E·XFL

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Obsolete
Core Processor	CIP-51 8051
Core Size	8-Bit
Speed	72MHz
Connectivity	I ² C, SMBus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	21
Program Memory Size	16KB (16K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	1.25K x 8
Voltage - Supply (Vcc/Vdd)	2.2V ~ 3.6V
Data Converters	A/D 13x14b; D/A 2x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 105°C (TA)
Mounting Type	Surface Mount
Package / Case	24-SSOP (0.154", 3.90mm Width)
Supplier Device Package	24-QSOP
Purchase URL	https://www.e-xfl.com/product-detail/silicon-labs/efm8lb11f16e-b-qsop24r

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

I2C Slave (I2CSLAVE0)

The I2C Slave interface is a 2-wire, bidirectional serial bus that is compatible with the I2C Bus Specification 3.0. It is capable of transferring in high-speed mode (HS-mode) at speeds of up to 3.4 Mbps. Firmware can write to the I2C interface, and the I2C interface can autonomously control the serial transfer of data. The interface also supports clock stretching for cases where the core may be temporarily prohibited from transmitting a byte or processing a received byte during an I2C transaction. This module operates only as an I2C slave device.

The I2C module includes the following features:

- Standard (up to 100 kbps), Fast (400 kbps), Fast Plus (1 Mbps), and High-speed (3.4 Mbps) transfer speeds
- · Support for slave mode only
- · Clock low extending (clock stretching) to interface with faster masters
- · Hardware support for 7-bit slave address recognition
- Transmit and receive FIFOs (two byte) to help increase throughput in faster applications
- · Hardware support for multiple slave addresses with the option to save the matching address in the receive FIFO

16-bit CRC (CRC0)

The cyclic redundancy check (CRC) module performs a CRC using a 16-bit polynomial. CRC0 accepts a stream of 8-bit data and posts the 16-bit result to an internal register. In addition to using the CRC block for data manipulation, hardware can automatically CRC the flash contents of the device.

The CRC module is designed to provide hardware calculations for flash memory verification and communications protocols. The CRC module supports the standard CCITT-16 16-bit polynomial (0x1021), and includes the following features:

- Support for CCITT-16 polynomial
- Byte-level bit reversal
- · Automatic CRC of flash contents on one or more 256-byte blocks
- · Initial seed selection of 0x0000 or 0xFFFF

Configurable Logic Units (CLU0, CLU1, CLU2, and CLU3)

The Configurable Logic block consists of multiple Configurable Logic Units (CLUs). CLUs are flexible logic functions which may be used for a variety of digital functions, such as replacing system glue logic, aiding in the generation of special waveforms, or synchronizing system event triggers.

- · Four configurable logic units (CLUs), with direct-pin and internal logic connections
- Each unit supports 256 different combinatorial logic functions (AND, OR, XOR, muxing, etc.) and includes a clocked flip-flop for synchronous operations
- · Units may be operated synchronously or asynchronously
- · May be cascaded together to perform more complicated logic functions
- · Can operate in conjunction with serial peripherals such as UART and SPI or timing peripherals such as timers and PCA channels
- · Can be used to synchronize and trigger multiple on-chip resources (ADC, DAC, Timers, etc.)
- · Asynchronous output may be used to wake from low-power states

