

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Details	
Product Status	Obsolete
Core Processor	CIP-51 8051
Core Size	8-Bit
Speed	72MHz
Connectivity	I ² C, SMBus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	20
Program Memory Size	32KB (32K x 8)
Program Memory Type	FLASH
EEPROM Size	·
RAM Size	2.25K x 8
Voltage - Supply (Vcc/Vdd)	2.2V ~ 3.6V
Data Converters	A/D 12x14b; D/A 2x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 105°C (TA)
Mounting Type	Surface Mount
Package / Case	24-VFQFN Exposed Pad
Supplier Device Package	24-QFN (3x3)
Purchase URL	https://www.e-xfl.com/product-detail/silicon-labs/efm8lb11f32e-b-qfn24r

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

3.2 Power

All internal circuitry draws power from the VDD supply pin. External I/O pins are powered from the VIO supply voltage (or VDD on devices without a separate VIO connection), while most of the internal circuitry is supplied by an on-chip LDO regulator. Control over the device power can be achieved by enabling/disabling individual peripherals as needed. Each analog peripheral can be disabled when not in use and placed in low power mode. Digital peripherals, such as timers and serial buses, have their clocks gated off and draw little power when they are not in use.

Table 3.1. Power Modes

Power Mode	Details	Mode Entry	Wake-Up Sources
Normal	Core and all peripherals clocked and fully operational		
ldle	 Core halted All peripherals clocked and fully operational Code resumes execution on wake event 	Set IDLE bit in PCON0	Any interrupt
Suspend	 Core and peripheral clocks halted HFOSC0 and HFOSC1 oscillators stopped Regulator in normal bias mode for fast wake Timer 3 and 4 may clock from LFOSC0 Code resumes execution on wake event 	 Switch SYSCLK to HFOSC0 Set SUSPEND bit in PCON1 	 Timer 4 Event SPI0 Activity I2C0 Slave Activity Port Match Event Comparator 0 Falling Edge CLUn Interrupt-Enabled Event
Stop	 All internal power nets shut down Pins retain state Exit on any reset source 	1. Clear STOPCF bit in REG0CN 2. Set STOP bit in PCON0	Any reset source
Snooze	 Core and peripheral clocks halted HFOSC0 and HFOSC1 oscillators stopped Regulator in low bias current mode for energy savings Timer 3 and 4 may clock from LFOSC0 Code resumes execution on wake event 	 Switch SYSCLK to HFOSC0 Set SNOOZE bit in PCON1 	 Timer 4 Event SPI0 Activity I2C0 Slave Activity Port Match Event Comparator 0 Falling Edge CLUn Interrupt-Enabled Event
Shutdown	 All internal power nets shut down Pins retain state Exit on pin or power-on reset 	1. Set STOPCF bit in REG0CN 2. Set STOP bit in PCON0	RSTb pin resetPower-on reset

3.3 I/O

Digital and analog resources are externally available on the device's multi-purpose I/O pins. Port pins P0.0-P2.3 can be defined as general-purpose I/O (GPIO), assigned to one of the internal digital resources through the crossbar or dedicated channels, or assigned to an analog function. Port pins P2.4 to P3.7 can be used as GPIO. Additionally, the C2 Interface Data signal (C2D) is shared with P3.0 or P3.7, depending on the package option.

The port control block offers the following features:

- Up to 29 multi-functions I/O pins, supporting digital and analog functions.
- · Flexible priority crossbar decoder for digital peripheral assignment.
- Two drive strength settings for each port.
- State retention feature allows pins to retain configuration through most reset sources.
- Two direct-pin interrupt sources with dedicated interrupt vectors (INT0 and INT1).
- Up to 24 direct-pin interrupt sources with shared interrupt vector (Port Match).

3.7 Analog

14/12/10-Bit Analog-to-Digital Converter (ADC0)

The ADC is a successive-approximation-register (SAR) ADC with 14-, 12-, and 10-bit modes, integrated track-and hold and a programmable window detector. The ADC is fully configurable under software control via several registers. The ADC may be configured to measure different signals using the analog multiplexer. The voltage reference for the ADC is selectable between internal and external reference sources.

