.

Note 1:	There are no Status bits to indicate Stack Overflows or Stack Underflow conditions.			
2:	There are no instruction mnemonics called PUSH or POP. These are actions that occur from the execution of the CALL			
	and RETLW instructions.			

8.3 Reset

The device differentiates between various kinds of Reset:

- Power-on Reset (POR)
- MCLR Reset during normal operation
- MCLR Reset during Sleep
- WDT Time-out Reset during normal operation
- WDT Time-out Reset during Sleep
- · Wake-up from Sleep on pin change

Some registers are not reset in any way, they are unknown on POR and unchanged in any other Reset. Most other registers are reset to "Reset state" on Power-on Reset (POR), MCLR, WDT or Wake-up on pin change Reset during normal operation. They are not affected by a WDT Reset during Sleep or MCLR Reset during Sleep, since these Resets are viewed as resumption of normal operation. The exceptions to this are TO, PD and RBWUF bits. They are set or cleared differently in different Reset situations. These bits are used in software to determine the nature of Reset. See Table 8-3 for a full description of Reset states of all registers.

Register	Address	Power-on Reset	MCLR Reset, WDT Time-out, Wake-up On Pin Change
W	_	qqqq qqq 0⁽¹⁾	qqqq qqq0 ⁽¹⁾
INDF	00h	XXXX XXXX	սսսս սսսս
TMR0	01h	XXXX XXXX	սսսս սսսս
PCL	02h	1111 1111	1111 1111
STATUS	03h	0001 1xxx	qq0q quuu ⁽²⁾
FSR	04h	100x xxxx	1uuu uuuu
OSCCAL	05h	1111 111-	uuuu uuu-
PORTB	06h	xx xxxx	uu uuuu
PORTC	07h	xx xxxx	uu uuuu
CMICON0	08h	q111 1111	quuu uuuu
ADCON0	09h	1111 1100	1111 1100
ADRES	0Ah	XXXX XXXX	սսսս սսսս
CM2CON0	0Bh	q111 1111	quuu uuuu
VRCON	0Ch	001-1111	นนน-นนนน
OPTION	-	1111 1111	1111 1111
TRISB	-	11 1111	11 1111
TRISC	-	11 1111	11 1111
EECON	21h/61h	0 x000	0 q000
EEDATA	25h/65h	XXXX XXXX	սսսս սսսս
EEADR	26h/66h	xx xxxx	uu uuuu

TABLE 8-3: RESET CONDITIONS FOR REGISTERS

Legend: u = unchanged, x = unknown, – = unimplemented bit, read as '0', q = value depends on condition.

Note 1: Bits <7:1> of W register contain oscillator calibration values due to MOVLW XX instruction at top of memory.

2: See Table 8-4 for Reset value for specific conditions.

8.5 Device Reset Timer (DRT)

On the PIC16F526 device, the DRT runs any time the device is powered up. DRT runs from Reset and varies based on oscillator selection and Reset type (see Table 8-5).

The DRT operates on an internal RC oscillator. The processor is kept in Reset as long as the DRT is active. The DRT delay allows VDD to rise above VDD min. and for the oscillator to stabilize.

Oscillator circuits based on crystals or ceramic resonators require a certain time after power-up to establish a stable oscillation. The on-chip DRT keeps the device in a Reset condition after MCLR has reached a logic high (VIH MCLR) level. Programming RB3/MCLR/VPP as MCLR and using an external RC network connected to the MCLR input is not required in most cases. This allows savings in cost-sensitive and/or space restricted applications, as well as allowing the use of the RB3/ MCLR/VPP pin as a general purpose input.

The Device Reset Time delays will vary from chip-tochip due to VDD, temperature and process variation. See AC parameters for details.

The DRT will also be triggered upon a Watchdog Timer time-out from Sleep. This is particularly important for applications using the WDT to wake from Sleep mode automatically.

Reset sources are POR, MCLR, WDT time-out and wake-up on pin or comparator change. See Section 8.9.2 "Wake-up from Sleep", Notes 1, 2 and 3.

8.6 Watchdog Timer (WDT)

The Watchdog Timer (WDT) is a free running on-chip RC oscillator, which does not require any external components. This RC oscillator is separate from the external RC oscillator of the RB5/OSC1/CLKIN pin and the internal 4/8 MHz oscillator. This means that the WDT will run even if the main processor clock has been stopped, for example, by execution of a SLEEP instruction. During normal operation or Sleep, a WDT Reset or wake-up Reset, generates a device Reset.

