




Welcome to E-XFL.COM

#### What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

#### Details

| Product Status             | Obsolete                                                                 |
|----------------------------|--------------------------------------------------------------------------|
| Core Processor             | CIP-51 8051                                                              |
| Core Size                  | 8-Bit                                                                    |
| Speed                      | 72MHz                                                                    |
| Connectivity               | I <sup>2</sup> C, SMBus, SPI, UART/USART                                 |
| Peripherals                | Brown-out Detect/Reset, POR, PWM, WDT                                    |
| Number of I/O              | 29                                                                       |
| Program Memory Size        | 16KB (16K x 8)                                                           |
| Program Memory Type        | FLASH                                                                    |
| EEPROM Size                | -                                                                        |
| RAM Size                   | 1.25K x 8                                                                |
| Voltage - Supply (Vcc/Vdd) | 2.2V ~ 3.6V                                                              |
| Data Converters            | A/D 20x14b                                                               |
| Oscillator Type            | Internal                                                                 |
| Operating Temperature      | -40°C ~ 105°C (TA)                                                       |
| Mounting Type              | Surface Mount                                                            |
| Package / Case             | 32-UFQFN Exposed Pad                                                     |
| Supplier Device Package    | 32-QFN (4x4)                                                             |
| Purchase URL               | https://www.e-xfl.com/product-detail/silicon-labs/efm8lb10f16es0-b-qfn32 |
|                            |                                                                          |

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

# 3. System Overview

### 3.1 Introduction

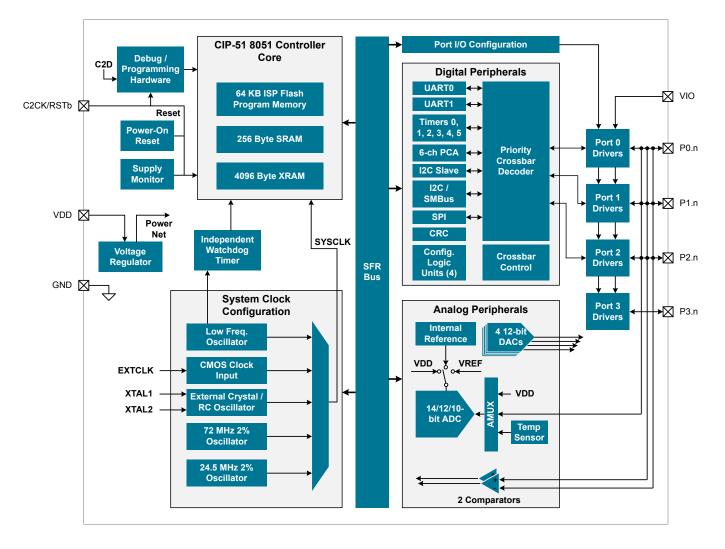



Figure 3.1. Detailed EFM8LB1 Block Diagram

### Universal Asynchronous Receiver/Transmitter (UART1)

UART1 is an asynchronous, full duplex serial port offering a variety of data formatting options. A dedicated baud rate generator with a 16-bit timer and selectable prescaler is included, which can generate a wide range of baud rates. A received data FIFO allows UART1 to receive multiple bytes before data is lost and an overflow occurs.

UART1 provides the following features:

- · Asynchronous transmissions and receptions
- Dedicated baud rate generator supports baud rates up to SYSCLK/2 (transmit) or SYSCLK/8 (receive)
- 5, 6, 7, 8, or 9 bit data
- Automatic start and stop generation
- Automatic parity generation and checking
- · Single-byte buffer on transmit and receive
- Auto-baud detection
- · LIN break and sync field detection
- CTS / RTS hardware flow control

### Serial Peripheral Interface (SPI0)

The serial peripheral interface (SPI) module provides access to a flexible, full-duplex synchronous serial bus. The SPI can operate as a master or slave device in both 3-wire or 4-wire modes, and supports multiple masters and slaves on a single SPI bus. The slave-select (NSS) signal can be configured as an input to select the SPI in slave mode, or to disable master mode operation in a multi-master environment, avoiding contention on the SPI bus when more than one master attempts simultaneous data transfers. NSS can also be configured as a firmware-controlled chip-select output in master mode, or disable to reduce the number of pins required. Additional general purpose port I/O pins can be used to select multiple slave devices in master mode.

- Supports 3- or 4-wire master or slave modes
- · Supports external clock frequencies up to 12 Mbps in master or slave mode
- · Support for all clock phase and polarity modes
- 8-bit programmable clock rate (master)
- Programmable receive timeout (slave)
- · Two byte FIFO on transmit and receive
- · Can operate in suspend or snooze modes and wake the CPU on reception of a byte
- · Support for multiple masters on the same data lines

#### System Management Bus / I2C (SMB0)

The SMBus I/O interface is a two-wire, bi-directional serial bus. The SMBus is compliant with the System Management Bus Specification, version 1.1, and compatible with the I<sup>2</sup>C serial bus.