- Up to 20 external inputs
- · Single-ended 14-bit, 12-bit and 10-bit modes
- Supports an output update rate of up to 1 Msps in 12-bit mode
- Channel sequencer logic with direct-to-XDATA output transfers
- Operation in a low power mode at lower conversion speeds
- Asynchronous hardware conversion trigger, selectable between software, external I/O and internal timer and configurable logic sources
- Output data window comparator allows automatic range checking
- Support for output data accumulation
- Conversion complete and window compare interrupts supported
- Flexible output data formatting
- Includes a fully-internal fast-settling 1.65 V reference and an on-chip precision 2.4 / 1.2 V reference, with support for using the supply as the reference, an external reference and signal ground
- Integrated factory-calibrated temperature sensor

12-Bit Digital-to-Analog Converters (DAC0, DAC1, DAC2, DAC3)

The DAC modules are 12-bit Digital-to-Analog Converters with the capability to synchronize multiple outputs together. The DACs are fully configurable under software control. The voltage reference for the DACs is selectable between internal and external reference sources.

- Voltage output with 12-bit performance
- · Hardware conversion trigger, selectable between software, external I/O and internal timer and configurable logic sources
- Outputs may be configured to persist through reset and maintain output state to avoid system disruption
- Multiple DAC outputs can be synchronized together
- · DAC pairs (DAC0 and 1 or DAC2 and 3) support complementary output waveform generation
- · Outputs may be switched between two levels according to state of configurable logic / PWM input trigger
- Flexible input data formatting
- · Supports references from internal supply, on-chip precision reference, or external VREF pin

Low Current Comparators (CMP0, CMP1)

An analog comparator is used to compare the voltage of two analog inputs, with a digital output indicating which input voltage is higher. External input connections to device I/O pins and internal connections are available through separate multiplexers on the positive and negative inputs. Hysteresis, response time, and current consumption may be programmed to suit the specific needs of the application.

The comparator includes the following features:

- · Up to 10 (CMP0) or 9 (CMP1) external positive inputs
- Up to 10 (CMP0) or 9 (CMP1) external negative inputs
- Additional input options:
 - Internal connection to LDO output
 - Direct connection to GND
 - Direct connection to VDD
 - Dedicated 6-bit reference DAC
- Synchronous and asynchronous outputs can be routed to pins via crossbar
- Programmable hysteresis between 0 and ±20 mV
- Programmable response time
- Interrupts generated on rising, falling, or both edges
- PWM output kill feature

4. Electrical Specifications

4.1 Electrical Characteristics

All electrical parameters in all tables are specified under the conditions listed in Table 4.1 Recommended Operating Conditions on page 14, unless stated otherwise.

Table 4.1. Recommended Operating Conditions

4.1.1 Recommended Operating Conditions

Parameter	Symbol	Test Condition	Min	Тур	Мах	Unit
Operating Supply Voltage on VDD	V _{DD}		2.2	_	3.6	V
Operating Supply Voltage on VIO ^{2,} 3	V _{IO}		2.2		V _{DD}	V
System Clock Frequency	f _{SYSCLK}		0	—	73.5	MHz
Operating Ambient Temperature	T _A		-40	_	105	°C
Note:						

Note:

1. All voltages with respect to GND

2. In certain package configurations, the VIO and VDD supplies are bonded to the same pin.

3. GPIO levels are undefined whenever VIO is less than 1 V.

4.1.12 DACs

Table 4	.12. C	DACs
---------	--------	------

Parameter	Symbol	Test Condition	Min	Тур	Мах	Unit
Resolution	N _{bits}			12		Bits
Throughput Rate	f _S		_	_	200	ksps
Integral Nonlinearity	INL	DAC0 and DAC2	-10	-1.77 / 1.56	10	LSB
		DAC1 and DAC3	-11.5	-2.73 / 1.11	11.5	LSB
Differential Nonlinearity	DNL		-1	_	1	LSB
Output Noise	VREF = 2.4 V f _S = 0.1 Hz to 300 kHz			110		μV _{RMS}
Slew Rate	SLEW		_	±1	_	V/µs
Output Settling Time to 1% Full- scale	tSETTLE	V _{OUT} change between 25% and 75% Full Scale	_	2.6	5	μs
Power-on Time	t _{PWR}		_	_	10	μs
Voltage Reference Range	V _{REF}		1.15	_	V _{DD}	V
Power Supply Rejection Ratio	PSRR	DC, V _{OUT} = 50% Full Scale	_	78		dB
Total Harmonic Distortion	THD	V _{OUT} = 10 kHz sine wave, 10% to 90%	54	_	_	dB
Offset Error	E _{OFF}	VREF = 2.4 V	-8	0	8	LSB
Full-Scale Error	E _{FS}	VREF = 2.4 V	-13	±5	13	LSB
External Load Impedance	R _{LOAD}		2	_		kΩ
External Load Capacitance ¹	C _{LOAD}			_	100	pF
Load Regulation		V _{OUT} = 50% Full Scale		100	1300	μV/mA
		I _{OUT} = -2 to 2 mA				