Parameter	Symbol	Test Condition	Min	Тур	Max	Unit
Power Supply Rejection Ratio	PSRR _{ADC}	At 1 kHz	_	66	_	dB
		At 1 MHz	_	43	_	dB
DC Performance	·		·			
Integral Nonlinearity	INL	14 Bit Mode	-3.5 ⁴	-1.2 / +5	8.5 ⁴	LSB
		12 Bit Mode	-1.9	-0.35 / +1	1.9	LSB
		10 Bit Mode	-0.6	±0.2	0.6	LSB
Differential Nonlinearity (Guaran-	DNL	14 Bit Mode	-14	±1	2.5 ⁴	LSB
teed Monotonic)		12 Bit Mode	-0.9	±0.3	0.9	LSB
		10 Bit Mode	-0.5	±0.2	0.5	LSB
Offset Error ⁵	E _{OFF}	14 Bit Mode	-84	-2.5	84	LSB
		12 Bit Mode	-2	0	2	LSB
		10 Bit Mode	-1	0	1	LSB
Offset Temperature Coefficient	TC _{OFF}		_	0.011	_	LSB/°C
Slope Error	E _M	14 Bit Mode	-15 ⁴	_	15 ⁴	LSB
		12 Bit Mode	-2.6	_	2.6	LSB
		10 Bit Mode	-1.1	_	1.1	LSB
Dynamic Performance 10 kHz Si	ne Wave Inp	ut 1 dB below full scale, Max thr	oughput, usin	g AGND pin		
Signal-to-Noise	SNR	14 Bit Mode	66 ⁴	72	_	dB
		12 Bit Mode	64	68	_	dB
		10 Bit Mode	59	61	_	dB
Signal-to-Noise Plus Distortion	SNDR	14 Bit Mode	66 ⁴	72	_	dB
		12 Bit Mode	64	68		dB
		10 Bit Mode	59	61	_	dB
Total Harmonic Distortion (Up to	THD	14 Bit Mode	_	-74	_	dB
5th Harmonic)		12 Bit Mode		-72	_	dB
		10 Bit Mode	_	-69	_	dB
Spurious-Free Dynamic Range	SFDR	14 Bit Mode		74	_	dB
		12 Bit Mode	_	74	_	dB
		10 Bit Mode	_	71	_	dB

Note:

1. This time is equivalent to four periods of a clock running at 18 MHz + 2%.

2. Conversion Time does not include Tracking Time. Total Conversion Time is:

Total Conversion Time = [RPT × (ADTK + NUMBITS + 1) × T(SARCLK)] + (T(ADCCLK) × 4)

where RPT is the number of conversions represented by the ADRPT field and ADCCLK is the clock selected for the ADC.

3. Absolute input pin voltage is limited by the $\ensuremath{\mathsf{V}_{\mathsf{IO}}}$ supply.

4. Measured with characterization data and not production tested.

5. The offset is determined using curve fitting since the specification is measured using linear search where the intercept is always positive.

4.1.12 DACs

Table 4	.12. C	DACs
---------	--------	------

Parameter	Symbol	Test Condition	Min	Тур	Max	Unit
Resolution	N _{bits}			12		Bits
Throughput Rate	f _S		_	_	200	ksps
Integral Nonlinearity	INL	DAC0 and DAC2	-10	-1.77 / 1.56	10	LSB
		DAC1 and DAC3	-11.5	-2.73 / 1.11	11.5	LSB
Differential Nonlinearity	DNL		-1	_	1	LSB
Output Noise	VREF = 2.4 V f _S = 0.1 Hz to 300 kHz			110		μV _{RMS}
Slew Rate	SLEW		_	±1	_	V/µs
Output Settling Time to 1% Full- scale	tSETTLE	V _{OUT} change between 25% and 75% Full Scale	_	2.6	5	μs
Power-on Time	t _{PWR}		_	_	10	μs
Voltage Reference Range	V _{REF}		1.15	_	V _{DD}	V
Power Supply Rejection Ratio	PSRR	DC, V _{OUT} = 50% Full Scale	_	78		dB
Total Harmonic Distortion	THD	V _{OUT} = 10 kHz sine wave, 10% to 90%	54	-	_	dB
Offset Error	E _{OFF}	VREF = 2.4 V	-8	0	8	LSB
Full-Scale Error	E _{FS}	VREF = 2.4 V	-13	±5	13	LSB
External Load Impedance	R _{LOAD}		2	_		kΩ
External Load Capacitance ¹	C _{LOAD}			_	100	pF
Load Regulation		V _{OUT} = 50% Full Scale		100	1300	μV/mA
		I _{OUT} = -2 to 2 mA				

Note:

1. No minimum external load capacitance is required. However, under low loading conditions, it is possible for the DAC output to glitch during start-up. If smooth start-up is required, the minimum loading capacitance at the pin should be a minimum of 10 pF.