The $\overline{\text{TO}}$ bit of the STATUS register will be cleared upon a Watchdog Timer Reset.

The WDT can be permanently disabled by programming the configuration WDTE as a '0' (see **Section 8.1 "Configuration Bits"**). Refer to the PIC16F526 Programming Specifications to determine how to access the Configuration Word.

TABLE 8-5:TYPICAL DRT PERIODS

Oscillator Configuration	POR Reset	Subsequent Resets
HS, XT, LP	18 ms	18 ms
EC	1.125 ms	10 μs
INTOSC, EXTRC	1.125 ms	10 μs

8.6.1 WDT PERIOD

The WDT has a nominal time-out period of 18 ms, (with no prescaler). If a longer time-out period is desired, a prescaler with a division ratio of up to 1:128 can be assigned to the WDT (under software control) by writing to the OPTION register. Thus, a time-out period of a nominal 2.3 seconds can be realized. These periods vary with temperature, VDD and part-to-part process variations (see DC specs).

Under worst-case conditions (VDD = Min., Temperature = Max., max. WDT prescaler), it may take several seconds before a WDT time-out occurs.

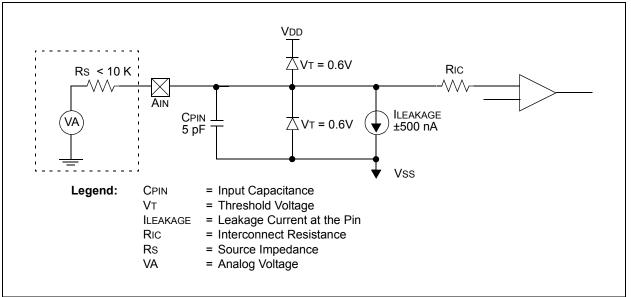
8.6.2 WDT PROGRAMMING CONSIDERATIONS

The CLRWDT instruction clears the WDT and the postscaler, if assigned to the WDT, and prevents it from timing out and generating a device Reset.

The SLEEP instruction resets the WDT and the postscaler, if assigned to the WDT. This gives the maximum Sleep time before a WDT wake-up Reset.

							DIL U
bit 7	•		•				bit 0
ADRES7	ADRES6	ADRES5	ADRES4	ADRES3	ADRES2	ADRES1	ADRES0
R/W-X							

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	l as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown


EXAMPLE 9-1: PERFORMING AN ANALOG-TO-DIGITAL CONVERSION

;Sample	e code operates out	of BANK0
	MOVLW 0xF1 MOVWF ADCON0	;configure A/D
		;start conversion
loopO	BTFSC ADCON0, 1 GOTO loop0	;wait for `DONE'
	MOVF ADRES, W	;read result
	MOVWF result0	;save result
		;setup for read of ;channel 1
		;start conversion
loop1	BTFSC ADCON0, 1	;wait for `DONE'
	GOTO loop1	
	MOVF ADRES, W	
	MOVWF result1	;save result
		;setup for read of
	BCF ADCONO, 2	
1 0	,	;start conversion
100p2	BTFSC ADCON0, 1 GOTO loop2	; walt for 'DONE'
	MOVF ADRES, W	;read result
	MOVWF result2	;save result

EXAMPLE 9-2: CHANNEL SELECTION CHANGE DURING CONVERSION

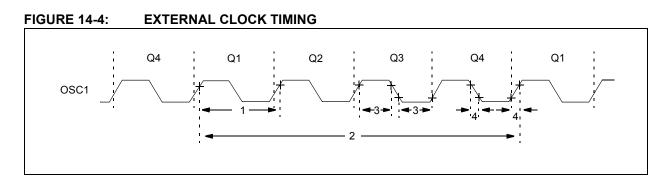
	MOVLW 0xF1 MOVWF ADCON0	;configure A/D
	,	;start conversion
	BSF ADCONU, 2	;setup for read of ;channel 1
loopO	BTFSC ADCON0, GOTO loop0	1; wait for 'DONE'
	MOVF ADRES, W	;read result
	MOVWF result0	;save result
	BSF ADCON0, 1	;start conversion
	BSF ADCON0, 3	;setup for read of
	BCF ADCON0, 2	;channel 2
loopl	,	1;wait for `DONE'
	GOTO loop1	
		;read result
	MOVWF result1	;save result
	BSF ADCON0, 1	;start conversion
loop2	,	1;wait for `DONE'
	GOTO loop2	
		;read result
		;save result
		;optional: returns
		tal mode and turns off
	;the ADC modul	Le

