E·XFL

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Obsolete
Core Processor	CIP-51 8051
Core Size	8-Bit
Speed	72MHz
Connectivity	I ² C, SMBus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	21
Program Memory Size	32KB (32K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	2.25K x 8
Voltage - Supply (Vcc/Vdd)	2.2V ~ 3.6V
Data Converters	A/D 13x14b; D/A 2x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 105°C (TA)
Mounting Type	Surface Mount
Package / Case	24-SSOP (0.154", 3.90mm Width)
Supplier Device Package	24-QSOP
Purchase URL	https://www.e-xfl.com/product-detail/silicon-labs/efm8lb11f32e-b-qsop24

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

3.7 Analog

14/12/10-Bit Analog-to-Digital Converter (ADC0)

The ADC is a successive-approximation-register (SAR) ADC with 14-, 12-, and 10-bit modes, integrated track-and hold and a programmable window detector. The ADC is fully configurable under software control via several registers. The ADC may be configured to measure different signals using the analog multiplexer. The voltage reference for the ADC is selectable between internal and external reference sources.

- Up to 20 external inputs
- · Single-ended 14-bit, 12-bit and 10-bit modes
- Supports an output update rate of up to 1 Msps in 12-bit mode
- Channel sequencer logic with direct-to-XDATA output transfers
- Operation in a low power mode at lower conversion speeds
- Asynchronous hardware conversion trigger, selectable between software, external I/O and internal timer and configurable logic sources
- Output data window comparator allows automatic range checking
- Support for output data accumulation
- Conversion complete and window compare interrupts supported
- Flexible output data formatting
- Includes a fully-internal fast-settling 1.65 V reference and an on-chip precision 2.4 / 1.2 V reference, with support for using the supply as the reference, an external reference and signal ground
- Integrated factory-calibrated temperature sensor

12-Bit Digital-to-Analog Converters (DAC0, DAC1, DAC2, DAC3)

The DAC modules are 12-bit Digital-to-Analog Converters with the capability to synchronize multiple outputs together. The DACs are fully configurable under software control. The voltage reference for the DACs is selectable between internal and external reference sources.

- Voltage output with 12-bit performance
- · Hardware conversion trigger, selectable between software, external I/O and internal timer and configurable logic sources
- Outputs may be configured to persist through reset and maintain output state to avoid system disruption
- Multiple DAC outputs can be synchronized together
- · DAC pairs (DAC0 and 1 or DAC2 and 3) support complementary output waveform generation
- · Outputs may be switched between two levels according to state of configurable logic / PWM input trigger
- Flexible input data formatting
- · Supports references from internal supply, on-chip precision reference, or external VREF pin

Low Current Comparators (CMP0, CMP1)

An analog comparator is used to compare the voltage of two analog inputs, with a digital output indicating which input voltage is higher. External input connections to device I/O pins and internal connections are available through separate multiplexers on the positive and negative inputs. Hysteresis, response time, and current consumption may be programmed to suit the specific needs of the application.

The comparator includes the following features:

- · Up to 10 (CMP0) or 9 (CMP1) external positive inputs
- Up to 10 (CMP0) or 9 (CMP1) external negative inputs
- Additional input options:
 - Internal connection to LDO output
 - Direct connection to GND
 - Direct connection to VDD
 - Dedicated 6-bit reference DAC
- Synchronous and asynchronous outputs can be routed to pins via crossbar
- Programmable hysteresis between 0 and ±20 mV
- Programmable response time
- Interrupts generated on rising, falling, or both edges
- PWM output kill feature

3.8 Reset Sources

Reset circuitry allows the controller to be easily placed in a predefined default condition. On entry to this reset state, the following occur:

- The core halts program execution.
- · Module registers are initialized to their defined reset values unless the bits reset only with a power-on reset.
- · External port pins are forced to a known state.
- · Interrupts and timers are disabled.

All registers are reset to the predefined values noted in the register descriptions unless the bits only reset with a power-on reset. The contents of RAM are unaffected during a reset; any previously stored data is preserved as long as power is not lost. By default, the Port I/O latches are reset to 1 in open-drain mode, with weak pullups enabled during and after the reset. Optionally, firmware may configure the port I/O, DAC outputs, and precision reference to maintain state through system resets other than power-on resets. For Supply Monitor and power-on resets, the RSTb pin is driven low until the device exits the reset state. On exit from the reset state, the program counter (PC) is reset, and the system clock defaults to an internal oscillator. The Watchdog Timer is enabled, and program execution begins at location 0x0000.