Parameter	Symbol	Test Condition	Min	Тур	Max	Unit
Negative Hysteresis	HYS _{CP-}	CPHYN = 00	—	-1.5	—	mV
Mode 3 (CPMD = 11)		CPHYN = 01	—	-4	_	mV
		CPHYN = 10	—	-8	—	mV
		CPHYN = 11	—	-16	—	mV
Input Range (CP+ or CP-)	V _{IN}		-0.25	_	V _{IO} +0.25	V
Input Pin Capacitance	C _{CP}		—	7.5	—	pF
Internal Reference DAC Resolution	N _{bits}			6	1	bits
Common-Mode Rejection Ratio	CMRR _{CP}		—	70	_	dB
Power Supply Rejection Ratio	PSRR _{CP}		—	72	_	dB
Input Offset Voltage	V _{OFF}	T _A = 25 °C	-10	0	10	mV
Input Offset Tempco	TC _{OFF}		_	3.5	_	μV/°

4.1.14 Configurable Logic

Table 4.14. Configurable Logic

Parameter	Symbol	Test Condition	Min	Тур	Max	Unit
Propagation Delay	t _{DLY}	Through single CLU	_	—	35.3	ns
		Using an external pin				
		Through single CLU	_	3	_	ns
		Using an internal connection				
Clocking Frequency F _{CLK}		1 or 2 CLUs Cascaded	—	—	73.5	MHz
		3 or 4 CLUs Cascaded			36.75	MHz

4.1.15 Port I/O

Table 4.15. Port I/O

Parameter	Symbol	Test Condition	Min	Тур	Max	Unit
Output High Voltage (High Drive)	V _{OH}	I _{OH} = -7 mA, V _{IO} ≥ 3.0 V	V _{IO} - 0.7	_	—	V
		I_{OH} = -3.3 mA, 2.2 V ≤ V _{IO} < 3.0 V	V _{IO} x 0.8		_	V
		I _{OH} = -1.8 mA, 1.71 V ≤ V _{IO} < 2.2 V				
Output Low Voltage (High Drive)	V _{OL}	I _{OL} = 13.5 mA, V _{IO} ≥ 3.0 V		_	0.6	V
		I_{OL} = 7 mA, 2.2 V ≤ V_{IO} < 3.0 V		_	V _{IO} x 0.2	V
		I_{OL} = 3.6 mA, 1.71 V ≤ V_{IO} < 2.2 V				
Output High Voltage (Low Drive)	V _{OH}	I _{OH} = -4.75 mA, V _{IO} ≥ 3.0 V	V _{IO} - 0.7	_	_	V
		I_{OH} = -2.25 mA, 2.2 V ≤ V _{IO} < 3.0 V	V _{IO} x 0.8	_	_	V
		I_{OH} = -1.2 mA, 1.71 V \leq V _{IO} < 2.2 V				
Output Low Voltage (Low Drive)	V _{OL}	I _{OL} = 6.5 mA, V _{IO} ≥ 3.0 V		_	0.6	V
		I_{OL} = 3.5 mA, 2.2 V ≤ V_{IO} < 3.0 V	_	_	V _{IO} x 0.2	V
		I_{OL} = 1.8 mA, 1.71 V \leq V _{IO} < 2.2 V				
Input High Voltage	VIH		0.7 x	_	—	V
			V _{IO}			
Input Low Voltage	VIL		_	_	0.3 x	V
					V _{IO}	
Pin Capacitance	C _{IO}		—	7	—	pF
Weak Pull-Up Current	I _{PU}	V _{DD} = 3.6	-30	-20	-10	μA
(V _{IN} = 0 V)						
Input Leakage (Pullups off or Ana- log)	I _{LK}	GND < V _{IN} < V _{IO}	-1.1		4	μA
Input Leakage Current with VIN	I _{LK}	V _{IO} < V _{IN} < V _{IO} +2.5 V	0	5	150	μA
above V _{IO}		Any pin except P3.0, P3.1, P3.2, or P3.3				

5. Typical Connection Diagrams

5.1 Power

Figure 5.1 Power Connection Diagram on page 31 shows a typical connection diagram for the power pins of the device.