Note:

1. No minimum external load capacitance is required. However, under low loading conditions, it is possible for the DAC output to glitch during start-up. If smooth start-up is required, the minimum loading capacitance at the pin should be a minimum of 10 pF.

4.1.15 Port I/O

Table 4.15. Port I/O

Parameter	Symbol	Test Condition	Min	Тур	Max	Unit
Output High Voltage (High Drive)	V _{OH}	I _{OH} = -7 mA, V _{IO} ≥ 3.0 V	V _{IO} - 0.7	_	—	V
		I_{OH} = -3.3 mA, 2.2 V ≤ V _{IO} < 3.0 V	V _{IO} x 0.8		_	V
		I _{OH} = -1.8 mA, 1.71 V ≤ V _{IO} < 2.2 V				
Output Low Voltage (High Drive)	V _{OL}	I _{OL} = 13.5 mA, V _{IO} ≥ 3.0 V		_	0.6	V
		I_{OL} = 7 mA, 2.2 V ≤ V_{IO} < 3.0 V		_	V _{IO} x 0.2	V
		I_{OL} = 3.6 mA, 1.71 V ≤ V_{IO} < 2.2 V				
Output High Voltage (Low Drive)	V _{OH}	I _{OH} = -4.75 mA, V _{IO} ≥ 3.0 V	V _{IO} - 0.7	_	_	V
		I_{OH} = -2.25 mA, 2.2 V ≤ V _{IO} < 3.0 V	V _{IO} x 0.8	_	_	V
		I_{OH} = -1.2 mA, 1.71 V \leq V _{IO} < 2.2 V				
Output Low Voltage (Low Drive)	V _{OL}	I _{OL} = 6.5 mA, V _{IO} ≥ 3.0 V		_	0.6	V
		I_{OL} = 3.5 mA, 2.2 V ≤ V_{IO} < 3.0 V	_	_	V _{IO} x 0.2	V
		I_{OL} = 1.8 mA, 1.71 V \leq V _{IO} < 2.2 V				
Input High Voltage	VIH		0.7 x	_	—	V
			V _{IO}			
Input Low Voltage	VIL		_	_	0.3 x	V
					V _{IO}	
Pin Capacitance	C _{IO}		—	7	—	pF
Weak Pull-Up Current	I _{PU}	V _{DD} = 3.6	-30	-20	-10	μA
(V _{IN} = 0 V)						
Input Leakage (Pullups off or Ana- log)	I _{LK}	GND < V _{IN} < V _{IO}	-1.1		4	μA
Input Leakage Current with VIN	I _{LK}	V _{IO} < V _{IN} < V _{IO} +2.5 V	0	5	150	μA
above V _{IO}		Any pin except P3.0, P3.1, P3.2, or P3.3				

4.3 Absolute Maximum Ratings

Stresses above those listed in Table 4.19 Absolute Maximum Ratings on page 30 may cause permanent damage to the device. This is a stress rating only and functional operation of the devices at those or any other conditions above those indicated in the operation listings of this specification is not implied. Exposure to maximum rating conditions for extended periods may affect device reliability. For more information on the available quality and reliability data, see the Quality and Reliability Monitor Report at http://www.silabs.com/support/quality/pages/default.aspx.

