

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Obsolete
Core Processor	CIP-51 8051
Core Size	8-Bit
Speed	72MHz
Connectivity	I ² C, SMBus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	20
Program Memory Size	32KB (32K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	2.25K x 8
Voltage - Supply (Vcc/Vdd)	2.2V ~ 3.6V
Data Converters	A/D 12x14b; D/A 2x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 105°C (TA)
Mounting Type	Surface Mount
Package / Case	24-VFQFN Exposed Pad
Supplier Device Package	24-QFN (3x3)
Purchase URL	https://www.e-xfl.com/product-detail/silicon-labs/efm8lb11f32es0-b-qfn24

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

1. Feature List

The EFM8LB1 device family are fully integrated, mixed-signal system-on-a-chip MCUs. Highlighted features are listed below.

- Core:
 - Pipelined CIP-51 Core
 - · Fully compatible with standard 8051 instruction set
 - 70% of instructions execute in 1-2 clock cycles
 - 72 MHz maximum operating frequency
- Memory:
 - Up to 64 kB flash memory (63 kB user-accessible), in-system re-programmable from firmware in 512-byte sectors
 - Up to 4352 bytes RAM (including 256 bytes standard 8051 RAM and 4096 bytes on-chip XRAM)
- · Power:
 - Internal LDO regulator for CPU core voltage
 - · Power-on reset circuit and brownout detectors
- I/O: Up to 29 total multifunction I/O pins:
 - Up to 25 pins 5 V tolerant under bias
 - Selectable state retention through reset events
 - · Flexible peripheral crossbar for peripheral routing
 - 5 mA source, 12.5 mA sink allows direct drive of LEDs
- · Clock Sources:
 - Internal 72 MHz oscillator with accuracy of ±2%
 - Internal 24.5 MHz oscillator with ±2% accuracy
 - · Internal 80 kHz low-frequency oscillator
 - External CMOS clock option
 - External crystal/RC oscillator (up to 25 MHz)

- Analog:
 - 14/12/10-Bit Analog-to-Digital Converter (ADC)
 - Internal calibrated temperature sensor (±3 °C)
 - 4 x 12-Bit Digital-to-Analog Converters (DAC)
 - 2 x Low-current analog comparators with adjustable reference
- Communications and Digital Peripherals:
 - 2 x UART, up to 3 Mbaud
 - SPI™ Master / Slave, up to 12 Mbps
 - SMBus™/I2C™ Master / Slave, up to 400 kbps
 - I²C High-Speed Slave, up to 3.4 Mbps
 - 16-bit CRC unit, supporting automatic CRC of flash at 256byte boundaries
 - 4 Configurable Logic Units
- · Timers/Counters and PWM:
 - 6-channel Programmable Counter Array (PCA) supporting PWM, capture/compare, and frequency output modes
 - 6 x 16-bit general-purpose timers
 - Independent watchdog timer, clocked from the low frequency oscillator
- On-Chip, Non-Intrusive Debugging
 - · Full memory and register inspection
 - Four hardware breakpoints, single-stepping
- Pre-programmed UART or SMBus bootloader

With on-chip power-on reset, voltage supply monitor, watchdog timer, and clock oscillator, the EFM8LB1 devices are truly standalone system-on-a-chip solutions. The flash memory is reprogrammable in-circuit, providing nonvolatile data storage and allowing field upgrades of the firmware. The on-chip debugging interface (C2) allows non-intrusive (uses no on-chip resources), full speed, in-circuit debugging using the production MCU installed in the final application. This debug logic supports inspection and modification of memory and registers, setting breakpoints, single stepping, and run and halt commands. All analog and digital peripherals are fully functional while debugging. Device operation is specified from 2.2 V up to a 3.6 V supply. Devices are AEC-Q100 qualified (pending) and available in 4x4 mm 32-pin QFN, 3x3 mm 24-pin QFN, 32-pin QFP, or 24-pin QSOP packages. All package options are lead-free and RoHS compliant.