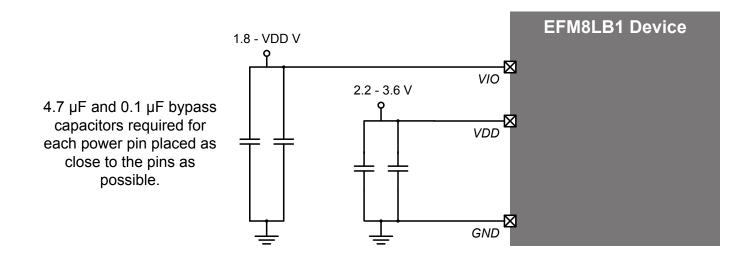


Figure 5.1. Power Connection Diagram

6. Pin Definitions

6.1 EFM8LB1x-QFN32 Pin Definitions

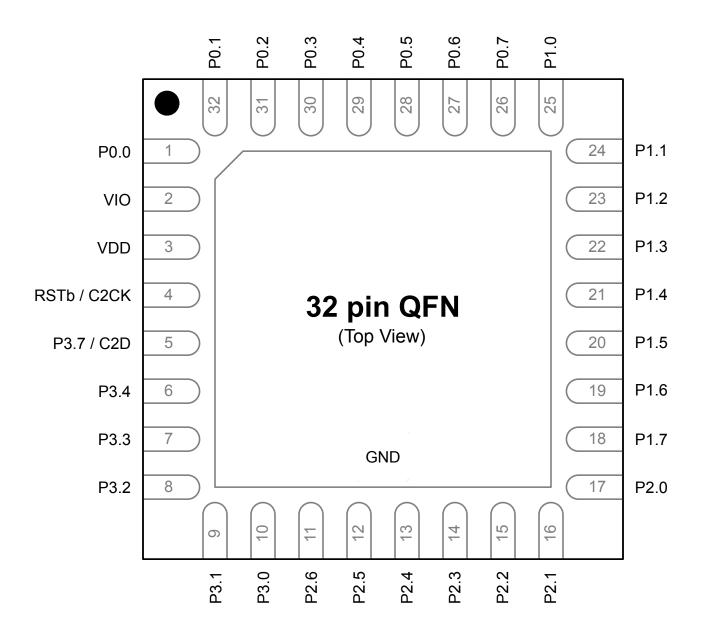


Figure 6.1. EFM8LB1x-QFN32 Pinout

Pin Number	Pin Name	Description	Crossbar Capability	Additional Digital Functions	Analog Functions
1	P0.0	Multifunction I/O	Yes	P0MAT.0	VREF
				INT0.0	
				INT1.0	
				CLU0A.8	
				CLU2A.8	
				CLU3B.8	
2	VIO	I/O Supply Power Input			
3	VDD	Supply Power Input			
4	RSTb /	Active-low Reset /			
	C2CK	C2 Debug Clock			
5	P3.7 /	Multifunction I/O /			
	C2D	C2 Debug Data			
6	P3.4	Multifunction I/O			
7	P3.3	Multifunction I/O			DAC3
8	P3.2	Multifunction I/O			DAC2
9	P3.1	Multifunction I/O			DAC1
10	P3.0	Multifunction I/O			DAC0
11	P2.6	Multifunction I/O			ADC0.19
					CMP1P.8
					CMP1N.8
12	P2.5	Multifunction I/O		CLU3OUT	ADC0.18
					CMP1P.7
					CMP1N.7
13	P2.4	Multifunction I/O			ADC0.17
					CMP1P.6
					CMP1N.6
14	P2.3	Multifunction I/O	Yes	P2MAT.3	ADC0.16
				CLU1B.15	CMP1P.5
				CLU2B.15	CMP1N.5
				CLU3A.15	