Table 4.19. Absolute Maximum Ratings

Parameter	Symbol	Test Condition	Min	Мах	Unit
Ambient Temperature Under Bias	T _{BIAS}		-55	125	°C
Storage Temperature	T _{STG}		-65	150	°C
Voltage on VDD	V _{DD}		GND-0.3	4.2	V
Voltage on VIO ²	V _{IO}		GND-0.3	V _{DD} +0.3	V
Voltage on I/O pins or RSTb, excluding		V _{IO} > 3.3 V	GND-0.3	5.8	V
P2.0-P2.3 (QFN24 and QSOP24) or P3.0-P3.3 (QFN32 and QFP32)		V _{IO} < 3.3 V	GND-0.3	V _{IO} +2.5	V
Voltage on P2.0-P2.3 (QFN24 and QSOP24) or P3.0-P3.3 (QFN32 and QFP32)	V _{IN}		GND-0.3	V _{DD} +0.3	V
Total Current Sunk into Supply Pin	I _{VDD}		_	400	mA
Total Current Sourced out of Ground Pin	I _{GND}		400	_	mA
Current Sourced or Sunk by any I/O Pin or RSTb	I _{IO}		-100	100	mA
Operating Junction Temperature	TJ	T _A = -40 °C to 105 °C	-40	130	°C

Note:

1. Exposure to maximum rating conditions for extended periods may affect device reliability.

2. In certain package configurations, the VIO and VDD supplies are bonded to the same pin.

5. Typical Connection Diagrams

5.1 Power

Figure 5.1 Power Connection Diagram on page 31 shows a typical connection diagram for the power pins of the device.

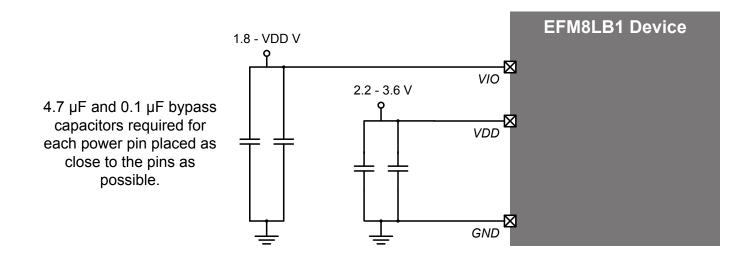


Figure 5.1. Power Connection Diagram

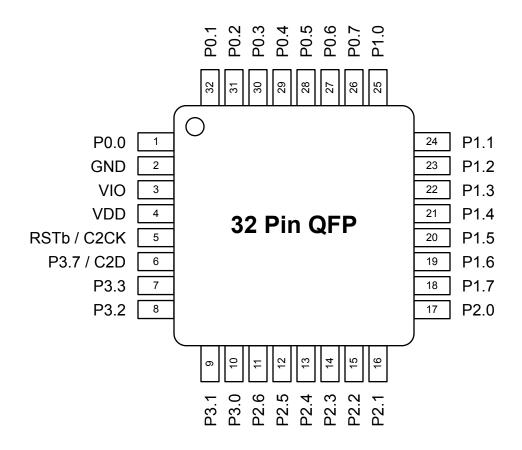
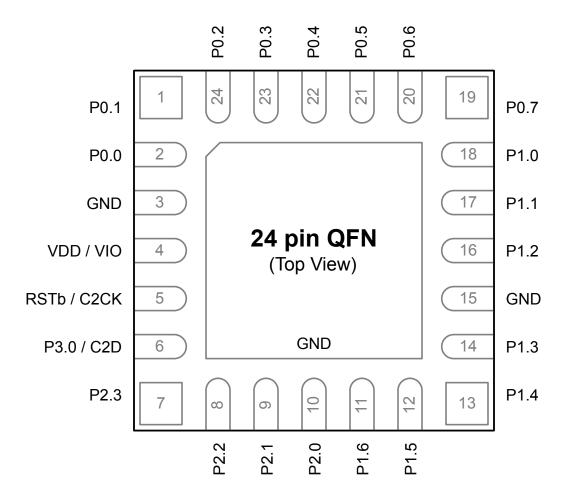



Figure 6.2. EFM8LB1x-QFP32 Pinout

Table 6.2.	Pin Definitions	for EFM8LB1x-QFP32
------------	-----------------	--------------------

Pin Number	Pin Name	Description	Crossbar Capability	Additional Digital Functions	Analog Functions
1	P0.0	Multifunction I/O	Yes	P0MAT.0	VREF
				INT0.0	
				INT1.0	
				CLU0A.8	
				CLU2A.8	
				CLU3B.8	
2	GND	Ground			
3	VIO	I/O Supply Power Input			
4	VDD	Supply Power Input			
5	RSTb /	Active-low Reset /			
	C2CK	C2 Debug Clock			