Name	Bit 7	Bit 6	Bit 5	Bit 4	Value on POR	Value on All Other Resets				
STATUS	RBWUF	CWUF	PA0	PAO TO PD Z DC C						qq0q quuu
CM1CON0	C1OUT	C10UTEN	C1POL	C1POL C1TOCS C1ON C1NREF C1PREF C1WU						quuu uuuu
CM2CON0	C2OUT	C2OUTEN	C2POL	C2POL C2PREF2 C2ON C2NREF C2PREF1 C2WU						quuu uuuu
TRIS	-	—	I/O Contro	O Control Register (PORTB, PORTC)						11 1111

Legend: x = Unknown, u = Unchanged, - = Unimplemented, read as '0', q = Depends on condition.

Status Affected:

Description:


Ζ

register.

The contents of the W register are XOR'ed with the eight-bit literal 'k'.

The result is placed in the W

TRIS	Load TRIS Register	XORWF	Exclusive OR W with f		
Syntax:	[<i>label</i>] TRIS f	Syntax:	[<i>label</i>] XORWF f,d		
Operands:	f = 6	Operands:	$0 \le f \le 31$		
Operation:	(W) \rightarrow TRIS register f		$d \in [0,1]$		
Status Affected:	None	Operation:	(W) .XOR. (f) \rightarrow (dest)		
Description:	TRIS register 'f' (f = 6 or 7) is	Status Affected:	Z		
	loaded with the contents of the W register	Description:	Exclusive OR the contents of the W register with register 'f'. If 'd' is '0', the result is stored in the W		
XORLW	Exclusive OR literal with W		register. If 'd' is '1', the result is stored back in register 'f'.		
Syntax:	[<i>label</i>] XORLW k				
Operands:	$0 \le k \le 255$				
Operation:	(W) .XOR. $k \rightarrow (W)$				

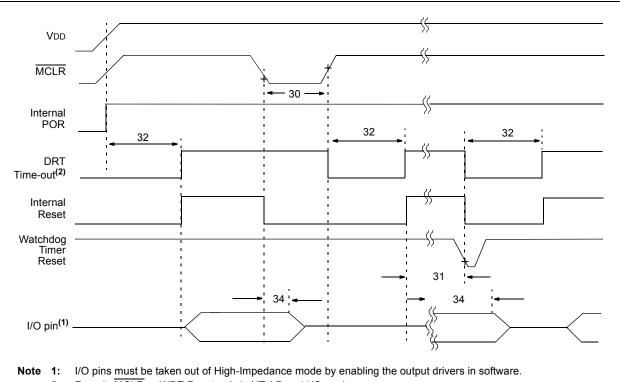

AC CHARACTERISTICS			Standard Operating Conditions (unless otherwise specified)Operating Temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ (industrial), $-40^{\circ}C \le TA \le +125^{\circ}C$ (extended)Operating Voltage VDD range is described in Section 14.1 "DC						
							ndustrial)"		
Param No.	Sym.	Characteristic	Min. Typ. ⁽¹⁾ Max. Units Condition				Conditions		
1A	Fosc	External CLKIN Frequency ⁽²⁾	DC	—	4	MHz	XT Oscillator mode		
			DC	—	20	MHz	HS/EC Oscillator mode		
			DC	—	200	kHz	LP Oscillator mode		
		Oscillator Frequency ⁽²⁾	—	_	4	MHz	EXTRC Oscillator mode		
			0.1	—	4	MHz	XT Oscillator mode		
			4	—	20	MHz	HS/EC Oscillator mode		
			—	_	200	kHz	LP Oscillator mode		
1	Tosc	External CLKIN Period ⁽²⁾	250	—	—	ns	XT Oscillator mode		
			50	—	—	ns	HS/EC Oscillator mode		
			5	—	—	μS	LP Oscillator mode		
		Oscillator Period ⁽²⁾	250	—	—	ns	EXTRC Oscillator mode		
			250	_	10,000	ns	XT Oscillator mode		
			50	_	250	ns	HS/EC Oscillator mode		
			5	—	—	μS	LP Oscillator mode		
2	Тсү	Instruction Cycle Time	200	4/Fosc	—	ns			
3	TosL,	Clock in (OSC1) Low or High	50*	_	_	ns	XT Oscillator		
	TosH	Time	2*	_	—	μS	LP Oscillator		
			10*	—	—	ns	HS/EC Oscillator		
4	TosR,	Clock in (OSC1) Rise or Fall	—	_	25*	ns	XT Oscillator		
	TosF	Time	—	—	50*	ns	LP Oscillator		
			—	_	15*	ns	HS/EC Oscillator		