Table 6.1. Pin Definitions for EFM8LB1x-QFN32

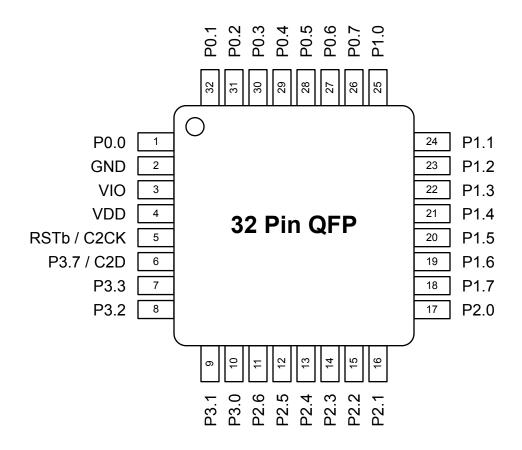
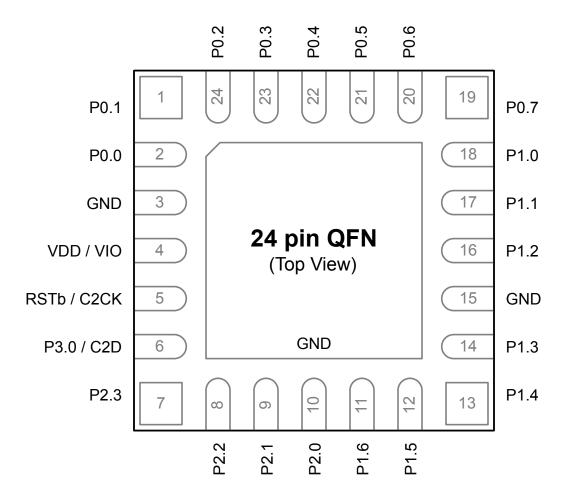



Figure 6.2. EFM8LB1x-QFP32 Pinout

Table 6.2.	Pin Definitions	for EFM8LB1x-QFP32
------------	-----------------	--------------------

Pin Number	Pin Name	Description	Crossbar Capability	Additional Digital Functions	Analog Functions
1	P0.0	Multifunction I/O	Yes	P0MAT.0	VREF
				INT0.0	
				INT1.0	
				CLU0A.8	
				CLU2A.8	
				CLU3B.8	
2	GND	Ground			
3	VIO	I/O Supply Power Input			
4	VDD	Supply Power Input			
5	RSTb /	Active-low Reset /			
	C2CK	C2 Debug Clock			

Table 6.3.	Pin Definitions	for EFM8LB1x-QFN24
------------	-----------------	--------------------

Pin Number	Pin Name	Description	Crossbar Capability	Additional Digital Functions	Analog Functions
1	P0.1	Multifunction I/O	Yes	P0MAT.1	ADC0.0
				INT0.1	CMP0P.0
				INT1.1	CMP0N.0
				CLU0B.8	AGND
				CLU2A.9	
				CLU3B.9	