The SMBus module includes the following features:

- · Standard (up to 100 kbps) and Fast (400 kbps) transfer speeds
- · Support for master, slave, and multi-master modes
- Hardware synchronization and arbitration for multi-master mode
- · Clock low extending (clock stretching) to interface with faster masters
- · Hardware support for 7-bit slave and general call address recognition
- Firmware support for 10-bit slave address decoding
- · Ability to inhibit all slave states
- Programmable data setup/hold times
- · Transmit and receive FIFOs (one byte) to help increase throughput in faster applications

## Table 4.9. ADC

| Parameter                        | Symbol            | Test Condition         | Min                | Тур  | Max                        | Unit |
|----------------------------------|-------------------|------------------------|--------------------|------|----------------------------|------|
| Resolution                       | N <sub>bits</sub> | 14 Bit Mode            |                    | 14   |                            |      |
|                                  |                   | 12 Bit Mode            |                    | 12   |                            |      |
|                                  |                   | 10 Bit Mode            |                    | 10   |                            | Bits |
| Throughput Rate                  | f <sub>S</sub>    | 14 Bit Mode            | _                  |      | 900                        | ksps |
| (High Speed Mode)                |                   | 12 Bit Mode            | _                  |      | 1                          | Msps |
|                                  |                   | 10 Bit Mode            |                    |      | 1.125                      | Msps |
| Throughput Rate                  | f <sub>S</sub>    | 14 Bit Mode            | _                  |      | 320                        | ksps |
| (Low Power Mode)                 |                   | 12 Bit Mode            | _                  |      | 340                        | ksps |
|                                  |                   | 10 Bit Mode            | _                  |      | 360                        | ksps |
| Tracking Time                    | t <sub>TRK</sub>  | High Speed Mode        | 217.8 <sup>1</sup> | _    | _                          | ns   |
|                                  |                   | Low Power Mode         | 450                |      | _                          | ns   |
| Power-On Time                    | t <sub>PWR</sub>  |                        | 1.2                |      | _                          | μs   |
| SAR Clock Frequency              | f <sub>SAR</sub>  | High Speed Mode        | _                  |      | 18.36                      | MHz  |
|                                  |                   | Low Power Mode         | _                  |      | 12.25                      | MHz  |
| Conversion Time <sup>2</sup>     | t <sub>CNV</sub>  | 14-Bit Conversion,     | 0.81               |      |                            | μs   |
|                                  |                   | SAR Clock =18 MHz,     |                    |      |                            |      |
|                                  |                   | System Clock = 72 MHz. |                    |      |                            |      |
|                                  |                   | 12-Bit Conversion,     |                    | 0.7  |                            |      |
|                                  |                   | SAR Clock =18 MHz,     |                    |      |                            |      |
|                                  |                   | System Clock = 72 MHz. |                    |      |                            |      |
|                                  |                   | 10-Bit Conversion,     |                    | 0.59 |                            |      |
|                                  |                   | SAR Clock =18 MHz,     |                    |      |                            |      |
|                                  |                   | System Clock = 72 MHz. |                    |      |                            |      |
| Sample/Hold Capacitor            | C <sub>SAR</sub>  | Gain = 1               | _                  | 5.2  | _                          | pF   |
|                                  |                   | Gain = 0.75            |                    | 3.9  | _                          | pF   |
|                                  |                   | Gain = 0.5             | _                  | 2.6  | _                          | pF   |
|                                  |                   | Gain = 0.25            | _                  | 1.3  | _                          | pF   |
| Input Pin Capacitance            | C <sub>IN</sub>   | High Quality Input     |                    | 20   | _                          | pF   |
|                                  |                   | Normal Input           | _                  | 20   | _                          | pF   |
| Input Mux Impedance              | R <sub>MUX</sub>  | High Quality Input     | _                  | 330  | _                          | Ω    |
|                                  |                   | Normal Input           | _                  | 550  | _                          | Ω    |
| Voltage Reference Range          | V <sub>REF</sub>  |                        | 1                  |      | V <sub>IO</sub>            | V    |
| Input Voltage Range <sup>3</sup> | V <sub>IN</sub>   |                        | 0                  |      | V <sub>REF</sub> /<br>Gain | V    |

### 4.1.11 Temperature Sensor

| Parameter                                                | Symbol           | Test Condition        | Min  | Тур             | Max | Unit  |
|----------------------------------------------------------|------------------|-----------------------|------|-----------------|-----|-------|
| Uncalibrated Offset                                      | V <sub>OFF</sub> | T <sub>A</sub> = 0 °C |      | 751             |     | mV    |
| Uncalibrated Offset Error <sup>1</sup>                   | EOFF             | T <sub>A</sub> = 0 °C |      | 19              |     | mV    |
| Slope                                                    | М                |                       |      | 2.82            | _   | mV/°C |
| Slope Error <sup>1</sup>                                 | E <sub>M</sub>   |                       | _    | 29              | _   | µV/°C |
| Linearity                                                | LIN              | T = 0 °C to 70 °C     | -    | -0.1 to<br>0.15 | _   | °C    |
|                                                          |                  | T = -20 °C to 85 °C   | -    | -0.2 to<br>0.35 | _   | °C    |
|                                                          |                  | T = -40 °C to 105 °C  | _    | -0.4 to 0.8     | _   | °C    |
| Turn-on Time                                             | t <sub>ON</sub>  |                       | _    | 3.5             | _   | μs    |
| Temp Sensor Error Using Typical                          | E <sub>TOT</sub> | T = 0 °C to 70 °C     | -2.6 | _               | 1.8 | °C    |
| Slope and Factory-Calibrated Off-<br>set <sup>2, 3</sup> |                  | T = -20 °C to 85 °C   | -2.9 | _               | 2.7 | °C    |
|                                                          |                  | T = -40 °C to 105 °C  | -3.2 | _               | 4.2 | °C    |

### Table 4.11. Temperature Sensor

# Note:

1. Represents one standard deviation from the mean.

2. The factory-calibrated offset value is stored in the read-only area of flash in locations 0xFFD4 (low byte) and 0xFFD5 (high byte). The 14-bit result represents the output of the ADC when sampling the temp sensor using the 1.65 V internal voltage reference.