EFM8LB1 Data Sheet Ordering Information

EFMalB12F64E-B-QGOP24 64 4352 21 13 4 6 7 UART Yes 40 to 4105 C QGOP44 EFMalB12F64ES0-B-QFN32 64 4352 20 12 4 6 SMBus Yes 40 to 4105 C QFN32 EFMalB12F32E-B-QFN32 32 204 20 12 4 6 GM Ves 40 to 4105 C QFN32 EFMalB12F32E-B-QFN32 32 204 20 12 4 6 G UART Yes 40 to 4105 C QFN32 EFMalB12F32E-B-QFN32 32 204 12 4 6 G UART Yes 40 to 4105 C QFN32 EFMalB12F32E-B-QFN32 320 204 12 4 6 G SMBus Yes 40 to 4105 C QFN32 EFMalB1732E-B-QFN2 32 204 12 12 16 G G SMBus Yes 40 to 4105 C QFN32 EFMalB11732E-B-QFN2 2 2	Ordering Part Number	Flash Memory (kB)	RAM (Bytes)	Digital Port I/Os (Total)	ADC0 Channels	Voltage DACs	Comparator 0 Inputs	Comparator 1 Inputs	Bootloader Type	Pb-free (RoHS Compliant)	Temperature Range	Package
EFMalB12F34E80-B-QFN3264435229204109MBusYes40 to +105 CQFN32EFMalB12F34E8-DGFN32322304432204109UARTYes40 to +105 CQFN32EFMalB12F32E8-DGFN3232230420449UARTYes40 to +105 CQFN32EFMalB12F32E8-DGFN323223042012466UARTYes40 to +105 CQFN32EFMalB12F32E8-DGFN32322304201246GMBusYes40 to +105 CQFN32EFMalB12F32E8-DGFN32322304201246GMBusYes40 to +105 CQFN32EFMalB12F32E8-DGFN3232230420124109UARTYes40 to +105 CQFN32EFMalB11732E8-DGFN3232230420210109UARTYes40 to +105 CQFN32EFMalB11732E8-DGFN243220420210109UARTYes40 to +105 CQFN32EFMalB11732E8-DGFN243220420210109UARTYes40 to +105 CQFN32EFMalB11732E8-DGFN244222210109UARTYes40 to +105 CQFN32EFMalB11732E8-DGFN244222111010UAR	EFM8LB12F64E-B-QSOP24	64	4352	21	13	4	6	7	UART	Yes	-40 to +105 °C	QSOP24
EFM8LB12F64ES0-B-QFN24 64 432 20 12 4 6 6 MBUs Yes 40.0 +105 °C QFN24 EFM8LB12F32E-B-QFN23 32 230 28 20 4 10 9 UART Yes 40.0 +105 °C QFN32 EFM8LB12F32E-B-QFN24 32 230 20 12 4 6 6 UART Yes 40.0 +105 °C QFN32 EFM8LB12F32E-B-QFN24 32 230 20 12 4 6 6 UART Yes 40.0 +105 °C QFN32 EFM8LB12F32E-B-QFN24 32 204 21 13 4 6 6 UART Yes 40.0 +105 °C QFN32 EFM8LB12F32E-B-QFN24 32 204 20 12 4 6 6 MEN Yes 40.0 +105 °C QFN32 EFM8LB1732E-B-QFN32 32 204 20 21 10 9 UART Yes 40.0 +105 °C QFN32 EFM8LB11F32E-B-QFN24 32 20 21 10 9 UART Yes <	EFM8LB12F64ES0-B-QFN32	64	4352	29	20	4	10	9	SMBus	Yes	-40 to +105 °C	QFN32
EFM8LB12F32E-B-QFN32 32 230 29 20 4 10 9 UART Yes 40.0+105 °C QFN32 EFM8LB12F32E-B-QFN24 32 230 20 12 40 6 G UART Yes 40.0+105 °C QFN32 EFM8LB12F32E-B-QFN24 32 230 21 13 4 6 7 UART Yes 40.0+105 °C QFN32 EFM8LB12F32E-B-QFN24 32 230 21 13 4 6 7 UART Yes 40.0+105 °C QFN32 EFM8LB12F32E-B-QFN24 32 230 20 12 14 6 9 MBus Yes 40.0+105 °C QFN32 EFM8LB11F32E-B-QFN24 32 230 20 12 10 9 UART Yes 40.0+105 °C QFN32 EFM8LB11F32E-B-QFN24 32 20 21 10 9 UART Yes 40.0+105 °C QFN32 EFM8LB11F32E-B-QFN24 32 20 21 10 9 UART Yes 40.0+105 °C QFN32	EFM8LB12F64ES0-B-QFN24	64	4352	20	12	4	6	6	SMBus	Yes	-40 to +105 °C	QFN24
EFM8LB12F32E-B-QFP32 32 320 320 2304 200 4 10 9 UART Yes -40 to +105 °C QFP32 EFM8LB12F32E-B-QFN24 32 3204 204 1 34 6 6 UART Yes -40 to +105 °C QFN24 EFM8LB12F32E-B-QFN24 32 2304 21 13 4 6 6 UART Yes -40 to +105 °C QFN24 EFM8LB12F32ESO-B-QFN24 32 2304 20 1 4 6 6 MBus Yes -40 to +105 °C QFN24 EFM8LB12F32ESO-B-QFN24 32 2304 20 1	EFM8LB12F32E-B-QFN32	32	2304	29	20	4	10	9	UART	Yes	-40 to +105 °C	QFN32
EFM8LB12F32E-B-QFN24 32 3204 201 12 4 6 6 UART Yes 40 to 105 °C QFN24 EFM8LB12F32E-B-QSOP24 32 3204 210 13 4 6 7 UART Yes 40 to 105 °C QSOP24 EFM8LB12F32ESO-B-QFN24 32 2304 20 12 4 6 6 SMBus Yes 40 to 105 °C QFN24 EFM8LB12F32ESO-B-QFN24 32 2304 20 12 4 6 6 SMBus Yes 40 to 105 °C QFN24 EFM8LB11F32E-B-QFN24 32 2304 20 21 10 9 UART Yes 40 to 105 °C QFN24 EFM8LB11F32E-B-QFN24 32 2304 20 21 10 9 UART Yes 40 to 105 °C QFN24 EFM8LB11F32E-B-QFN24 32 2304 21 13 21 6 Max Yes 40 to 105 °C QFN24 EFM8LB11F32E-B-QFN24 32 204 21 10 9 Max Yes 40 to 105 °C </td <td>EFM8LB12F32E-B-QFP32</td> <td>32</td> <td>2304</td> <td>28</td> <td>20</td> <td>4</td> <td>10</td> <td>9</td> <td>UART</td> <td>Yes</td> <td>-40 to +105 °C</td> <td>QFP32</td>	EFM8LB12F32E-B-QFP32	32	2304	28	20	4	10	9	UART	Yes	-40 to +105 °C	QFP32