TABLE 14-6: EXTERNAL CLOCK TIMING REQUIREMENTS

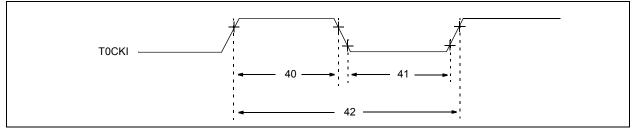
* These parameters are characterized but not tested.

Note 1: Data in the Typical ("Typ") column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

2: All specified values are based on characterization data for that particular oscillator type under standard operating conditions with the device executing code. Exceeding these specified limits may result in an unstable oscillator operation and/or higher than expected current consumption. When an external clock input is used, the "max" cycle time limit is "DC" (no clock) for all devices.

FIGURE 14-6: **RESET, WATCHDOG TIMER AND DEVICE RESET TIMER TIMING**

Runs in MCLR or WDT Reset only in XT, LP and HS modes. 2:


TABLE 14-9: RESET, WATCHDOG TIMER AND DEVICE RESET TIMER

			Standard Operating Conditions (unless otherwise specifiedOperating Temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ (industrial) $-40^{\circ}C \le TA \le +125^{\circ}C$ (extended)Operating Voltage VDD range is described inSection 14.1 "DC Characteristics: PIC16F526 (Industrial)"					
Sym.	Characteristic	Min.	Typ. ⁽¹⁾	Max.	Units	Conditions		
TMCL	MCLR Pulse Width (low)	2000*	_	_	ns	VDD = 5.0V		
Twdt	Watchdog Timer Time-out Period (no prescaler)	9* 9*	18* 18*	30* 40*	ms ms	VDD = 5.0V (Industrial) VDD = 5.0V (Extended)		
TDRT	Device Reset Timer Period							
	Standard	9* 9*	18* 18*	30* 40*	ms ms	VDD = 5.0V (Industrial) VDD = 5.0V (Extended)		
	Short	0.5* 0.5*	1.125* 1.125*	2* 2.5*	ms ms	VDD = 5.0V (Industrial) VDD = 5.0V (Extended)		
Tioz	I/O High-impedance from MCLR low	—	—	2000*	ns			
	Sym. TMCL TWDT TDRT	Sym.CharacteristicTMCLMCLR Pulse Width (low)TWDTWatchdog Timer Time-out Period (no prescaler)TDRTDevice Reset Timer PeriodStandardStandardShortI/O High-impedance from MCLR	ARACTERISTICS Operating Sym. Characteristic Operating TMCL MCLR Pulse Width (low) 2000* TWDT Watchdog Timer Time-out Period (no prescaler) 9* TDRT Device Reset Timer Period 9* Standard 9* 9* Short 0.5* 0.5* TIOZ I/O High-impedance from MCLR —	ARACTERISTICS Operating Temp Sym. Characteristic Min. Typ.(1) TMCL MCLR Pulse Width (low) 2000* — TWDT Watchdog Timer Time-out Period (no prescaler) 9* 18* TDRT Device Reset Timer Period 9* 18* Standard 9* 18* Short 0.5* 1.125* TIOZ I/O High-impedance from MCLR — —	ARACTERISTICSOperating Temperature Operating Voltage VDD in Section 14.1 "DC CharaSym.CharacteristicMin.Typ.(1)Max.TMCLMCLR Pulse Width (low)2000*TWDTWatchdog Timer Time-out Period (no prescaler)9*18*30* 40*TDRTDevice Reset Timer Period9*18*40*Standard9*18*40*Short0.5*1.125*2* 2.5*TIOZI/O High-impedance from MCLR2000*	Operating Temperature $-40^{\circ}C \le -40^{\circ}C \le -40^{\circ}C \le 0$ Operating Voltage VDD range is of Section 14.1 "UC CharacteristicSym.CharacteristicMin.Typ.(1)Max.UnitsTMCLMCLR Pulse Width (low) 2000° ——nsTWDTWatchdog Timer Time-out Period (no prescaler)9*18*30*msTDRTDevice Reset Timer Period9*18*40*msTDRTStandard9*18*40*msShort 0.5^{*} 1.125^{*} 2*msTIOZI/O High-impedance from MCLR——2000*ns		

These parameters are characterized but not tested.