3. The temp sensor error includes the offset calibration error, slope error, and linearity error. The values are based upon characterization and are not tested across temperature in production. The values represent three standard deviations above and below the mean. Additional information on achieving high measurement accuracy is available in AN929: Accurate Temperature Sensing with the EFM8 Laser Bee MCU Family.

## 4.1.12 DACs

| Table 4 | .12. C | DACs |
|---------|--------|------|
|---------|--------|------|

| Parameter                                 | Symbol                                                      | Test Condition                                         | Min   | Тур             | Мах             | Unit              |
|-------------------------------------------|-------------------------------------------------------------|--------------------------------------------------------|-------|-----------------|-----------------|-------------------|
| Resolution                                | N <sub>bits</sub>                                           |                                                        |       | 12              |                 | Bits              |
| Throughput Rate                           | f <sub>S</sub>                                              |                                                        | _     | _               | 200             | ksps              |
| Integral Nonlinearity                     | INL                                                         | DAC0 and DAC2                                          | -10   | -1.77 /<br>1.56 | 10              | LSB               |
|                                           |                                                             | DAC1 and DAC3                                          | -11.5 | -2.73 /<br>1.11 | 11.5            | LSB               |
| Differential Nonlinearity                 | DNL                                                         |                                                        | -1    | _               | 1               | LSB               |
| Output Noise                              | VREF =<br>2.4 V<br>f <sub>S</sub> = 0.1<br>Hz to 300<br>kHz |                                                        |       | 110             |                 | μV <sub>RMS</sub> |
| Slew Rate                                 | SLEW                                                        |                                                        | _     | ±1              | _               | V/µs              |
| Output Settling Time to 1% Full-<br>scale | tSETTLE                                                     | V <sub>OUT</sub> change between 25% and 75% Full Scale | _     | 2.6             | 5               | μs                |
| Power-on Time                             | t <sub>PWR</sub>                                            |                                                        | _     | _               | 10              | μs                |
| Voltage Reference Range                   | V <sub>REF</sub>                                            |                                                        | 1.15  | _               | V <sub>DD</sub> | V                 |
| Power Supply Rejection Ratio              | PSRR                                                        | DC, V <sub>OUT</sub> = 50% Full Scale                  | _     | 78              |                 | dB                |
| Total Harmonic Distortion                 | THD                                                         | V <sub>OUT</sub> = 10 kHz sine wave, 10% to<br>90%     | 54    | -               | _               | dB                |
| Offset Error                              | E <sub>OFF</sub>                                            | VREF = 2.4 V                                           | -8    | 0               | 8               | LSB               |
| Full-Scale Error                          | E <sub>FS</sub>                                             | VREF = 2.4 V                                           | -13   | ±5              | 13              | LSB               |
| External Load Impedance                   | R <sub>LOAD</sub>                                           |                                                        | 2     | _               |                 | kΩ                |
| External Load Capacitance <sup>1</sup>    | C <sub>LOAD</sub>                                           |                                                        |       | _               | 100             | pF                |
| Load Regulation                           |                                                             | V <sub>OUT</sub> = 50% Full Scale                      |       | 100             | 1300            | μV/mA             |
|                                           |                                                             | I <sub>OUT</sub> = -2 to 2 mA                          |       |                 |                 |                   |

# Note:

1. No minimum external load capacitance is required. However, under low loading conditions, it is possible for the DAC output to glitch during start-up. If smooth start-up is required, the minimum loading capacitance at the pin should be a minimum of 10 pF.

| Pin<br>Number | Pin Name | Description       | Crossbar Capability | Additional Digital<br>Functions | Analog Functions |
|---------------|----------|-------------------|---------------------|---------------------------------|------------------|
| 29            | P0.4     | Multifunction I/O | Yes                 | P0MAT.4                         | ADC0.2           |
|               |          |                   |                     | INT0.4                          | CMP0P.2          |
|               |          |                   |                     | INT1.4                          | CMP0N.2          |
|               |          |                   |                     | UART0_TX                        |                  |
|               |          |                   |                     | CLU0A.10                        |                  |
|               |          |                   |                     | CLU1A.8                         |                  |
|               |          |                   |                     | CLU3B.10                        |                  |
| 30            | P0.3     | Multifunction I/O | Yes                 | P0MAT.3                         | XTAL2            |
|               |          |                   |                     | EXTCLK                          |                  |
|               |          |                   |                     | INT0.3                          |                  |
|               |          |                   |                     | INT1.3                          |                  |
|               |          |                   |                     | CLU0B.9                         |                  |
|               |          |                   |                     | CLU2B.9                         |                  |
|               |          |                   |                     | CLU3A.9                         |                  |
| 31            | P0.2     | Multifunction I/O | Yes                 | P0MAT.2                         | XTAL1            |
|               |          |                   |                     | INT0.2                          | ADC0.1           |
|               |          |                   |                     | INT1.2                          | CMP0P.1          |
|               |          |                   |                     | CLU0OUT                         | CMP0N.1          |
|               |          |                   |                     | CLU0A.9                         |                  |
|               |          |                   |                     | CLU2B.8                         |                  |
|               |          |                   |                     | CLU3A.8                         |                  |
| 32            | P0.1     | Multifunction I/O | Yes                 | P0MAT.1                         | ADC0.0           |
|               |          |                   |                     | INT0.1                          | CMP0P.0          |
|               |          |                   |                     | INT1.1                          | CMP0N.0          |
|               |          |                   |                     | CLU0B.8                         | AGND             |
|               |          |                   |                     | CLU2A.9                         |                  |
|               |          |                   |                     | CLU3B.9                         |                  |
| Center        | GND      | Ground            |                     |                                 |                  |