Pin Number	Pin Name	Description	Crossbar Capability	Additional Digital Functions	Analog Functions
2	P0.0	Multifunction I/O	Yes	P0MAT.0	VREF
				INT0.0	
				INT1.0	
				CLU0A.8	
				CLU2A.8	
				CLU3B.8	
3	GND	Ground			
4	VDD / VIO	Supply Power Input			
5	RSTb /	Active-low Reset /			
	C2CK	C2 Debug Clock			
6	P3.0 /	Multifunction I/O /			
	C2D	C2 Debug Data			
7	P2.3	Multifunction I/O	Yes	P2MAT.3	DAC3
				CLU1B.15	
				CLU2B.15	
				CLU3A.15	
8	P2.2	Multifunction I/O	Yes	P2MAT.2	DAC2
				CLU1A.15	
				CLU2B.14	
				CLU3A.14	
9	P2.1	Multifunction I/O	Yes	P2MAT.1	DAC1
				CLU1B.14	
				CLU2A.15	
				CLU3B.15	
10	P2.0	Multifunction I/O	Yes	P2MAT.0	DAC0
				CLU1A.14	
				CLU2A.14	
				CLU3B.14	
11	P1.6	Multifunction I/O	Yes	P1MAT.6	ADC0.11
				CLU3OUT	CMP1P.5
				CLU0A.15	CMP1N.5
				CLU1B.12	
				CLU2A.12	

Pin Number	Pin Name	Description	Crossbar Capability	Additional Digital Functions	Analog Functions
12	P1.5	Multifunction I/O	Yes	P1MAT.5	ADC0.10
				CLU2OUT	CMP1P.4
				CLU0B.14	CMP1N.4
				CLU1A.13	
				CLU2B.13	
13	P1.4	Multifunction I/O	Yes	P1MAT.4	ADC0.9
				I2C0_SCL	CMP1P.3
				CLU0A.14	CMP1N.3
				CLU1A.12	
				CLU2B.12	
14	P1.3	Multifunction I/O	Yes	P1MAT.3	CMP1P.2
				I2C0_SDA	CMP1N.2
				CLU0B.13	
				CLU1B.11	
				CLU2B.11	
				CLU3A.13	
15	GND	Ground			
16	P1.2	Multifunction I/O	Yes	P1MAT.2	ADC0.8
				CLU0A.13	
				CLU1A.11	
				CLU2B.10	
				CLU3A.12	
17	P1.1	Multifunction I/O	Yes	P1MAT.1	ADC0.7
				CLU0B.12	
				CLU1B.10	
				CLU2A.11	
				CLU3B.13	
18	P1.0	Multifunction I/O	Yes	P1MAT.0	ADC0.6
				CLU0A.12	
				CLU1A.10	
				CLU2A.10	
				CLU3B.12	

Pin Number	Pin Name	Description	Crossbar Capability	Additional Digital Functions	Analog Functions
2	P0.2	Multifunction I/O	Yes	P0MAT.2	XTAL1
				INT0.2	ADC0.1
				INT1.2	CMP0P.1
				CLU0OUT	CMP0N.1
				CLU0A.9	
				CLU2B.8	
				CLU3A.8	
3	P0.1	Multifunction I/O	Yes	P0MAT.1	ADC0.0
				INT0.1	CMP0P.0
				INT1.1	CMP0N.0
				CLU0B.8	AGND
				CLU2A.9	
				CLU3B.9	
4	P0.0	Multifunction I/O	Yes	P0MAT.0	VREF
				INT0.0	
				INT1.0	
				CLU0A.8	
				CLU2A.8	
				CLU3B.8	
5	GND	Ground			
6	VDD / VIO	Supply Power Input			
7	RSTb /	Active-low Reset /			
	C2CK	C2 Debug Clock			
8	P3.0 /	Multifunction I/O /			
	C2D	C2 Debug Data			
9	P2.3	Multifunction I/O	Yes	P2MAT.3	DAC3
				CLU1B.15	
				CLU2B.15	
				CLU3A.15	
10	P2.2	Multifunction I/O	Yes	P2MAT.2	DAC2
				CLU1A.15	
				CLU2B.14	
				CLU3A.14	