Note 1: Data in the Typical ("Typ") column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

FIGURE 14-7: TIMER0 CLOCK TIMINGS

TABLE 14-10: TIMER0 CLOCK REQUIREMENT

AC CHARACTERISTICS Operating			Operating Temp Operating Volta	ating Conditions (u perature $-40^{\circ}C \le TA \le -40^{\circ}C \le TA \le$ ge VDD range is des DC Characteristics:	≤ +85°C ≤ +125° cribed ir	์ (indus C (exte า	strial) ended)	
Param No.	Sym.	Characte	eristic	Min.	Тур. ⁽¹⁾	Max.	Units	Conditions
40	Tt0H	T0CKI High Pulse	No Prescaler	0.5 Tcy + 20*	_	_	ns	
	Width	With Prescaler	10*	_	_	ns		
41	Tt0L	T0CKI Low Pulse	No Prescaler	0.5 Tcy + 20*	_	—	ns	
		Width	With Prescaler	10*	—		ns	
42	Tt0P	T0CKI Period		20 or Tcy + 40* N			ns	Whichever is greater. N = Prescale Value (1, 2, 4,, 256)

* These parameters are characterized but not tested.

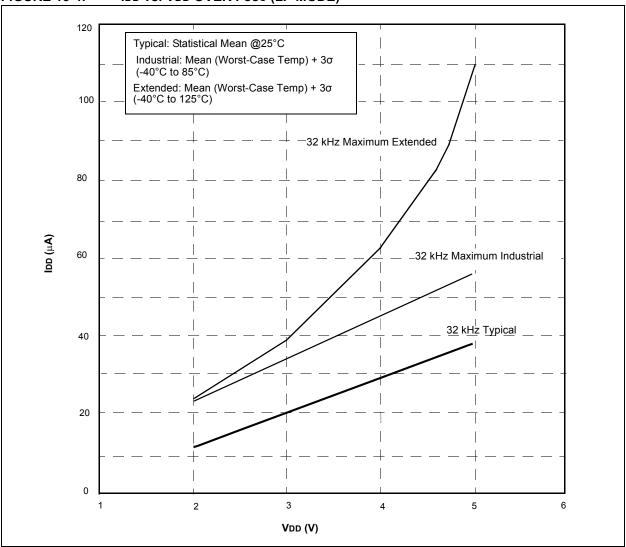
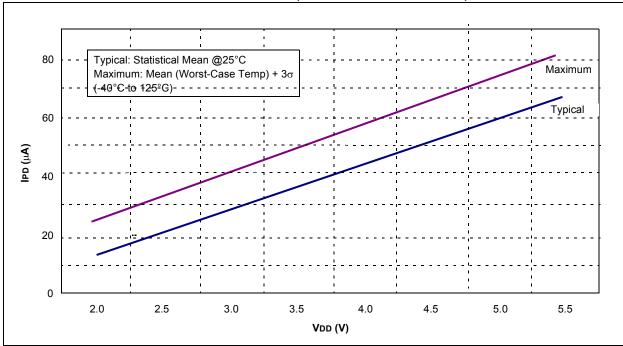

Note 1: Data in the Typical ("Typ") column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