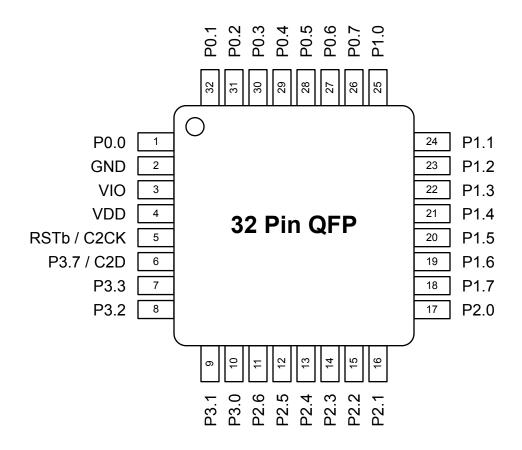



Figure 6.2. EFM8LB1x-QFP32 Pinout

| Table 6.2. | Pin Definitions | for EFM8LB1x-QFP32 |
|------------|-----------------|--------------------|
|------------|-----------------|--------------------|

| Pin<br>Number | Pin Name | Description            | Crossbar Capability | Additional Digital<br>Functions | Analog Functions |
|---------------|----------|------------------------|---------------------|---------------------------------|------------------|
| 1             | P0.0     | Multifunction I/O      | Yes                 | P0MAT.0                         | VREF             |
|               |          |                        |                     | INT0.0                          |                  |
|               |          |                        |                     | INT1.0                          |                  |
|               |          |                        |                     | CLU0A.8                         |                  |
|               |          |                        |                     | CLU2A.8                         |                  |
|               |          |                        |                     | CLU3B.8                         |                  |
| 2             | GND      | Ground                 |                     |                                 |                  |
| 3             | VIO      | I/O Supply Power Input |                     |                                 |                  |
| 4             | VDD      | Supply Power Input     |                     |                                 |                  |
| 5             | RSTb /   | Active-low Reset /     |                     |                                 |                  |
|               | C2CK     | C2 Debug Clock         |                     |                                 |                  |

| Pin<br>Number | Pin Name | Description         | Crossbar Capability | Additional Digital<br>Functions | Analog Functions |
|---------------|----------|---------------------|---------------------|---------------------------------|------------------|
| 6             | P3.7 /   | Multifunction I/O / |                     |                                 |                  |
|               | C2D      | C2 Debug Data       |                     |                                 |                  |
| 7             | P3.3     | Multifunction I/O   |                     |                                 | DAC3             |
| 8             | P3.2     | Multifunction I/O   |                     |                                 | DAC2             |
| 9             | P3.1     | Multifunction I/O   |                     |                                 | DAC1             |
| 10            | P3.0     | Multifunction I/O   |                     |                                 | DAC0             |
| 11            | P2.6     | Multifunction I/O   |                     |                                 | ADC0.19          |
|               |          |                     |                     |                                 | CMP1P.8          |
|               |          |                     |                     |                                 | CMP1N.8          |
| 12            | P2.5     | Multifunction I/O   |                     | CLU3OUT                         | ADC0.18          |
|               |          |                     |                     |                                 | CMP1P.7          |
|               |          |                     |                     |                                 | CMP1N.7          |
| 13            | P2.4     | Multifunction I/O   |                     |                                 | ADC0.17          |
|               |          |                     |                     |                                 | CMP1P.6          |
|               |          |                     |                     |                                 | CMP1N.6          |
| 14            | P2.3     | Multifunction I/O   | Yes                 | P2MAT.3                         | ADC0.16          |
|               |          |                     |                     | CLU1B.15                        | CMP1P.5          |
|               |          |                     |                     | CLU2B.15                        | CMP1N.5          |
|               |          |                     |                     | CLU3A.15                        |                  |
| 15            | P2.2     | Multifunction I/O   | Yes                 | P2MAT.2                         | ADC0.15          |
|               |          |                     |                     | CLU2OUT                         | CMP1P.4          |
|               |          |                     |                     | CLU1A.15                        | CMP1N.4          |
|               |          |                     |                     | CLU2B.14                        |                  |
|               |          |                     |                     | CLU3A.14                        |                  |
| 16            | P2.1     | Multifunction I/O   | Yes                 | P2MAT.1                         | ADC0.14          |
|               |          |                     |                     | I2C0_SCL                        | CMP1P.3          |
|               |          |                     |                     | CLU1B.14                        | CMP1N.3          |
|               |          |                     |                     | CLU2A.15                        |                  |
|               |          |                     |                     | CLU3B.15                        |                  |
| 17            | P2.0     | Multifunction I/O   | Yes                 | P2MAT.0                         | CMP1P.2          |
|               |          |                     |                     | I2C0_SDA                        | CMP1N.2          |
|               |          |                     |                     | CLU1A.14                        |                  |
|               |          |                     |                     | CLU2A.14                        |                  |
|               |          |                     |                     | CLU3B.14                        |                  |