EFM8LB12732E-B-QSOP243232042113467UARTYes40 to +105 °CQSOP24EFM8LB12732ESO-B-GFN243223042021109SMBusYes40 to +105 °CGFN32EFM8LB11F32E-B-GFN243223042021109UARTYes40 to +105 °CGFN32EFM8LB11F32E-B-GFN233223042021109UARTYes40 to +105 °CGFN32EFM8LB11F32E-B-GFN243223042021109UARTYes40 to +105 °CGFN32EFM8LB11F32E-B-GFN2432230421122160UARTYes40 to +105 °CGFN32EFM8LB11F32E-B-GFN2432230421122160UARTYes40 to +105 °CGFN32EFM8LB11F32E-B-GFN2432230421122160UARTYes40 to +105 °CGFN32EFM8LB11F32E-B-GFN24322304202112109UARTYes40 to +105 °CGFN32EFM8LB11F32E-B-GFN3416128020211109UARTYes40 to +105 °CGFN32EFM8LB11F16E-B-GFN341612802021111UARTYes40 to +105 °CGFN32EFM8LB11F16E-B-GFN34161280211111UARTYes4	EFM8LB12F32E-B-QFN24	32	2304	20	12	4	6	6	UART	Yes	-40 to +105 °C	QFN24
EFM8LB12F32ES0-B-QFN32 32 2304 29 20 4 10 9 SMBus Yes 40 to +105 C QFN32 EFM8LB12F32ES0-B-QFN24 32 2004 20 12 4 6 6 SMBus Yes 40 to +105 C QFN32 EFM8LB11F32E-B-QFN32 32 2304 29 20 21 10 9 UART Yes 40 to +105 C QFN32 EFM8LB11F32E-B-QFN32 32 2304 28 20 21 10 9 UART Yes 40 to +105 C QFN32 EFM8LB11F32E-B-QFN24 32 2304 20 12 21 6 6 UART Yes 40 to +105 C QFN32 EFM8LB11F32E-B-QFN24 32 2304 20 12 10 9 MBus Yes 40 to +105 C QFN32 EFM8LB11F32E-B-QFN24 32 200 21 10 9 MBus Yes 40 to +105 C QFN32 EFM8LB11F16E-B-QFN24 16 280 21 10 9 MART Yes 40 to +105 C<	EFM8LB12F32E-B-QSOP24	32	2304	21	13	4	6	7	UART	Yes	-40 to +105 °C	QSOP24
EFM8LB12F32ES0-B-QFN24 32 2304 20 12 4 6 6 SMBus Yes 40 to +105 °C QFN24 EFM8LB11F32E-B-QFN32 32 2304 29 20 21 10 9 UART Yes 40 to +105 °C QFN32 EFM8LB11F32E-B-QFP32 32 2304 20 21 10 9 UART Yes 40 to +105 °C QFN32 EFM8LB11F32E-B-QFP32 32 2304 20 12 21 6 G UART Yes 40 to +105 °C QFN24 EFM8LB11F32E-B-QFN24 32 2304 21 13 21 6 G UART Yes 40 to +105 °C QFN24 EFM8LB11F32E-B-QFN24 32 2304 20 12 1 0 9 SMBus Yes 40 to +105 °C QFN24 EFM8LB11F32E-B-QFN24 32 2304 20 21 10 9 SMBus Yes 40 to +105 °C QFN24 EFM8LB11F16E-B-QFN24 16 1280 20 21 10 9 UART	EFM8LB12F32ES0-B-QFN32	32	2304	29	20	4	10	9	SMBus	Yes	-40 to +105 °C	QFN32
EFM8LB11F32E-B-QFN32 32 2304 29 20 21 10 9 UART Yes 40 to +105 °C QFN32 EFM8LB11F32E-B-QFP32 32 2304 20 21 10 9 UART Yes 40 to +105 °C QFN32 EFM8LB11F32E-B-QFP32 32 2304 20 12 21 6 G UART Yes 40 to +105 °C QFN32 EFM8LB11F32E-B-QFN24 32 2304 20 12 21 6 7 UART Yes 40 to +105 °C QFN32 EFM8LB11F32E-B-QFN24 32 2304 20 12 1 6 7 UART Yes 40 to +105 °C QFN32 EFM8LB11F32E-B-QFN24 32 2304 20 21 10 9 SMBus Yes 40 to +105 °C QFN32 EFM8LB11F16E-B-QFN24 16 1280 20 21 10 9 UART Yes 40 to +105 °C QFN32 EFM8LB11F16E-B-QFN24 16 1280 20 21 10 9 UART Yes	EFM8LB12F32ES0-B-QFN24	32	2304	20	12	4	6	6	SMBus	Yes	-40 to +105 °C	QFN24
EFM8LB11F32E-B-QFP32322304282021109UARTYes40 to +105 °CQF932EFM8LB11F32E-B-QFN2432230420122167UARTYes40 to +105 °CQF032EFM8LB11F32E-B-QF02432230421132167UARTYes40 to +105 °CQF032EFM8LB11F32ES0-B-QFN23322304292021109SMBusYes40 to +105 °CQF032EFM8LB11F32ES0-B-QFN2432230420122166SMBusYes40 to +105 °CQF032EFM8LB11F16E-B-QFN32161280282021109UARTYes40 to +105 °CQF032EFM8LB11F16E-B-QFP32161280282021109UARTYes40 to +105 °CQF032EFM8LB11F16E-B-QFN24161280282021109UARTYes40 to +105 °CQF032EFM8LB11F16E-B-QFN2416128021132167UARTYes40 to +105 °CQF032EFM8LB11F16E-B-QFN241612802021109UARTYes40 to +105 °CQF032EFM8LB11F16E-B-QFN2416128020211306SMBusYes40 to +105 °CQF032EFM8LB11F16E-B-QFN241612802021010	EFM8LB11F32E-B-QFN32	32	2304	29	20	2 ¹	10	9	UART	Yes	-40 to +105 °C	QFN32