7. QFN32 Package Specifications

7.1 QFN32 Package Dimensions

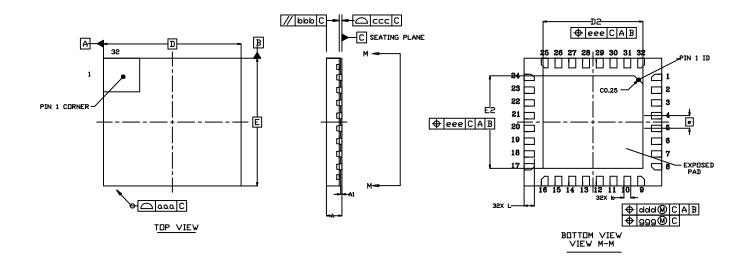


Figure 7.1. QFN32 Package Drawing

Dimension	Min	Тур	Мах
A	0.45	0.50	0.55
A1	0.00	0.035	0.05
b	0.15	0.20	0.25
D		4.00 BSC.	
D2	2.80	2.90	3.00
е	0.40 BSC.		
E	4.00 BSC.		
E2	2.80	2.90	3.00
L	0.20	0.30	0.40
ааа	—	_	0.10
bbb	—	_	0.10
ссс	—	_	0.08
ddd	—	—	0.10
eee	—	—	0.10
999	_	_	0.05

Table 7.1. QFN32 Package Dimensions

8. QFP32 Package Specifications

8.1 QFP32 Package Dimensions

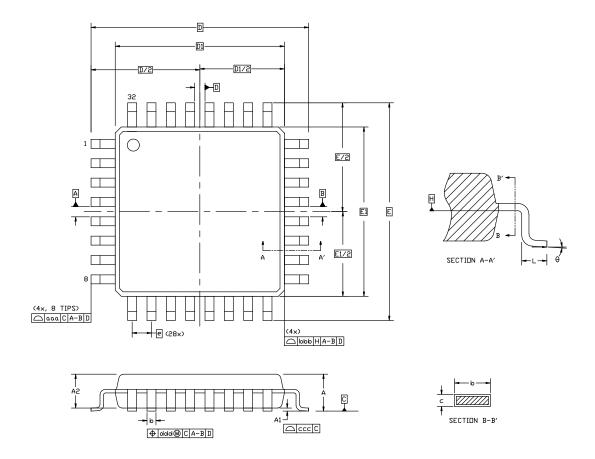


Figure 8.1. QFP32 Package Drawing

Table 8.1. QFP32 Package Dimensions

Dimension	Min	Тур	Мах
A	_		1.20
A1	0.05	—	0.15
A2	0.95	1.00	1.05
b	0.30	0.37	0.45
C	0.09	—	0.20
D	9.00 BSC		
D1	7.00 BSC		
е	0.80 BSC		
E	9.00 BSC		
E1	7.00 BSC		
L	0.50	0.60	0.70

8.2 QFP32 PCB Land Pattern

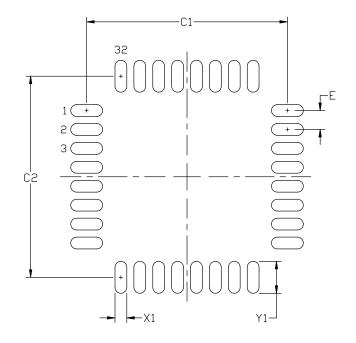


Figure 8.2. QFP32 PCB Land Pattern Drawing

Table 8.2.	QFP32 PCB La	and Pattern	Dimensions
------------	--------------	-------------	------------

Dimension	Min	Мах
C1	8.40	8.50
C2	8.40	8.50
E	0.80 BSC	
X1	0.55	
Y1	1.5	

Note:

1. All dimensions shown are in millimeters (mm) unless otherwise noted.

2. This Land Pattern Design is based on the IPC-7351 guidelines.

3. All metal pads are to be non-solder mask defined (NSMD). Clearance between the solder mask and the metal pad is to be 60 µm minimum, all the way around the pad.

4. A stainless steel, laser-cut and electro-polished stencil with trapezoidal walls should be used to assure good solder paste release.