| Pin<br>Number | Pin Name | Description       | Crossbar Capability | Additional Digital<br>Functions | Analog Functions |
|---------------|----------|-------------------|---------------------|---------------------------------|------------------|
| 25            | P1.0     | Multifunction I/O | Yes                 | P1MAT.0                         | ADC0.6           |
|               |          |                   |                     | CLU1OUT                         | CMP0P.6          |
|               |          |                   |                     | CLU0A.12                        | CMP0N.6          |
|               |          |                   |                     | CLU1A.10                        | CMP1P.1          |
|               |          |                   |                     | CLU2A.10                        | CMP1N.1          |
|               |          |                   |                     | CLU3B.12                        |                  |
| 26            | P0.7     | Multifunction I/O | Yes                 | P0MAT.7                         | ADC0.5           |
|               |          |                   |                     | INT0.7                          | CMP0P.5          |
|               |          |                   |                     | INT1.7                          | CMP0N.5          |
|               |          |                   |                     | CLU0B.11                        | CMP1P.0          |
|               |          |                   |                     | CLU1B.9                         | CMP1N.0          |
|               |          |                   |                     | CLU3A.11                        |                  |
| 27            | P0.6     | Multifunction I/O | Yes                 | P0MAT.6                         | ADC0.4           |
|               |          |                   |                     | CNVSTR                          | CMP0P.4          |
|               |          |                   |                     | INT0.6                          | CMP0N.4          |
|               |          |                   |                     | INT1.6                          |                  |
|               |          |                   |                     | CLU0A.11                        |                  |
|               |          |                   |                     | CLU1B.8                         |                  |
|               |          |                   |                     | CLU3A.10                        |                  |
| 28            | P0.5     | Multifunction I/O | Yes                 | P0MAT.5                         | ADC0.3           |
|               |          |                   |                     | INT0.5                          | CMP0P.3          |
|               |          |                   |                     | INT1.5                          | CMP0N.3          |
|               |          |                   |                     | UART0_RX                        |                  |
|               |          |                   |                     | CLU0B.10                        |                  |
|               |          |                   |                     | CLU1A.9                         |                  |
|               |          |                   |                     | CLU3B.11                        |                  |
| 29            | P0.4     | Multifunction I/O | Yes                 | P0MAT.4                         | ADC0.2           |
|               |          |                   |                     | INT0.4                          | CMP0P.2          |
|               |          |                   |                     | INT1.4                          | CMP0N.2          |
|               |          |                   |                     | UART0_TX                        |                  |
|               |          |                   |                     | CLU0A.10                        |                  |
|               |          |                   |                     | CLU1A.8                         |                  |
|               |          |                   |                     | CLU3B.10                        |                  |

| Pin<br>Number | Pin Name  | Description         | Crossbar Capability | Additional Digital<br>Functions | Analog Functions |
|---------------|-----------|---------------------|---------------------|---------------------------------|------------------|
| 2             | P0.0      | Multifunction I/O   | Yes                 | P0MAT.0                         | VREF             |
|               |           |                     |                     | INT0.0                          |                  |
|               |           |                     |                     | INT1.0                          |                  |
|               |           |                     |                     | CLU0A.8                         |                  |
|               |           |                     |                     | CLU2A.8                         |                  |
|               |           |                     |                     | CLU3B.8                         |                  |
| 3             | GND       | Ground              |                     |                                 |                  |
| 4             | VDD / VIO | Supply Power Input  |                     |                                 |                  |
| 5             | RSTb /    | Active-low Reset /  |                     |                                 |                  |
|               | C2CK      | C2 Debug Clock      |                     |                                 |                  |
| 6             | P3.0 /    | Multifunction I/O / |                     |                                 |                  |
|               | C2D       | C2 Debug Data       |                     |                                 |                  |
| 7             | P2.3      | Multifunction I/O   | Yes                 | P2MAT.3                         | DAC3             |
|               |           |                     |                     | CLU1B.15                        |                  |
|               |           |                     |                     | CLU2B.15                        |                  |
|               |           |                     |                     | CLU3A.15                        |                  |
| 8             | P2.2      | Multifunction I/O   | Yes                 | P2MAT.2                         | DAC2             |
|               |           |                     |                     | CLU1A.15                        |                  |
|               |           |                     |                     | CLU2B.14                        |                  |
|               |           |                     |                     | CLU3A.14                        |                  |
| 9             | P2.1      | Multifunction I/O   | Yes                 | P2MAT.1                         | DAC1             |
|               |           |                     |                     | CLU1B.14                        |                  |
|               |           |                     |                     | CLU2A.15                        |                  |
|               |           |                     |                     | CLU3B.15                        |                  |
| 10            | P2.0      | Multifunction I/O   | Yes                 | P2MAT.0                         | DAC0             |
|               |           |                     |                     | CLU1A.14                        |                  |
|               |           |                     |                     | CLU2A.14                        |                  |
|               |           |                     |                     | CLU3B.14                        |                  |
| 11            | P1.6      | Multifunction I/O   | Yes                 | P1MAT.6                         | ADC0.11          |
|               |           |                     |                     | CLU3OUT                         | CMP1P.5          |
|               |           |                     |                     | CLU0A.15                        | CMP1N.5          |
|               |           |                     |                     | CLU1B.12                        |                  |
|               |           |                     |                     | CLU2A.12                        |                  |

| Pin<br>Number | Pin Name | Description       | Crossbar Capability | Additional Digital<br>Functions | Analog Functions |
|---------------|----------|-------------------|---------------------|---------------------------------|------------------|
| 24            | P0.2     | Multifunction I/O | Yes                 | P0MAT.2                         | XTAL1            |
|               |          |                   |                     | INT0.2                          | ADC0.1           |
|               |          |                   |                     | INT1.2                          | CMP0P.1          |
|               |          |                   |                     | CLU0OUT                         | CMP0N.1          |
|               |          |                   |                     | CLU0A.9                         |                  |
|               |          |                   |                     | CLU2B.8                         |                  |
|               |          |                   |                     | CLU3A.8                         |                  |
| Center        | GND      | Ground            |                     |                                 |                  |