EFM8LB11F32E-B-QFN2432230420122166UARTYes40 to +105 °CQFN24EFM8LB11F32E-B-QSOP2432230421132167UARTYes40 to +105 °CQSOP24EFM8LB11F32ES0-B-QFN2432230420212166SMBusYes40 to +105 °CQFN24EFM8LB11F32ES0-B-QFN2432230420122166SMBusYes40 to +105 °CQFN24EFM8LB11F16E-B-QFN32161280292021109UARTYes40 to +105 °CQFN32EFM8LB11F16E-B-QFN24161280282021109UARTYes40 to +105 °CQFN32EFM8LB11F16E-B-QFN24161280282021109UARTYes40 to +105 °CQFN32EFM8LB11F16E-B-QFN2416128021132166UARTYes40 to +105 °CQFN32EFM8LB11F16ES0-B-QFN2416128020122166MBusYes40 to +105 °CQFN32EFM8LB11F16ES0-B-QFN32161280201221109MARTYes40 to +105 °CQFN32EFM8LB10F16E-B-QFN321612802012109MARTYes40 to +105 °CQFN32EFM8LB10F16E-B-QFN321612802001010<	EFM8LB11F32E-B-QFP32	32	2304	28	20	2 ¹	10	9	UART	Yes	-40 to +105 °C	QFP32
EFM8LB11F32EB-QSOP2432230421132167UARTYes-40 to +105 °CQSOP24EFM8LB11F32ES0-B-QFN24322304292021109SMBusYes-40 to +105 °CQFN32EFM8LB11F32ES0-B-QFN2432230420122166SMBusYes-40 to +105 °CQFN32EFM8LB11F16E-B-QFN32161280292021109UARTYes-40 to +105 °CQFN32EFM8LB11F16E-B-QFP32161280292021109UARTYes-40 to +105 °CQFN32EFM8LB11F16E-B-QFP321612802021109UARTYes-40 to +105 °CQFN32EFM8LB11F16E-B-QFP3216128020122160UARTYes-40 to +105 °CQFN32EFM8LB11F16E-B-QFP3216128021132167UARTYes-40 to +105 °CQFN32EFM8LB11F16E-B-QFN321612802021109SMBusYes-40 to +105 °CQFN32EFM8LB10F16E-B-QFN321612802021109UARTYes-40 to +105 °CQFN32EFM8LB10F16E-B-QFN3216128020200109UARTYes-40 to +105 °CQFN32EFM8LB10F16E-B-QFN321612802012066<	EFM8LB11F32E-B-QFN24	32	2304	20	12	2 ¹	6	6	UART	Yes	-40 to +105 °C	QFN24
EFM8LB11F32ES0-B-QFN23 32 2304 29 20 21 10 9 SMBus Yes -40 to +105 °C QFN32 EFM8LB11F32ES0-B-QFN24 32 2304 20 12 21 6 6 SMBus Yes -40 to +105 °C QFN32 EFM8LB11F32ES0-B-QFN32 16 1280 29 20 21 10 9 UART Yes -40 to +105 °C QFN32 EFM8LB11F16E-B-QFN32 16 1280 29 20 21 10 9 UART Yes -40 to +105 °C QFN32 EFM8LB11F16E-B-QFN32 16 1280 20 21 10 9 UART Yes -40 to +105 °C QFN32 EFM8LB11F16E-B-QFN24 16 1280 20 21 10 9 UART Yes -40 to +105 °C QFN32 EFM8LB11F16E-B-QFN24 16 1280 21 13 21 6 G MBus Yes -40 to +105 °C QFN32 EFM8LB10F16E-B-QFN32 16 1280 20 21 10 9	EFM8LB11F32E-B-QSOP24	32	2304	21	13	2 ¹	6	7	UART	Yes	-40 to +105 °C	QSOP24
EFM8LB11F32ES0-B-QFN24 32 2304 20 12 21 6 6 SMBus Yes -40 to +105 °C QFN24 EFM8LB11F16E-B-QFN32 16 1280 29 20 21 10 9 UART Yes -40 to +105 °C QFN32 EFM8LB11F16E-B-QFP32 16 1280 28 20 21 10 9 UART Yes -40 to +105 °C QFP32 EFM8LB11F16E-B-QFP32 16 1280 28 20 21 10 9 UART Yes -40 to +105 °C QFP32 EFM8LB11F16E-B-QFP32 16 1280 20 12 21 6 0 UART Yes -40 to +105 °C QFP32 EFM8LB11F16E-B-QFN24 16 1280 21 13 21 6 7 UART Yes -40 to +105 °C QFN32 EFM8LB11F16ES0-B-QFN32 16 1280 20 21 10 9 SMBus Yes -40 to +105 °C QFN32 EFM8LB10F16E-B-QFN32 16 1280 20 0 10 <td< td=""><td>EFM8LB11F32ES0-B-QFN32</td><td>32</td><td>2304</td><td>29</td><td>20</td><td>2¹</td><td>10</td><td>9</td><td>SMBus</td><td>Yes</td><td>-40 to +105 °C</td><td>QFN32</td></td<>	EFM8LB11F32ES0-B-QFN32	32	2304	29	20	2 ¹	10	9	SMBus	Yes	-40 to +105 °C	QFN32