Reset sources on the device include the following:

- Power-on reset
- External reset pin
- Comparator reset
- · Software-triggered reset
- Supply monitor reset (monitors VDD supply)
- · Watchdog timer reset
- · Missing clock detector reset
- · Flash error reset

3.9 Debugging

The EFM8LB1 devices include an on-chip Silicon Labs 2-Wire (C2) debug interface to allow flash programming and in-system debugging with the production part installed in the end application. The C2 interface uses a clock signal (C2CK) and a bi-directional C2 data signal (C2D) to transfer information between the device and a host system. See the C2 Interface Specification for details on the C2 protocol.

3.10 Bootloader

All devices come pre-programmed with a UART0 bootloader or an SMBus bootloader. These bootloaders reside in the code security page, which is the last page of code flash; they can be erased if they are not needed.

The byte before the Lock Byte is the Bootloader Signature Byte. Setting this byte to a value of 0xA5 indicates the presence of the bootloader in the system. Any other value in this location indicates that the bootloader is not present in flash.

When a bootloader is present, the device will jump to the bootloader vector after any reset, allowing the bootloader to run. The bootloader then determines if the device should stay in bootload mode or jump to the reset vector located at 0x0000. When the bootloader is not present, the device will jump to the reset vector of 0x0000 after any reset.

More information about the bootloader protocol and usage can be found in *AN945: EFM8 Factory Bootloader User Guide*. Application notes can be found on the Silicon Labs website (www.silabs.com/8bit-appnotes) or within Simplicity Studio by using the [Application Notes] tile.

Figure 3.2. Flash Memory Map with Bootloader - 62.5 KB Devices

Bootloader	Pins for Bootload Communication
UART	TX – P0.4
	RX – P0.5
SMBus	P0.2 – SDA ¹
	P0.3 – SCL ¹

4.1.10 Voltage Reference

Table 4	4.10.	Voltage	Reference
---------	-------	---------	-----------

Parameter	Symbol	Test Condition	Min	Тур	Мах	Unit
Internal Fast Settling Reference		1		1		
Output Voltage	V _{REFFS}		1.62	1.65	1.68	V
(Full Temperature and Supply Range)						
Temperature Coefficient	TC _{REFFS}			50	_	ppm/°C
Turn-on Time	t _{REFFS}		_	—	1.5	μs
Power Supply Rejection	PSRR _{REF} FS		_	400		ppm/V
On-chip Precision Reference	1			·	·	
Valid Supply Range	V _{DD}	1.2 V Output	2.2	_	3.6	V
		2.4 V Output	2.7	—	3.6	V
Output Voltage	V _{REFP}	1.2 V Output, V _{DD} = 3.3 V, T = 25 °C	1.195	1.2	1.205	V
		1.2 V Output	1.18	1.2	1.22	V
		2.4 V Output, V _{DD} = 3.3 V, T = 25 °C	2.39	2.4	2.41	V
		2.4 V Output	2.36	2.4	2.44	V
Turn-on Time, settling to 0.5 LSB	t _{VREFP}	4.7 μF tantalum + 0.1 μF ceramic bypass on VREF pin	_	3	_	ms
		0.1 µF ceramic bypass on VREF pin	_	100	_	μs
Load Regulation	LR _{VREFP}	VREF = 2.4 V, Load = 0 to 200 μA to GND	—	8	_	μV/μΑ
		VREF = 1.2 V, Load = 0 to 200 μA to GND	_	5	_	μV/μΑ
Load Capacitor	C _{VREFP}	Load = 0 to 200 µA to GND	0.1	—	—	μF
Short-circuit current	ISC _{VREFP}		—	—	8	mA
Power Supply Rejection	PSRR _{VRE} FP		_	75	_	dB
External Reference						
Input Current	I _{EXTREF}	ADC Sample Rate = 1 Msps; VREF = 3.0 V	_	5	_	μA