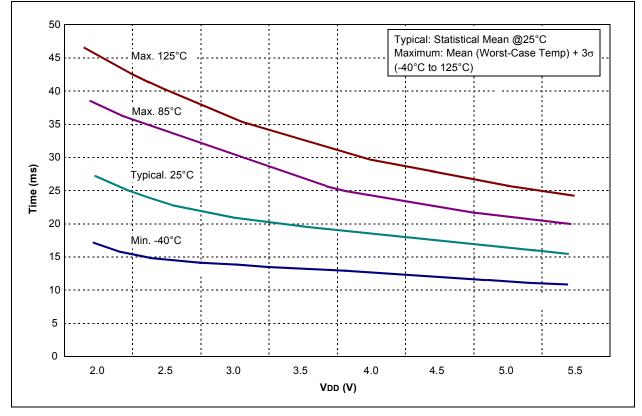
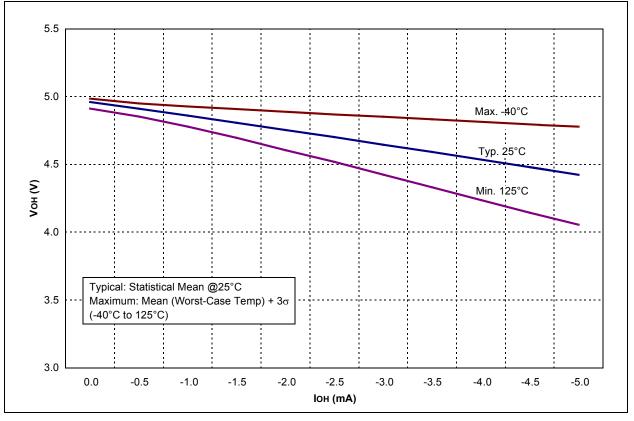
TABLE 14-11: FLASH DATA MEMORY WRITE/ERASE TIME


Param No.Sym.CharacteristicMin.Typ.(1)Max.UnitsConditions43TDwFlash Data Memory Write Cycle Time23.55ms44TDEFlash Data Memory Frace Cycle Time23.55ms	AC CH4	AC CHARACTERISTICS Standard Operating Conditions (unless otherwise specified Operating Temperature -40°C ≤ TA ≤ +85°C (industrial) -40°C ≤ TA ≤ +125°C (extended) Operating Voltage VDD range is described in Section 14.1 "DC Characteristics: PIC16F526 (Industrial)"							
Write Cycle Time 44 TDE Flash Data Memory 2 3.5 5		Sym Characteristic Min Typ 19 Max Units Conditions							
	43	Tow	-	2	3.5	5	ms		
	44	TDE	Flash Data Memory Erase Cycle Time	2	3.5	5	ms		

These parameters are characterized but not tested.

Note 1: Data in the Typical ("Typ") column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

FIGURE 15-9: COMPARATOR IPD vs. VDD (COMPARATOR ENABLED)

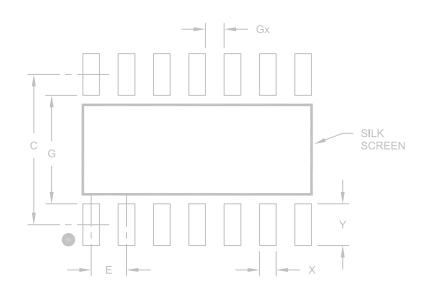


FIGURE 15-14: VOH vs. IOH OVER TEMPERATURE (VDD = 5.0V)

14-Lead Plastic Small Outline (SL) - Narrow, 3.90 mm Body [SOIC]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

RECOMMENDED LAND PATTERN

	Units		MILLIMETER	S
Dime	nsion Limits	MIN	NOM	MAX
Contact Pitch	E		1.27 BSC	
Contact Pad Spacing	С		5.40	
Contact Pad Width	Х			0.60
Contact Pad Length	Y			1.50
Distance Between Pads	Gx	0.67		
Distance Between Pads	G	3.90		

Notes:

1. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing No. C04-2065A

NOTES:

PRODUCT IDENTIFICATION SYSTEM

To order or obtain information, e.g., on pricing or delivery, refer to the factory or the listed sales office.

PART NO.	x <u>xx xxx</u>	Examples:
Device	Temperature Package Pattern Range	 a) PIC16F526-E/P 301 = Extended Temp., PDIP package, QTP pattern #301 b) PIC16F526-I/SL = Industrial Temp., SOIC package
Device:	PIC16F526 PIC16F526T ⁽¹⁾	 c) PIC16F526T-E/P = Extended Temp., PDIP package, Tape and Reel d) PIC16F526T-I/MG = Industrial Temp., QFN Package, Tape and Reel
Temperature Range:	I = -40° C to $+85^{\circ}$ C (Industrial) E = -40° C to $+125^{\circ}$ C (Extended)	
Package:	P = Plastic (PDIP) ⁽²⁾ SL = 14L Small Outline, 3.90 mm (SOIC) ⁽²⁾ ST = Thin Shrink Small Outline (TSSOP) ⁽²⁾ MG = 16-Lead 3x3 (QFN) ⁽²⁾	
Pattern:	Special Requirements	Note 1: T = in tape and reel SOIC, TSSOP and QFN packages only 2: Pb-free.