| Pin<br>Number | Pin Name | Description       | Crossbar Capability | Additional Digital<br>Functions | Analog Functions |
|---------------|----------|-------------------|---------------------|---------------------------------|------------------|
| 11            | P2.1     | Multifunction I/O | Yes                 | P2MAT.1                         | DAC1             |
|               |          |                   |                     | CLU1B.14                        |                  |
|               |          |                   |                     | CLU2A.15                        |                  |
|               |          |                   |                     | CLU3B.15                        |                  |
| 12            | P2.0     | Multifunction I/O | Yes                 | P2MAT.0                         | DAC0             |
|               |          |                   |                     | CLU1A.14                        |                  |
|               |          |                   |                     | CLU2A.14                        |                  |
|               |          |                   |                     | CLU3B.14                        |                  |
| 13            | P1.7     | Multifunction I/O | Yes                 | P1MAT.7                         | ADC0.12          |
|               |          |                   |                     | CLU0B.15                        | CMP1P.6          |
|               |          |                   |                     | CLU1B.13                        | CMP1N.6          |
|               |          |                   |                     | CLU2A.13                        |                  |
| 14            | P1.6     | Multifunction I/O | Yes                 | P1MAT.6                         | ADC0.11          |
|               |          |                   |                     | CLU3OUT                         | CMP1P.5          |
|               |          |                   |                     | CLU0A.15                        | CMP1N.5          |
|               |          |                   |                     | CLU1B.12                        |                  |
|               |          |                   |                     | CLU2A.12                        |                  |
| 15            | P1.5     | Multifunction I/O | Yes                 | P1MAT.5                         | ADC0.10          |
|               |          |                   |                     | CLU2OUT                         | CMP1P.4          |
|               |          |                   |                     | CLU0B.14                        | CMP1N.4          |
|               |          |                   |                     | CLU1A.13                        |                  |
|               |          |                   |                     | CLU2B.13                        |                  |
| 16            | P1.4     | Multifunction I/O | Yes                 | P1MAT.4                         | ADC0.9           |
|               |          |                   |                     | I2C0_SCL                        | CMP1P.3          |
|               |          |                   |                     | CLU0A.14                        | CMP1N.3          |
|               |          |                   |                     | CLU1A.12                        |                  |
|               |          |                   |                     | CLU2B.12                        |                  |
| 17            | P1.3     | Multifunction I/O | Yes                 | P1MAT.3                         | CMP1P.2          |
|               |          |                   |                     | I2C0_SDA                        | CMP1N.2          |
|               |          |                   |                     | CLU0B.13                        |                  |
|               |          |                   |                     | CLU1B.11                        |                  |
|               |          |                   |                     | CLU2B.11                        |                  |
|               |          |                   |                     | CLU3A.13                        |                  |

| Dimension                                                                                                                              | Min                                          | Max                                              |  |  |
|----------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------|--------------------------------------------------|--|--|
| Note:                                                                                                                                  |                                              |                                                  |  |  |
| 1. All dimensions shown are in millimeters                                                                                             | (mm) unless otherwise noted.                 |                                                  |  |  |
| 2. Dimensioning and Tolerancing is per the                                                                                             | ANSI Y14.5M-1994 specification.              |                                                  |  |  |
| 3. This Land Pattern Design is based on the IPC-7351 guidelines.                                                                       |                                              |                                                  |  |  |
| <ol> <li>All dimensions shown are at Maximum I<br/>cation Allowance of 0.05mm.</li> </ol>                                              | Naterial Condition (MMC). Least Material Con | dition (LMC) is calculated based on a Fabri      |  |  |
| <ol> <li>All metal pads are to be non-solder mas<br/>minimum, all the way around the pad.</li> </ol>                                   | k defined (NSMD). Clearance between the so   | older mask and the metal pad is to be 60 $\mu$ m |  |  |
| 6. A stainless steel, laser-cut and electro-polished stencil with trapezoidal walls should be used to assure good solder paste release |                                              |                                                  |  |  |
| 7. The stencil thickness should be 0.125 mm (5 mils).                                                                                  |                                              |                                                  |  |  |
| 8. The ratio of stencil aperture to land pad size should be 1:1 for all perimeter pads.                                                |                                              |                                                  |  |  |
| 9. A 2 x 2 array of 1.10 mm square openings on a 1.30 mm pitch should be used for the center pad.                                      |                                              |                                                  |  |  |
| 10 A No Clean Turne 2 colder neets is read                                                                                             | mmondod                                      |                                                  |  |  |

- 10. A No-Clean, Type-3 solder paste is recommended.
- 11. The recommended card reflow profile is per the JEDEC/IPC J-STD-020 specification for Small Body Components.

# 7.3 QFN32 Package Marking

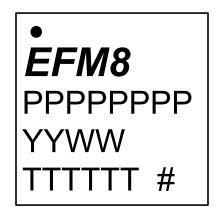



Figure 7.3. QFN32 Package Marking

The package marking consists of:

- PPPPPPP The part number designation.
- TTTTTT A trace or manufacturing code.
- YY The last 2 digits of the assembly year.
- WW The 2-digit workweek when the device was assembled.
- # The device revision (A, B, etc.).