Pin Number	Pin Name	Description	Crossbar Capability	Additional Digital Functions	Analog Functions
30	P0.3	Multifunction I/O	Yes	P0MAT.3	XTAL2
				EXTCLK	
				INT0.3	
				INT1.3	
				CLU0B.9	
				CLU2B.9	
				CLU3A.9	
31	P0.2	Multifunction I/O	Yes	P0MAT.2	XTAL1
				INT0.2	ADC0.1
				INT1.2	CMP0P.1
				CLU0OUT	CMP0N.1
				CLU0A.9	
				CLU2B.8	
				CLU3A.8	
32	P0.1	Multifunction I/O	Yes	P0MAT.1	ADC0.0
				INT0.1	CMP0P.0
				INT1.1	CMP0N.0
				CLU0B.8	AGND
				CLU2A.9	
				CLU3B.9	

Table 6.3.	Pin Definitions	for EFM8LB1x-QFN24
------------	-----------------	--------------------

Pin Number	Pin Name	Description	Crossbar Capability	Additional Digital Functions	Analog Functions
1	P0.1	Multifunction I/O	Yes	P0MAT.1	ADC0.0
				INT0.1	CMP0P.0
				INT1.1	CMP0N.0
				CLU0B.8	AGND
				CLU2A.9	
				CLU3B.9	

Pin Number	Pin Name	Description	Crossbar Capability	Additional Digital Functions	Analog Functions
19	P0.7	Multifunction I/O	Yes	P0MAT.7	ADC0.5
				INT0.7	CMP0P.5
				INT1.7	CMP0N.5
				CLU1OUT	CMP1P.1
				CLU0B.11	CMP1N.1
				CLU1B.9	
				CLU3A.11	
20	P0.6	Multifunction I/O	Yes	P0MAT.6	ADC0.4
				CNVSTR	CMP0P.4
				INT0.6	CMP0N.4
				INT1.6	CMP1P.0
				CLU0A.11	CMP1N.0
				CLU1B.8	
				CLU3A.10	
21	P0.5	Multifunction I/O	Yes	P0MAT.5	ADC0.3
				INT0.5	CMP0P.3
				INT1.5	CMP0N.3
				UART0_RX	
				CLU0B.10	
				CLU1A.9	
				CLU3B.11	
22	P0.4	Multifunction I/O	Yes	P0MAT.4	ADC0.2
				INT0.4	CMP0P.2
				INT1.4	CMP0N.2
				UART0_TX	
				CLU0A.10	
				CLU1A.8	
				CLU3B.10	
23	P0.3	Multifunction I/O	Yes	P0MAT.3	XTAL2
				EXTCLK	
				INT0.3	
				INT1.3	
				CLU0B.9	
				CLU2B.9	
				CLU3A.9	

Pin Number	Pin Name	Description	Crossbar Capability	ility Additional Digital Analog Func Functions				
24	P0.2	Multifunction I/O	Yes	P0MAT.2	XTAL1			
				INT0.2	ADC0.1			
				INT1.2	CMP0P.1			
				CLU0OUT	CMP0N.1			
				CLU0A.9				
				CLU2B.8				
				CLU3A.8				
Center	GND	Ground						

Pin Number	Pin Name	Description	Crossbar Capability	Additional Digital Functions	Analog Functions
11	P2.1	Multifunction I/O	Yes	P2MAT.1	DAC1
				CLU1B.14	
				CLU2A.15	
				CLU3B.15	
12	P2.0	Multifunction I/O	Yes	P2MAT.0	DAC0
				CLU1A.14	
				CLU2A.14	
				CLU3B.14	
13	P1.7	Multifunction I/O	Yes	P1MAT.7	ADC0.12
				CLU0B.15	CMP1P.6
				CLU1B.13	CMP1N.6
				CLU2A.13	
14	P1.6	Multifunction I/O	Yes	P1MAT.6	ADC0.11
				CLU3OUT	CMP1P.5
				CLU0A.15	CMP1N.5
				CLU1B.12	
				CLU2A.12	
15	P1.5	Multifunction I/O	Yes	P1MAT.5	ADC0.10
				CLU2OUT	CMP1P.4
				CLU0B.14	CMP1N.4
				CLU1A.13	
				CLU2B.13	
16	P1.4	Multifunction I/O	Yes	P1MAT.4	ADC0.9
				I2C0_SCL	CMP1P.3
				CLU0A.14	CMP1N.3
				CLU1A.12	
				CLU2B.12	
17	P1.3	Multifunction I/O	Yes	P1MAT.3	CMP1P.2
				I2C0_SDA	CMP1N.2
				CLU0B.13	
				CLU1B.11	
				CLU2B.11	
				CLU3A.13	