4.1.11 Temperature Sensor

Parameter	Symbol	Test Condition	Min	Тур	Max	Unit
Uncalibrated Offset	V _{OFF}	T _A = 0 °C	—	751	—	mV
Uncalibrated Offset Error ¹	E _{OFF}	T _A = 0 °C	—	19	_	mV
Slope	М		—	2.82	_	mV/°C
Slope Error ¹	E _M			29	_	μV/°C
Linearity	LIN	T = 0 °C to 70 °C	_	-0.1 to 0.15	_	°C
		T = -20 °C to 85 °C	—	-0.2 to 0.35	—	°C
		T = -40 °C to 105 °C	—	-0.4 to 0.8	—	°C
Turn-on Time	t _{ON}			3.5	_	μs
Temp Sensor Error Using Typical	E _{TOT}	T = 0 °C to 70 °C	-2.6	—	1.8	°C
set ^{2, 3}		T = -20 °C to 85 °C	-2.9		2.7	°C
		T = -40 °C to 105 °C	-3.2	_	4.2	°C

Table 4.11. Temperature Sensor

Note:

1. Represents one standard deviation from the mean.

2. The factory-calibrated offset value is stored in the read-only area of flash in locations 0xFFD4 (low byte) and 0xFFD5 (high byte). The 14-bit result represents the output of the ADC when sampling the temp sensor using the 1.65 V internal voltage reference.

3. The temp sensor error includes the offset calibration error, slope error, and linearity error. The values are based upon characterization and are not tested across temperature in production. The values represent three standard deviations above and below the mean. Additional information on achieving high measurement accuracy is available in AN929: Accurate Temperature Sensing with the EFM8 Laser Bee MCU Family.

4.1.13 Comparators

Parameter	Symbol	Test Condition	Min	Тур	Мах	Unit
Response Time, CPMD = 00	t _{RESP0}	+100 mV Differential		100	_	ns
(Highest Speed)		-100 mV Differential		150	_	ns
Response Time, CPMD = 11 (Low-	t _{RESP3}	+100 mV Differential		1.5	_	μs
est Power)		-100 mV Differential		3.5		μs
Positive Hysteresis	HYS _{CP+}	CPHYP = 00		0.4	_	mV
Mode 0 (CPMD = 00)		CPHYP = 01		8		mV
		CPHYP = 10		16		mV
		CPHYP = 11		32	_	mV
Negative Hysteresis	HYS _{CP-}	CPHYN = 00		-0.4		mV
Mode 0 (CPMD = 00)		CPHYN = 01		-8	_	mV
		CPHYN = 10	_	-16	_	mV
		CPHYN = 11		-32	_	mV
Positive Hysteresis	HYS _{CP+}	CPHYP = 00	_	0.5	_	mV
Mode 1 (CPMD = 01)		CPHYP = 01	_	6	_	mV
		CPHYP = 10	_	12	_	mV
		CPHYP = 11	_	24	_	mV
Negative Hysteresis	HYS _{CP-}	CPHYN = 00	_	-0.5	_	mV
Mode 1 (CPMD = 01)		CPHYN = 01	_	-6	_	mV
		CPHYN = 10	_	-12	_	mV
		CPHYN = 11	_	-24	_	mV
Positive Hysteresis	HYS _{CP+}	CPHYP = 00	_	0.7	_	mV
Mode 2 (CPMD = 10)		CPHYP = 01	_	4.5	_	mV
		CPHYP = 10	_	9	_	mV
		CPHYP = 11	_	18	_	mV
Negative Hysteresis	HYS _{CP-}	CPHYN = 00	_	-0.6	_	mV
Mode 2 (CPMD = 10)		CPHYN = 01	_	-4.5	_	mV
		CPHYN = 10	_	-9	_	mV
		CPHYN = 11	_	-18	_	mV
Positive Hysteresis	HYS _{CP+}	CPHYP = 00	_	1.5	_	mV
Mode 3 (CPMD = 11)		CPHYP = 01	_	4	_	mV
		CPHYP = 10	_	8	_	mV
		CPHYP = 11		16	_	mV