5. The stencil thickness should be 0.125 mm (5 mils).

6. The ratio of stencil aperture to land pad size should be 1:1 for all perimeter pads.

7. A No-Clean, Type-3 solder paste is recommended.

8. The recommended card reflow profile is per the JEDEC/IPC J-STD-020C specification for Small Body Components.

Dimension	Min	Тур	Мах
е		0.40 BSC	
e1		0.45 BSC	
J	1.60	1.70	1.80
К	1.60	1.70	1.80
L	0.35	0.40	0.45
L1	0.25	0.30	0.35
ааа	_	0.10	—
bbb	_	0.10	_
ссс	_	0.08	_
ddd	_	0.1	_
eee	_	0.1	—

Note:

1. All dimensions shown are in millimeters (mm) unless otherwise noted.

2. Dimensioning and Tolerancing per ANSI Y14.5M-1994.

3. This drawing conforms to JEDEC Solid State Outline MO-248 but includes custom features which are toleranced per supplier designation.

4. Recommended card reflow profile is per the JEDEC/IPC J-STD-020 specification for Small Body Components.

10. QSOP24 Package Specifications

10.1 QSOP24 Package Dimensions

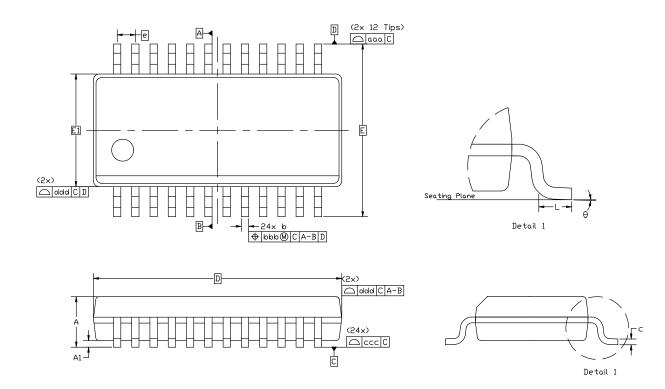


Figure 10.1. QSOP24 Package Drawing

Table 10.1. QSOP24 Package Dimensions

Dimension	Min	Тур	Мах
A	_	_	1.75
A1	0.10	—	0.25
b	0.20	—	0.30
С	0.10	_	0.25
D	8.65 BSC		
E	6.00 BSC		
E1	3.90 BSC		
e	0.635 BSC		
L	0.40	_	1.27
theta	0°	—	8°

10.2 QSOP24 PCB Land Pattern

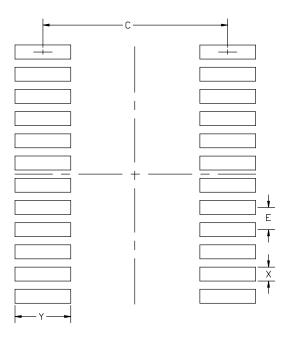


Figure 10.2. QSOP24 PCB Land Pattern Drawing

Table 10.2.	QSOP24 PCB Land Pattern Dimensions
-------------	---

Dimension	Min	Мах	
С	5.20	5.30	
E	0.635 BSC		
x	0.30	0.40	
Y	1.50	1.60	

Note:

1. All dimensions shown are in millimeters (mm) unless otherwise noted.

2. This land pattern design is based on the IPC-7351 guidelines.

3. All metal pads are to be non-solder mask defined (NSMD). Clearance between the solder mask and the metal pad is to be 60 µm minimum, all the way around the pad.

4. A stainless steel, laser-cut and electro-polished stencil with trapezoidal walls should be used to assure good solder paste release.

5. The stencil thickness should be 0.125 mm (5 mils).

6. The ratio of stencil aperture to land pad size should be 1:1 for all perimeter pads.

7. A No-Clean, Type-3 solder paste is recommended.

8. The recommended card reflow profile is per the JEDEC/IPC J-STD-020 specification for Small Body Components.

Figure 10.3. QSOP24 Package Marking

The package marking consists of:

- PPPPPPP The part number designation.
- TTTTTT A trace or manufacturing code.
- YY The last 2 digits of the assembly year.
- WW The 2-digit workweek when the device was assembled.
- # The device revision (A, B, etc.).