7.2 QFN32 PCB Land Pattern

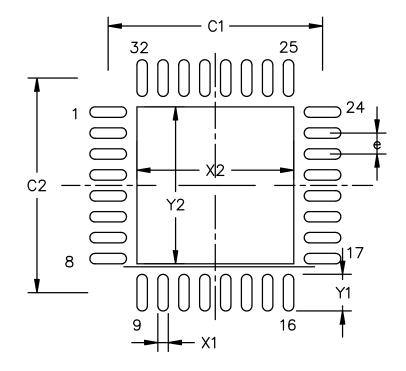


Figure 7.2. QFN32 PCB Land Pattern Drawing

Table 7.2.	QFN32 PCB Land Pattern Dimensions
------------	-----------------------------------

Dimension	Min	Мах
C1	—	4.10
C2	—	4.10
X1	—	0.2
X2	—	3.0
Y1	—	0.7
Y2	—	3.0
е	_	0.4

Dimension	Min	Тур	Мах			
ааа		0.20				
bbb		0.20				
ССС		0.10				
ddd		0.20				
theta	0°	3.5°	7°			
Note:	•					

1. All dimensions shown are in millimeters (mm) unless otherwise noted.

2. Dimensioning and Tolerancing per ANSI Y14.5M-1994.

3. This drawing conforms to JEDEC outline MS-026.

4. Recommended card reflow profile is per the JEDEC/IPC J-STD-020 specification for Small Body Components.

8.2 QFP32 PCB Land Pattern

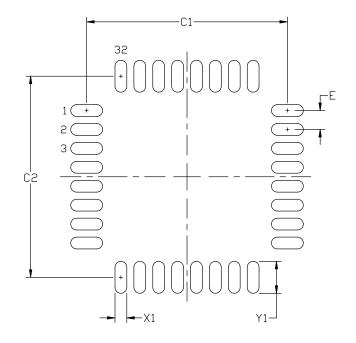


Figure 8.2. QFP32 PCB Land Pattern Drawing

Table 8.2.	QFP32 PCB La	and Pattern	Dimensions
------------	--------------	-------------	------------

Dimension	Min	Мах							
C1	8.40	8.50							
C2	8.40	8.50							
E	0.80	0.80 BSC							
X1	0.	0.55							
Y1	1	1.5							

Note:

1. All dimensions shown are in millimeters (mm) unless otherwise noted.

2. This Land Pattern Design is based on the IPC-7351 guidelines.

3. All metal pads are to be non-solder mask defined (NSMD). Clearance between the solder mask and the metal pad is to be 60 µm minimum, all the way around the pad.

4. A stainless steel, laser-cut and electro-polished stencil with trapezoidal walls should be used to assure good solder paste release.

5. The stencil thickness should be 0.125 mm (5 mils).

6. The ratio of stencil aperture to land pad size should be 1:1 for all perimeter pads.

7. A No-Clean, Type-3 solder paste is recommended.

8. The recommended card reflow profile is per the JEDEC/IPC J-STD-020C specification for Small Body Components.

Dimension	Min	Тур	Мах						
е		0.40 BSC							
e1		0.45 BSC							
J	1.60	1.70	1.80						
К	1.60	1.70	1.80						
L	0.35	0.40	0.45						
L1	0.25	0.30	0.35						
ааа	_	0.10	—						
bbb	_	0.10	_						
ссс	_	0.08	_						
ddd	_	0.1	_						
eee	_	0.1	—						

Note:

1. All dimensions shown are in millimeters (mm) unless otherwise noted.

2. Dimensioning and Tolerancing per ANSI Y14.5M-1994.

3. This drawing conforms to JEDEC Solid State Outline MO-248 but includes custom features which are toleranced per supplier designation.