Table 4.13. Comparators

4.1.15 Port I/O

Table 4.15. Port I/O

Parameter	Symbol	Test Condition	Min	Тур	Max	Unit
Output High Voltage (High Drive)	V _{OH}	I_{OH} = -7 mA, $V_{IO} \ge 3.0$ V	V _{IO} - 0.7	_	_	V
		I_{OH} = -3.3 mA, 2.2 V ≤ V_{IO} < 3.0 V	V _{IO} x 0.8	_	-	V
		I_{OH} = -1.8 mA, 1.71 V \leq V _{IO} < 2.2 V				
Output Low Voltage (High Drive)	V _{OL}	I _{OL} = 13.5 mA, V _{IO} ≥ 3.0 V		—	0.6	V
		I_{OL} = 7 mA, 2.2 V ≤ V_{IO} < 3.0 V	—	_	V _{IO} x 0.2	V
		I_{OL} = 3.6 mA, 1.71 V \leq V _{IO} < 2.2 V				
Output High Voltage (Low Drive)	V _{OH}	I _{OH} = -4.75 mA, V _{IO} ≥ 3.0 V	V _{IO} - 0.7	_	—	V
		I_{OH} = -2.25 mA, 2.2 V ≤ V _{IO} < 3.0 V	V _{IO} x 0.8	_	—	V
		I_{OH} = -1.2 mA, 1.71 V \leq V _{IO} < 2.2 V				
Output Low Voltage (Low Drive)	V _{OL}	I _{OL} = 6.5 mA, V _{IO} ≥ 3.0 V	—	_	0.6	V
		I_{OL} = 3.5 mA, 2.2 V ≤ V_{IO} < 3.0 V	—	_	V _{IO} x 0.2	V
		I_{OL} = 1.8 mA, 1.71 V \leq V _{IO} < 2.2 V				
Input High Voltage	VIH		0.7 x	_	_	V
			V _{IO}			
Input Low Voltage	VIL		_		0.3 x	V
					V _{IO}	
Pin Capacitance	C _{IO}			7	_	pF
Weak Pull-Up Current	I _{PU}	V _{DD} = 3.6	-30	-20	-10	μA
(V _{IN} = 0 V)						
Input Leakage (Pullups off or Ana- log)	I _{LK}	$GND < V_{IN} < V_{IO}$	-1.1	_	4	μΑ
Input Leakage Current with VIN	I _{LK}	$V_{IO} < V_{IN} < V_{IO} + 2.5 V$	0	5	150	μA
anove AIO		Any pin except P3.0, P3.1, P3.2, or P3.3				

4.1.16 SMBus

Parameter	Symbol	Test Condition	Min	Тур	Max	Unit		
Standard Mode (100 kHz Class)								
I2C Operating Frequency	f _{I2C}		0	_	70 ²	kHz		
SMBus Operating Frequency	f _{SMB}		40 ¹	_	70 ²	kHz		
Bus Free Time Between STOP and START Conditions	t _{BUF}		9.4	_	_	μs		
Hold Time After (Repeated) START Condition	t _{HD:STA}		4.7	—	_	μs		
Repeated START Condition Setup Time	t _{SU:STA}		9.4		_	μs		
STOP Condition Setup Time	t _{SU:STO}		9.4	—	_	μs		
Data Hold Time	t _{HD:DAT}		0	_	—	μs		
Data Setup Time	t _{SU:DAT}		4.7	_	—	μs		
Detect Clock Low Timeout	t _{TIMEOUT}		25	_	_	ms		
Clock Low Period	t _{LOW}		4.7	_	_	μs		
Clock High Period	tніgн		9.4	_	50 ³	μs		
Fast Mode (400 kHz Class)					1			
I2C Operating Frequency	f _{I2C}		0	_	256 ²	kHz		
SMBus Operating Frequency	f _{SMB}		40 ¹	_	256 ²	kHz		
Bus Free Time Between STOP and START Conditions	t _{BUF}		2.6	_	_	μs		
Hold Time After (Repeated) START Condition	t _{HD:STA}		1.3	_	_	μs		
Repeated START Condition Setup Time	t _{SU:STA}		2.6	_	_	μs		
STOP Condition Setup Time	t _{SU:STO}		2.6	_	_	μs		
Data Hold Time	t _{HD:DAT}		0	_	—	μs		
Data Setup Time	t _{SU:DAT}		1.3	—	—	μs		
Detect Clock Low Timeout	t _{TIMEOUT}		25	—	—	ms		
Clock Low Period	t _{LOW}		1.3	_	—	μs		
Clock High Period	t _{HIGH}		2.6		50 ³	μs		

Table 4.16. SMBus Peripheral Timing Performance (Master Mode)

Note:

1. The minimum SMBus frequency is limited by the maximum Clock High Period requirement of the SMBus specification.

2. The maximum I2C and SMBus frequencies are limited by the minimum Clock Low Period requirements of their respective specifications.

3. SMBus has a maximum requirement of 50 µs for Clock High Period. Operating frequencies lower than 40 kHz will be longer than 50 µs. I2C can support periods longer than 50 µs.