# 8. QFP32 Package Specifications

### 8.1 QFP32 Package Dimensions

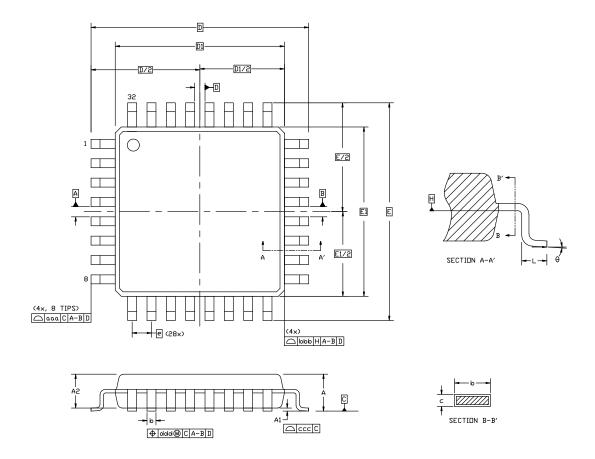



Figure 8.1. QFP32 Package Drawing

# Table 8.1. QFP32 Package Dimensions

| Dimension | Min            | Тур  | Мах  |
|-----------|----------------|------|------|
| A         | _              |      | 1.20 |
| A1        | 0.05           | —    | 0.15 |
| A2        | 0.95           | 1.00 | 1.05 |
| b         | 0.30           | 0.37 | 0.45 |
| C         | 0.09           | _    | 0.20 |
| D         | 9.00 BSC       |      |      |
| D1        | 7.00 BSC       |      |      |
| е         | 0.80 BSC       |      |      |
| E         | 9.00 BSC       |      |      |
| E1        | 7.00 BSC       |      |      |
| L         | 0.50 0.60 0.70 |      |      |

### 8.2 QFP32 PCB Land Pattern

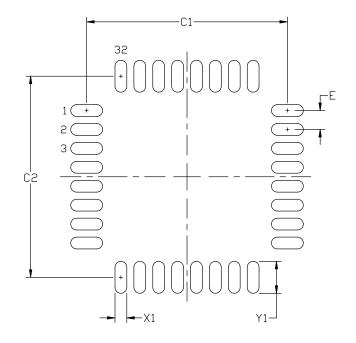



Figure 8.2. QFP32 PCB Land Pattern Drawing

| Table 8.2. | QFP32 PCB La | and Pattern | Dimensions |
|------------|--------------|-------------|------------|
|------------|--------------|-------------|------------|

| Dimension | Min      | Мах  |
|-----------|----------|------|
| C1        | 8.40     | 8.50 |
| C2        | 8.40     | 8.50 |
| E         | 0.80 BSC |      |
| X1        | 0.55     |      |
| Y1        | 1.5      |      |

### Note:

1. All dimensions shown are in millimeters (mm) unless otherwise noted.

2. This Land Pattern Design is based on the IPC-7351 guidelines.

3. All metal pads are to be non-solder mask defined (NSMD). Clearance between the solder mask and the metal pad is to be 60 µm minimum, all the way around the pad.

4. A stainless steel, laser-cut and electro-polished stencil with trapezoidal walls should be used to assure good solder paste release.

5. The stencil thickness should be 0.125 mm (5 mils).

6. The ratio of stencil aperture to land pad size should be 1:1 for all perimeter pads.

7. A No-Clean, Type-3 solder paste is recommended.

8. The recommended card reflow profile is per the JEDEC/IPC J-STD-020C specification for Small Body Components.

# 9. QFN24 Package Specifications

### 9.1 QFN24 Package Dimensions

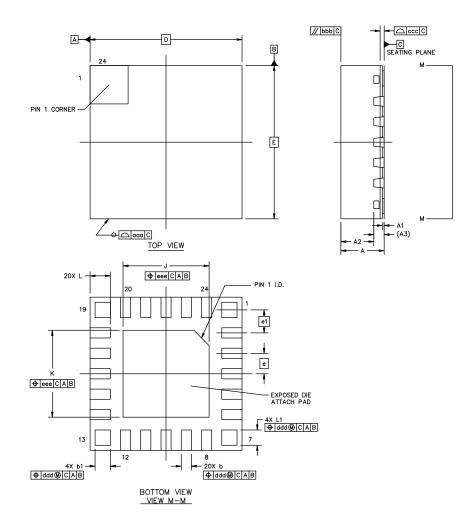



Figure 9.1. QFN24 Package Drawing

| Table 9.1. | QFN24 Package Dimensions |
|------------|--------------------------|
|------------|--------------------------|

| Dimension | Min       | Тур  | Мах  |
|-----------|-----------|------|------|
| A         | 0.8       | 0.85 | 0.9  |
| A1        | 0.00      | —    | 0.05 |
| A2        | —         | 0.65 | _    |
| A3        | 0.203 REF |      |      |
| b         | 0.15      | 0.2  | 0.25 |
| b1        | 0.25      | 0.3  | 0.35 |
| D         | 3.00 BSC  |      |      |
| E         | 3.00 BSC  |      |      |

| Dimension | Min  | Тур      | Мах  |  |
|-----------|------|----------|------|--|
| е         |      | 0.40 BSC |      |  |
| e1        |      | 0.45 BSC |      |  |
| J         | 1.60 | 1.70     | 1.80 |  |
| К         | 1.60 | 1.70     | 1.80 |  |
| L         | 0.35 | 0.40     | 0.45 |  |
| L1        | 0.25 | 0.30     | 0.35 |  |
| ааа       | _    | 0.10     | —    |  |
| bbb       | _    | 0.10     | _    |  |
| ссс       | _    | 0.08     | _    |  |
| ddd       | _    | 0.1      | _    |  |
| eee       | _    | 0.1      | —    |  |

# Note:

1. All dimensions shown are in millimeters (mm) unless otherwise noted.

2. Dimensioning and Tolerancing per ANSI Y14.5M-1994.

3. This drawing conforms to JEDEC Solid State Outline MO-248 but includes custom features which are toleranced per supplier designation.