4. Recommended card reflow profile is per the JEDEC/IPC J-STD-020 specification for Small Body Components.

10.2 QSOP24 PCB Land Pattern

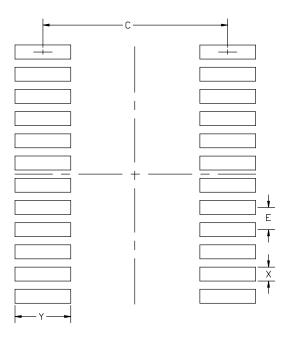


Figure 10.2. QSOP24 PCB Land Pattern Drawing

Table 10.2.	QSOP24 PCB Land Pattern Dimensions
-------------	---

Dimension	Min	Мах					
С	5.20	5.30					
E	0.635 BSC						
X	0.30	0.40					
Y	1.50	1.60					

Note:

1. All dimensions shown are in millimeters (mm) unless otherwise noted.

2. This land pattern design is based on the IPC-7351 guidelines.

3. All metal pads are to be non-solder mask defined (NSMD). Clearance between the solder mask and the metal pad is to be 60 µm minimum, all the way around the pad.

4. A stainless steel, laser-cut and electro-polished stencil with trapezoidal walls should be used to assure good solder paste release.

5. The stencil thickness should be 0.125 mm (5 mils).

6. The ratio of stencil aperture to land pad size should be 1:1 for all perimeter pads.

7. A No-Clean, Type-3 solder paste is recommended.

8. The recommended card reflow profile is per the JEDEC/IPC J-STD-020 specification for Small Body Components.

11. Revision History

11.1 Revision 1.01

October 21st, 2016

Updated QFN24 center pad stencil description.

11.2 Revision 1.0

September 6th, 2016

Updated part numbers to revision B.

Updated many specifications with full characterization data.

Added a note regarding which DACs are available to Table 2.1 Product Selection Guide on page 2.

Added specifications for 4.1.16 SMBus.

Added bootloader pinout information to 3.10 Bootloader.

Added CRC Calculation Time to 4.1.4 Flash Memory.

11.3 Revision 0.5

February 10th, 2016

Updated Figure 5.2 Debug Connection Diagram on page 32 to move the pull-up resistor on C2D / RSTb to after the series resistor instead of before.

Added S0 devices and information about the SMBus bootloader in 3.10 Bootloader.

Added a reference to AN945: EFM8 Factory Bootloader User Guide in 3.10 Bootloader.

Added mention of the pre-programmed bootloaders in 1. Feature List.

Updated all part numbers to revision B.

Added the C oscillator, which is now available on revision B.

Adjusted C1, C2, X2, Y2, and Y1 maximums for 7.2 QFN32 PCB Land Pattern.

Adjusted package markings for QFN32 and QSOP24 packages.

Filled in TBD minimum and maximum values for DAC Differential Nonlinearity in Table 4.12 DACs on page 24.

11.4 Revision 0.4

Updated specification tables based on current device characterization status and production test limits.

Added bootloader section.

Added typical connection diagrams.

Corrected CLU connections in pin function tables.

11.5 Revision 0.3

Added information on the bootloader to 3.10 Bootloader.

Updated some characterization TBD values.

11.6 Revision 0.1

Initial release.

	6.2 EFM8LB1x-QFP32 Pin Definitions		 		 										.38
	6.3 EFM8LB1x-QFN24 Pin Definitions		 		 										.43
	6.4 EFM8LB1x-QSOP24 Pin Definitions		 		 										.48
7.	. QFN32 Package Specifications.		 		 										53
	7.1 QFN32 Package Dimensions														
	7.2 QFN32 PCB Land Pattern														
	7.3 QFN32 Package Marking														
8	. QFP32 Package Specifications														
0.	8.1 QFP32 Package Dimensions														
	8.2 QFP32 PCB Land Pattern														
	8.3 QFP32 Package Marking														
•															
9.	9.1 QFN24 Package Dimensions														
	-														
	9.2 QFN24 PCB Land Pattern														
	9.3 QFN24 Package Marking														
10	0. QSOP24 Package Specifications														
	10.1 QSOP24 Package Dimensions														
	10.2 QSOP24 PCB Land Pattern														
	10.3 QSOP24 Package Marking														
11	1. Revision History	• •	 	•	 	•	•	•	•	•	•	•	•	•	69
	11.1 Revision 1.01		 		 		•	•	•	•	•	•			.69
	11.2 Revision 1.0		 	•	 	•				•	•				.69
	11.3 Revision 0.5		 		 			•		•	•				.69
	11.4 Revision 0.4		 	•	 	•				•	•				.69
	11.5 Revision 0.3		 		 										.69
	11.6 Revision 0.1		 		 		•	•		•	•	•			.69
Та	able of Contents		 		 										70