6. Pin Definitions

6.1 EFM8LB1x-QFN32 Pin Definitions

Figure 6.1. EFM8LB1x-QFN32 Pinout

Pin	Pin Name	Description	Crossbar Capability	Additional Digital Functions	Analog Functions
12	P1 5	Multifunction I/O	Yes	P1MAT 5	
12				CLU2OUT	CMP1P 4
				CLU0B.14	CMP1N.4
				CLU1A.13	
				CLU2B.13	
13	P1.4	Multifunction I/O	Yes	P1MAT.4	ADC0.9
				I2C0_SCL	CMP1P.3
				CLU0A.14	CMP1N.3
				CLU1A.12	
				CLU2B.12	
14	P1.3	Multifunction I/O	Yes	P1MAT.3	CMP1P.2
				I2C0_SDA	CMP1N.2
				CLU0B.13	
				CLU1B.11	
				CLU2B.11	
				CLU3A.13	
15	GND	Ground			
16	P1.2	Multifunction I/O	Yes	P1MAT.2	ADC0.8
				CLU0A.13	
				CLU1A.11	
				CLU2B.10	
				CLU3A.12	
17	P1.1	Multifunction I/O	Yes	P1MAT.1	ADC0.7
				CLU0B.12	
				CLU1B.10	
				CLU2A.11	
				CLU3B.13	
18	P1.0	Multifunction I/O	Yes	P1MAT.0	ADC0.6
				CLU0A.12	
				CLU1A.10	
				CLU2A.10	
				CLU3B.12	

Pin Number	Pin Name	Description	Crossbar Capability	Additional Digital Functions	Analog Functions
19	P0.7	Multifunction I/O	Yes	P0MAT.7	ADC0.5
				INT0.7	CMP0P.5
				INT1.7	CMP0N.5
				CLU1OUT	CMP1P.1
				CLU0B.11	CMP1N.1
				CLU1B.9	
				CLU3A.11	
20	P0.6	Multifunction I/O	Yes	P0MAT.6	ADC0.4
				CNVSTR	CMP0P.4
				INT0.6	CMP0N.4
				INT1.6	CMP1P.0
				CLU0A.11	CMP1N.0
				CLU1B.8	
				CLU3A.10	
21	P0.5	Multifunction I/O	Yes	P0MAT.5	ADC0.3
				INT0.5	CMP0P.3
				INT1.5	CMP0N.3
				UART0_RX	
				CLU0B.10	
				CLU1A.9	
				CLU3B.11	
22	P0.4	Multifunction I/O	Yes	P0MAT.4	ADC0.2
				INT0.4	CMP0P.2
				INT1.4	CMP0N.2
				UART0_TX	
				CLU0A.10	
				CLU1A.8	
				CLU3B.10	
23	P0.3	Multifunction I/O	Yes	P0MAT.3	XTAL2
				EXTCLK	
				INT0.3	
				INT1.3	
				CLU0B.9	
				CLU2B.9	
				CLU3A.9	

Pin	Pin Name	Description	Crossbar Capability	Additional Digital Functions	Analog Functions
Number					
1	P0.3	Multifunction I/O	Yes	P0MAT.3	XTAL2
				EXTCLK	
				INT0.3	
				INT1.3	
				CLU0B.9	
				CLU2B.9	
				CLU3A.9	

7. QFN32 Package Specifications

7.1 QFN32 Package Dimensions

Figure 7.1. QFN32 Package Drawing

Dimension	Min	Тур	Мах	
A	0.45	0.50	0.55	
A1	0.00	0.035	0.05	
b	0.15	0.20	0.25	
D	4.00 BSC.			
D2	2.80	2.90	3.00	
е	0.40 BSC.			
E	4.00 BSC.			
E2	2.80 2.90 3.00			
L	0.20	0.30	0.40	
ааа		_	0.10	
bbb	_	—	0.10	
ССС	0.08			
ddd	_	0.10		
eee	—	—	0.10	
999			0.05	

Table 7.1. QFN32 Package Dimensions

The package marking consists of:

- PPPPPPP The part number designation.
- TTTTTT A trace or manufacturing code.
- YY The last 2 digits of the assembly year.
- WW The 2-digit workweek when the device was assembled.
- # The device revision (A, B, etc.).