EFM8LB11F16E-B-QFN32161280292021109UARTYes40 to +105 °CQFN32EFM8LB11F16E-B-QFP32161280282021109UARTYes40 to +105 °CQFN32EFM8LB11F16E-B-QFN241612802012216UARTYes40 to +105 °CQFN24EFM8LB11F16E-B-QFN241612802113216UARTYes40 to +105 °CQSOP24EFM8LB11F16ES0-B-QFN241612802113216VARTYes40 to +105 °CQSOP24EFM8LB11F16ES0-B-QFN24161280292021109SMBusYes40 to +105 °CQFN32EFM8LB10F16E-B-QFN24161280292021109SMBusYes40 to +105 °CQFN32EFM8LB10F16E-B-QFN32161280292021109UARTYes40 to +105 °CQFN32EFM8LB10F16E-B-QFN3216128029200109UARTYes40 to +105 °CQFN32EFM8LB10F16E-B-QFN3216128021120610UARTYes40 to +105 °CQFN32EFM8LB10F16E-B-QFN3416128021130614UARTYes40 to +105 °CQFN32EFM8LB10F16E-B-QFN3416128021130614UART<	EFM8LB11F32ES0-B-QFN24	32	2304	20	12	2 ¹	6	6	SMBus	Yes	-40 to +105 °C	QFN24
EFM8LB11F16E-B-QFP32161280282021109UARTYes-40 to +105 °CQFP32EFM8LB11F16E-B-QFN241612802012216UARTYes-40 to +105 °CQFN24EFM8LB11F16E-B-QSOP2416128021132167UARTYes-40 to +105 °CQFN24EFM8LB11F16ES0-B-QFN32161280292021109SMBusYes-40 to +105 °CQFN32EFM8LB10F16E-B-QFN321612802012216SMBusYes-40 to +105 °CQFN32EFM8LB10F16E-B-QFN321612802012216SMBusYes-40 to +105 °CQFN32EFM8LB10F16E-B-QFN3216128029200109UARTYes-40 to +105 °CQFN32EFM8LB10F16E-B-QFN3216128028200109UARTYes-40 to +105 °CQFN32EFM8LB10F16E-B-QFN241612802012060UARTYes-40 to +105 °CQFN32EFM8LB10F16E-B-QFN321612802113067UARTYes-40 to +105 °CQFN32EFM8LB10F16ES-B-QFN321612802113067UARTYes-40 to +105 °CQFN32EFM8LB10F16ESO-B-QFN32161280211306SMBus	EFM8LB11F16E-B-QFN32	16	1280	29	20	2 ¹	10	9	UART	Yes	-40 to +105 °C	QFN32
EFM8LB11F16E-B-QFN2416128020122166UARTYes-40 to +105 °CQFN24EFM8LB11F16E-B-QSOP2416128021132167UARTYes-40 to +105 °CQSOP24EFM8LB11F16ES0-B-QFN32161280292021109SMBusYes-40 to +105 °CQFN32EFM8LB10F16E-B-QFN3216128020122166SMBusYes-40 to +105 °CQFN32EFM8LB10F16E-B-QFN3216128020122166MRUYes-40 to +105 °CQFN32EFM8LB10F16E-B-QFN3216128029200109UARTYes-40 to +105 °CQFN32EFM8LB10F16E-B-QFN321612802012060UARTYes-40 to +105 °CQFN32EFM8LB10F16E-B-QFN34161280201206UARTYes-40 to +105 °CQFN32EFM8LB10F16E-B-QFN441612802113061280UARTYes-40 to +105 °CQF034EFM8LB10F16ES0-B-QFN34161280201206MBusYes-40 to +105 °CQF034EFM8LB10F16ES0-B-QFN34161280201206MBusYes-40 to +105 °CQF034EFM8LB10F16ES0-B-QFN34161280201206SMBus <td>EFM8LB11F16E-B-QFP32</td> <td>16</td> <td>1280</td> <td>28</td> <td>20</td> <td>2¹</td> <td>10</td> <td>9</td> <td>UART</td> <td>Yes</td> <td>-40 to +105 °C</td> <td>QFP32</td>	EFM8LB11F16E-B-QFP32	16	1280	28	20	2 ¹	10	9	UART	Yes	-40 to +105 °C	QFP32
EFM8LB11F16E-B-QSOP2416128021132167UARTYes-40 to +105 °CQSOP24EFM8LB11F16ES0-B-QFN32161280292021109SMBusYes-40 to +105 °CQFN32EFM8LB10F16E-B-QFN3216128020122166SMBusYes-40 to +105 °CQFN32EFM8LB10F16E-B-QFN3216128029200109UARTYes-40 to +105 °CQFN32EFM8LB10F16E-B-QFP3216128028200109UARTYes-40 to +105 °CQFN32EFM8LB10F16E-B-QFP321612802012066UARTYes-40 to +105 °CQFN32EFM8LB10F16E-B-QFD241612802113067UARTYes-40 to +105 °CQSOP24EFM8LB10F16ES0-B-QFN2316128029200109SMBusYes-40 to +105 °CQSOP24EFM8LB10F16ES0-B-QFN321612802012065SMBusYes-40 to +105 °CQFN32EFM8LB10F16ES0-B-QFN24161280201206SMBusYes-40 to +105 °CQFN32EFM8LB10F16ES0-B-QFN24161280201206SMBusYes-40 to +105 °CQFN32EFM8LB10F16ES0-B-QFN2416128020120	EFM8LB11F16E-B-QFN24	16	1280	20	12	2 ¹	6	6	UART	Yes	-40 to +105 °C	QFN24