4. Recommended card reflow profile is per the JEDEC/IPC J-STD-020 specification for Small Body Components.

### 9.2 QFN24 PCB Land Pattern

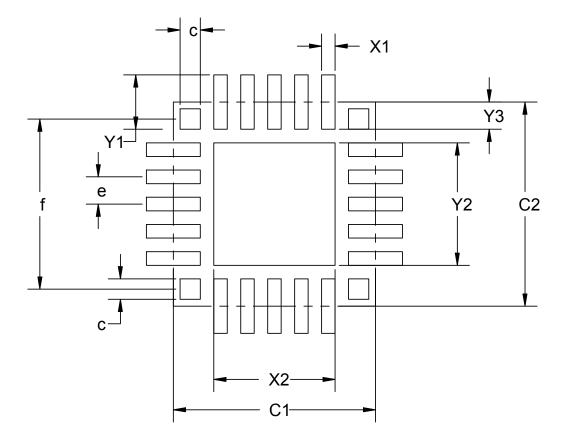



Figure 9.2. QFN24 PCB Land Pattern Drawing

# Table 9.2. QFN24 PCB Land Pattern Dimensions

| Dimension | Min       | Мах |
|-----------|-----------|-----|
| C1        | 3.00      |     |
| C2        | 3.00      |     |
| е         | 0.4       | REF |
| X1        | 0.20      |     |
| X2        | 1.80      |     |
| Y1        | 0.80      |     |
| Y2        | 1.80      |     |
| Y3        | 0.4       |     |
| f         | 2.50 REF  |     |
| С         | 0.25 0.35 |     |

### 10.2 QSOP24 PCB Land Pattern

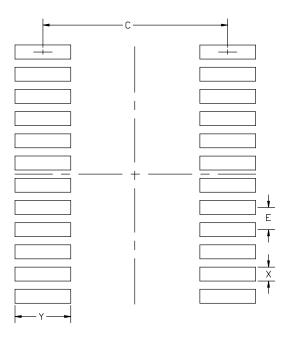



Figure 10.2. QSOP24 PCB Land Pattern Drawing

| Table 10.2. | <b>QSOP24 PCB Land Pattern Dimensions</b> |
|-------------|-------------------------------------------|
|-------------|-------------------------------------------|

| Dimension | Min       | Мах  |  |
|-----------|-----------|------|--|
| С         | 5.20      | 5.30 |  |
| E         | 0.635 BSC |      |  |
| X         | 0.30      | 0.40 |  |
| Y         | 1.50      | 1.60 |  |

### Note:

1. All dimensions shown are in millimeters (mm) unless otherwise noted.

2. This land pattern design is based on the IPC-7351 guidelines.

3. All metal pads are to be non-solder mask defined (NSMD). Clearance between the solder mask and the metal pad is to be 60 µm minimum, all the way around the pad.

4. A stainless steel, laser-cut and electro-polished stencil with trapezoidal walls should be used to assure good solder paste release.

5. The stencil thickness should be 0.125 mm (5 mils).

6. The ratio of stencil aperture to land pad size should be 1:1 for all perimeter pads.

7. A No-Clean, Type-3 solder paste is recommended.

8. The recommended card reflow profile is per the JEDEC/IPC J-STD-020 specification for Small Body Components.

Silicon Labs



Simplicity Studio<sup>4</sup>

## **Simplicity Studio**

One-click access to MCU and wireless tools, documentation, software, source code libraries & more. Available for Windows, Mac and Linux!







www.silabs.com/quality

Support and Community community.silabs.com

#### Disclaimer

Silicon Labs intends to provide customers with the latest, accurate, and in-depth documentation of all peripherals and modules available for system and software implementers using or intending to use the Silicon Labs products. Characterization data, available modules and peripherals, memory sizes and memory addresses refer to each specific device, and "Typical" parameters provided can and do vary in different applications. Application examples described herein are for illustrative purposes only. Silicon Labs reserves the right to make changes without further notice and limitation to product information, specifications, and descriptions herein, and does not give warranties as to the accuracy or completeness of the included information. Silicon Labs shall have no liability for the consequences of use of the information supplied herein. This document does not imply or express copyright licenses granted hereunder to design or fabricate any integrated circuits. The products are not designed or authorized to be used within any Life Support System without the specific written consent of Silicon Labs. A "Life Support System" is any product or system intended to support or sustain life and/or health, which, if it fails, can be reasonably expected to result in significant personal injury or death. Silicon Labs products are not designed or authorized for military applications. Silicon Labs products shall under no circumstances be used in weapons of mass destruction including (but not limited to) nuclear, biological or chemical weapons, or missiles capable of delivering such weapons.

#### **Trademark Information**

Silicon Laboratories Inc.®, Silicon Laboratories®, Silicon Labs®, SiLabs® and the Silicon Labs logo®, Bluegiga®, Bluegiga Logo®, Clockbuilder®, CMEMS®, DSPLL®, EFM®, EFM32®, EFR, Ember®, Energy Micro, Energy Micro logo and combinations thereof, "the world's most energy friendly microcontrollers", Ember®, EZLink®, EZRadio®, EZRadioPRO®, Gecko®, ISOmodem®, Precision32®, ProSLIC®, Simplicity Studio®, SiPHY®, Telegesis, the Telegesis Logo®, USBXpress® and others are trademarks or registered trademarks of Silicon Labs. ARM, CORTEX, Cortex-M3 and THUMB are trademarks or registered trademarks of ARM Holdings. Keil is a registered trademark of ARM Limited. All other products or brand names mentioned herein are trademarks of their respective holders.



Silicon Laboratories Inc. 400 West Cesar Chavez Austin, TX 78701 USA

# http://www.silabs.com