9. QFN24 Package Specifications

9.1 QFN24 Package Dimensions

Figure 9.1. QFN24 Package Drawing

Dimension	Min	Тур	Мах
A	0.8	0.85	0.9
A1	0.00	—	0.05
A2	_	0.65	—
A3	0.203 REF		
b	0.15 0.2 0.25		
b1	0.25	0.3	0.35
D	3.00 BSC		
E	3.00 BSC		

Dimension	Min	Мах		
Note:				
1. All dimensions shown are in millimeters (mm) unless otherwise noted.				
2. Dimensioning and Tolerancing is per the ANSI Y14.5M-1994 specification.				
3. This Land Pattern Design is based on the IPC-SM-782 guidelines.				
4. All metal pads are to be non-solder mask defined (NSMD). Clearance between the solder mask and the metal pad is to be 60 μm minimum, all the way around the pad.				
5. A stainless steel, laser-cut and electro-polished stencil with trapezoidal walls should be used to assure good solder paste release				
6. The stencil thickness should be 0.125 mm (5 mils).				
7. The ratio of stencil aperture to land pad size should be 1:1 for all perimeter pads.				
8. A 2 x 1 array of 0.7 mm x 1.6 mm openi	ngs on a 0.9 mm pitch should be used for the	center pad.		
9. A No-Clean, Type-3 solder paste is reco	mmended.			

10. The recommended card reflow profile is per the JEDEC/IPC J-STD-020 specification for Small Body Components.

9.3 QFN24 Package Marking

Figure 9.3. QFN24 Package Marking

The package marking consists of:

- PPPPPPP The part number designation.
- TTTTTT A trace or manufacturing code.
- YY The last 2 digits of the assembly year.
- WW The 2-digit workweek when the device was assembled.
- # The device revision (A, B, etc.).

10. QSOP24 Package Specifications

10.1 QSOP24 Package Dimensions

Figure 10.1. QSOP24 Package Drawing

Table 10.1. QSOP24 Package Dimensions

Dimension	Min	Тур	Мах	
A	_	—	1.75	
A1	0.10	—	0.25	
b	0.20	—	0.30	
с	0.10	—	0.25	
D	8.65 BSC			
E	6.00 BSC			
E1	3.90 BSC			
е	0.635 BSC			
L	0.40 — 1.27			
theta	0°	—	8°	

Min	Тур	Мах
	0.20	
	0.18	
	0.10	
	0.10	
		Min Typ 0.20 0.18 0.10 0.10

Note:

1. All dimensions shown are in millimeters (mm) unless otherwise noted.

2. Dimensioning and Tolerancing per ANSI Y14.5M-1994.

3. This drawing conforms to JEDEC outline MO-137, variation AE.

4. Recommended card reflow profile is per the JEDEC/IPC J-STD-020 specification for Small Body Components.

Figure 10.3. QSOP24 Package Marking

The package marking consists of:

- PPPPPPP The part number designation.
- TTTTTT A trace or manufacturing code.
- YY The last 2 digits of the assembly year.
- WW The 2-digit workweek when the device was assembled.
- # The device revision (A, B, etc.).

11. Revision History

11.1 Revision 1.01

October 21st, 2016

Updated QFN24 center pad stencil description.

11.2 Revision 1.0

September 6th, 2016

Updated part numbers to revision B.

Updated many specifications with full characterization data.

Added a note regarding which DACs are available to Table 2.1 Product Selection Guide on page 2.

Added specifications for 4.1.16 SMBus.

Added bootloader pinout information to 3.10 Bootloader.

Added CRC Calculation Time to 4.1.4 Flash Memory.

11.3 Revision 0.5

February 10th, 2016

Updated Figure 5.2 Debug Connection Diagram on page 32 to move the pull-up resistor on C2D / RSTb to after the series resistor instead of before.

Added S0 devices and information about the SMBus bootloader in 3.10 Bootloader.

Added a reference to AN945: EFM8 Factory Bootloader User Guide in 3.10 Bootloader.

Added mention of the pre-programmed bootloaders in 1. Feature List.

Updated all part numbers to revision B.

Added the C oscillator, which is now available on revision B.

Adjusted C1, C2, X2, Y2, and Y1 maximums for 7.2 QFN32 PCB Land Pattern.

Adjusted package markings for QFN32 and QSOP24 packages.

Filled in TBD minimum and maximum values for DAC Differential Nonlinearity in Table 4.12 DACs on page 24.

11.4 Revision 0.4

Updated specification tables based on current device characterization status and production test limits.

Added bootloader section.

Added typical connection diagrams.

Corrected CLU connections in pin function tables.

11.5 Revision 0.3

Added information on the bootloader to 3.10 Bootloader.

Updated some characterization TBD values.

11.6 Revision 0.1

Initial release.