EFM8LB11F16ES0-B-QFN32 16 1280 29 20 21 10 9 SMBus Yes -40 to +105 °C QFN32 EFM8LB11F16ES0-B-QFN24 16 1280 20 21 6 6 SMBus Yes -40 to +105 °C QFN32 EFM8LB10F16E-B-QFN32 16 1280 29 20 0 10 9 UART Yes -40 to +105 °C QFN32 EFM8LB10F16E-B-QFN32 16 1280 29 20 0 10 9 UART Yes -40 to +105 °C QFN32 EFM8LB10F16E-B-QFN32 16 1280 29 20 0 10 9 UART Yes -40 to +105 °C QFN32 EFM8LB10F16E-B-QFN24 16 1280 20 12 0 6 7 UART Yes -40 to +105 °C QFN32 EFM8LB10F16ES0-B-QFN32 16 1280 20 0 6 7 UART Yes -40 to +105 °C QFN32 EFM8LB10F16ES0-B-QFN32 16 1280 20 0 6 SMBus <t< td=""><td>EFM8LB11F16E-B-QSOP24</td><td>16</td><td>1280</td><td>21</td><td>13</td><td>2¹</td><td>6</td><td>7</td><td>UART</td><td>Yes</td><td>-40 to +105 °C</td><td>QSOP24</td></t<>	EFM8LB11F16E-B-QSOP24	16	1280	21	13	2 ¹	6	7	UART	Yes	-40 to +105 °C	QSOP24
EFM8LB11F16ES0-B-QFN24 16 1280 20 12 21 6 6 SMBus Yes -40 to +105 °C QFN24 EFM8LB10F16E-B-QFN32 16 1280 29 20 0 10 9 UART Yes -40 to +105 °C QFN32 EFM8LB10F16E-B-QFP32 16 1280 28 20 0 10 9 UART Yes -40 to +105 °C QFP32 EFM8LB10F16E-B-QFN24 16 1280 20 12 0 6 6 UART Yes -40 to +105 °C QFN24 EFM8LB10F16E-B-QFN24 16 1280 20 12 0 6 6 UART Yes -40 to +105 °C QFN24 EFM8LB10F16E-B-QFN24 16 1280 21 13 0 6 7 UART Yes -40 to +105 °C QFN24 EFM8LB10F16ES0-B-QFN24 16 1280 20 0 10 9 SMBus Yes -40 to +105 °C QFN24 EFM8LB10F16ES0-B-QFN24 16 1280 20 12 0 6 <td>EFM8LB11F16ES0-B-QFN32</td> <td>16</td> <td>1280</td> <td>29</td> <td>20</td> <td>2¹</td> <td>10</td> <td>9</td> <td>SMBus</td> <td>Yes</td> <td>-40 to +105 °C</td> <td>QFN32</td>	EFM8LB11F16ES0-B-QFN32	16	1280	29	20	2 ¹	10	9	SMBus	Yes	-40 to +105 °C	QFN32
EFM8LB10F16E-B-QFN32 16 1280 29 20 0 10 9 UART Yes -40 to +105 °C QFN32 EFM8LB10F16E-B-QFP32 16 1280 28 20 0 10 9 UART Yes -40 to +105 °C QFP32 EFM8LB10F16E-B-QFN24 16 1280 20 12 0 6 6 UART Yes -40 to +105 °C QFN32 EFM8LB10F16E-B-QFN24 16 1280 20 12 0 6 7 UART Yes -40 to +105 °C QFN24 EFM8LB10F16E-B-QSOP24 16 1280 21 13 0 6 7 UART Yes -40 to +105 °C QSOP24 EFM8LB10F16ES0-B-QFN32 16 1280 29 20 0 10 9 SMBus Yes -40 to +105 °C QFN32 EFM8LB10F16ES0-B-QFN24 16 1280 20 12 0 6 SMBus Yes -40 to +105 °C QFN24	EFM8LB11F16ES0-B-QFN24	16	1280	20	12	2 ¹	6	6	SMBus	Yes	-40 to +105 °C	QFN24
EFM8LB10F16E-B-QFP32 16 1280 28 20 0 10 9 UART Yes -40 to +105 °C QFP32 EFM8LB10F16E-B-QFN24 16 1280 20 12 0 6 6 UART Yes -40 to +105 °C QFN24 EFM8LB10F16E-B-QSOP24 16 1280 21 13 0 6 7 UART Yes -40 to +105 °C QSOP24 EFM8LB10F16ES0-B-QFN32 16 1280 29 20 0 10 9 SMBus Yes -40 to +105 °C QFN32 EFM8LB10F16ES0-B-QFN32 16 1280 29 20 0 10 9 SMBus Yes -40 to +105 °C QFN32 EFM8LB10F16ES0-B-QFN24 16 1280 20 12 0 6 6 SMBus Yes -40 to +105 °C QFN32 EFM8LB10F16ES0-B-QFN24 16 1280 20 12 0 6 SMBus Yes -40 to +105 °C QFN32	EFM8LB10F16E-B-QFN32	16	1280	29	20	0	10	9	UART	Yes	-40 to +105 °C	QFN32
EFM8LB10F16E-B-QFN24 16 1280 20 12 0 6 6 UART Yes -40 to +105 °C QFN24 EFM8LB10F16E-B-QSOP24 16 1280 21 13 0 6 7 UART Yes -40 to +105 °C QSOP24 EFM8LB10F16ES0-B-QFN32 16 1280 29 20 0 10 9 SMBus Yes -40 to +105 °C QFN32 EFM8LB10F16ES0-B-QFN24 16 1280 20 12 0 6 6 SMBus Yes -40 to +105 °C QFN32	EFM8LB10F16E-B-QFP32	16	1280	28	20	0	10	9	UART	Yes	-40 to +105 °C	QFP32
EFM8LB10F16E-B-QSOP24 16 1280 21 13 0 6 7 UART Yes -40 to +105 °C QSOP24 EFM8LB10F16ES0-B-QFN32 16 1280 29 20 0 10 9 SMBus Yes -40 to +105 °C QSOP24 EFM8LB10F16ES0-B-QFN24 16 1280 20 12 0 6 6 SMBus Yes -40 to +105 °C QFN32	EFM8LB10F16E-B-QFN24	16	1280	20	12	0	6	6	UART	Yes	-40 to +105 °C	QFN24
EFM8LB10F16ES0-B-QFN32 16 1280 29 20 0 10 9 SMBus Yes -40 to +105 °C QFN32 EFM8LB10F16ES0-B-QFN24 16 1280 20 12 0 6 6 SMBus Yes -40 to +105 °C QFN32	EFM8LB10F16E-B-QSOP24	16	1280	21	13	0	6	7	UART	Yes	-40 to +105 °C	QSOP24
EFM8LB10F16ES0-B-QFN24 16 1280 20 12 0 6 6 SMBus Yes -40 to +105 °C QFN24	EFM8LB10F16ES0-B-QFN32	16	1280	29	20	0	10	9	SMBus	Yes	-40 to +105 °C	QFN32
Noto:	EFM8LB10F16ES0-B-QFN24	16	1280	20	12	0	6	6	SMBus	Yes	-40 to +105 °C	QFN24

1. DAC0 and DAC1 are enabled on devices with 2 DACs available.

Universal Asynchronous Receiver/Transmitter (UART1)

UART1 is an asynchronous, full duplex serial port offering a variety of data formatting options. A dedicated baud rate generator with a 16-bit timer and selectable prescaler is included, which can generate a wide range of baud rates. A received data FIFO allows UART1 to receive multiple bytes before data is lost and an overflow occurs.

UART1 provides the following features:

- · Asynchronous transmissions and receptions
- Dedicated baud rate generator supports baud rates up to SYSCLK/2 (transmit) or SYSCLK/8 (receive)
- 5, 6, 7, 8, or 9 bit data
- Automatic start and stop generation
- Automatic parity generation and checking
- · Single-byte buffer on transmit and receive
- Auto-baud detection
- · LIN break and sync field detection
- CTS / RTS hardware flow control

Serial Peripheral Interface (SPI0)

The serial peripheral interface (SPI) module provides access to a flexible, full-duplex synchronous serial bus. The SPI can operate as a master or slave device in both 3-wire or 4-wire modes, and supports multiple masters and slaves on a single SPI bus. The slave-select (NSS) signal can be configured as an input to select the SPI in slave mode, or to disable master mode operation in a multi-master environment, avoiding contention on the SPI bus when more than one master attempts simultaneous data transfers. NSS can also be configured as a firmware-controlled chip-select output in master mode, or disable to reduce the number of pins required. Additional general purpose port I/O pins can be used to select multiple slave devices in master mode.

- Supports 3- or 4-wire master or slave modes
- · Supports external clock frequencies up to 12 Mbps in master or slave mode
- · Support for all clock phase and polarity modes
- 8-bit programmable clock rate (master)
- Programmable receive timeout (slave)
- · Two byte FIFO on transmit and receive
- · Can operate in suspend or snooze modes and wake the CPU on reception of a byte
- · Support for multiple masters on the same data lines

System Management Bus / I2C (SMB0)

The SMBus I/O interface is a two-wire, bi-directional serial bus. The SMBus is compliant with the System Management Bus Specification, version 1.1, and compatible with the I²C serial bus.

The SMBus module includes the following features:

- · Standard (up to 100 kbps) and Fast (400 kbps) transfer speeds
- · Support for master, slave, and multi-master modes
- Hardware synchronization and arbitration for multi-master mode
- · Clock low extending (clock stretching) to interface with faster masters
- · Hardware support for 7-bit slave and general call address recognition
- Firmware support for 10-bit slave address decoding
- · Ability to inhibit all slave states
- Programmable data setup/hold times
- · Transmit and receive FIFOs (one byte) to help increase throughput in faster applications

Bootloader

Pins for Bootload Communication

Note:

1. The STK uses these pins for another purpose, so there is a special SMBus bootloader build for the STK only included in *AN945: EFM8 Factory Bootloader User Guide* that uses P1.2 (SDA) and P1.3 (SCL).

Table 3.3. Summary of Pins for Bootload Mode Entry

Device Package	Pin for Bootload Mode Entry
QFN32	P3.7 / C2D
QFP32	P3.7 / C2D
QFN24	P3.0 / C2D
QSOP24	P3.0 / C2D

4.1.2 Power Consumption

Parameter	Symbol	Test Condition	Min	Тур	Мах	Unit			
Digital Core Supply Current	Digital Core Supply Current								
Normal Mode-Full speed with code	I _{DD}	F _{SYSCLK} = 72 MHz (HFOSC1) ²	_	12.9	15	mA			
		F _{SYSCLK} = 24.5 MHz (HFOSC0) ²	_	4.2	5	mA			
		F _{SYSCLK} = 1.53 MHz (HFOSC0) ²	—	625	1050	μA			
		F _{SYSCLK} = 80 kHz ³	_	155	575	μA			
Idle Mode-Core halted with periph-	I _{DD}	F _{SYSCLK} = 72 MHz (HFOSC1) ²	_	9.6	11.1	mA			
		F _{SYSCLK} = 24.5 MHz (HFOSC0) ²	_	3.14	3.8	mA			
		F _{SYSCLK} = 1.53 MHz (HFOSC0) ²	_	520	950	μA			
		F _{SYSCLK} = 80 kHz ³	_	135	550	μA			
Suspend Mode-Core halted and	I _{DD}	LFO Running	—	125	545	μA			
Supply monitor off.		LFO Stopped		120	535	μA			
Snooze Mode-Core halted and	I _{DD}	LFO Running	—	23	430	μA			
Regulator in low-power state, Sup- ply monitor off.		LFO Stopped	_	19	425	μA			
Stop Mode—Core halted and all clocks stopped,Internal LDO On, Supply monitor off.	I _{DD}		_	120	535	μA			
Shutdown Mode—Core halted and all clocks stopped,Internal LDO Off, Supply monitor off.	I _{DD}		_	0.2	2.1	μA			
Analog Peripheral Supply Current	ts		1		1				
High-Frequency Oscillator 0	I _{HFOSC0}	Operating at 24.5 MHz,	_	120	135	μA			
		T _A = 25 °C							
High-Frequency Oscillator 1	I _{HFOSC1}	Operating at 72 MHz,	_	1285	1340	μA			
		T _A = 25 °C							
Low-Frequency Oscillator	ILFOSC	Operating at 80 kHz,		3.7	6	μA			
		T _A = 25 °C							

Table 4.2. Power Consumption

Parameter	Symbol	Test Condition	Min	Тур	Max	Unit
ADC0 ⁴	I _{ADC}	High Speed Mode	—	1275	1700	μA
		1 Msps, 12-bit conversions				
		Normal bias settings				
		V _{DD} = 3.0 V				
		Low Power Mode	—	390	530	μA
		350 ksps, 12-bit conversions				
		Low power bias settings				
		V _{DD} = 3.0 V				
Internal ADC0 Reference ⁵	I _{VREFFS}	High Speed Mode		700	790	μA
		Low Power Mode	_	170	210	μA
On-chip Precision Reference	I _{VREFP}		—	75	—	μA
Temperature Sensor	I _{TSENSE}		—	68	120	μA
Digital-to-Analog Converters (DAC0, DAC1, DAC2, DAC3) ⁶	I _{DAC}		_	125		μA
Comparators (CMP0, CMP1)	I _{CMP}	CPMD = 11	_	0.5	_	μA
		CPMD = 10	_	3		μA
		CPMD = 01		10	_	μA
		CPMD = 00	—	25	—	μA
Comparator Reference	I _{CPREF}		—	24	—	μA
Voltage Supply Monitor (VMON0)	I _{VMON}		—	15	20	μA

Note:

1. Currents are additive. For example, where I_{DD} is specified and the mode is not mutually exclusive, enabling the functions increases supply current by the specified amount.

- 2. Includes supply current from internal LDO regulator, supply monitor, and High Frequency Oscillator.
- 3. Includes supply current from internal LDO regulator, supply monitor, and Low Frequency Oscillator.
- 4. ADC0 power excludes internal reference supply current.
- 5. The internal reference is enabled as-needed when operating the ADC in low power mode. Total ADC + Reference current will depend on sampling rate.

6. DAC supply current for each enabled DA and not including external load on pin.

4.1.3 Reset and Supply Monitor

Parameter	Symbol	Test Condition	Min	Тур	Max	Unit
VDD Supply Monitor Threshold	V _{VDDM}		1.95	2.05	2.15	V
Power-On Reset (POR) Threshold	V _{POR}	Rising Voltage on VDD	_	1.4	—	V
		Falling Voltage on VDD	0.75	_	1.36	V
VDD Ramp Time	t _{RMP}	Time to V _{DD} > 2.2 V	10	_	_	μs
Reset Delay from POR	t _{POR}	Relative to V _{DD} > V _{POR}	3	10	31	ms
Reset Delay from non-POR source	t _{RST}	Time between release of reset source and code execution	_	50	_	μs
RST Low Time to Generate Reset	t _{RSTL}		15		_	μs
Missing Clock Detector Response Time (final rising edge to reset)	t _{MCD}	F _{SYSCLK} >1 MHz	_	0.625	1.2	ms
Missing Clock Detector Trigger Frequency	F _{MCD}		_	7.5	13.5	kHz
VDD Supply Monitor Turn-On Time	t _{MON}		_	2	_	μs

Table 4.3. Reset and Supply Monitor

4.1.4 Flash Memory

Table 4.4. Flash Memory

Parameter	Symbol	Test Condition	Min	Тур	Max	Units
Write Time ^{1,2}	t _{WRITE}	One Byte,	19	20	21	μs
		F _{SYSCLK} = 24.5 MHz				
Erase Time ^{1 ,2}	t _{ERASE}	One Page,	5.2	5.35	5.5	ms
		F _{SYSCLK} = 24.5 MHz				
V _{DD} Voltage During Programming ³	V _{PROG}		2.2		3.6	V
Endurance (Write/Erase Cycles)	N _{WE}		20k	100k	_	Cycles
CRC Calculation Time	t _{CRC}	One 256-Byte Block	—	5.5	—	μs
		SYSCLK = 48 MHz				

Note:

1. Does not include sequencing time before and after the write/erase operation, which may be multiple SYSCLK cycles.

- 2. The internal High-Frequency Oscillator 0 has a programmable output frequency, which is factory programmed to 24.5 MHz. If user firmware adjusts the oscillator speed, it must be between 22 and 25 MHz during any flash write or erase operation. It is recommended to write the HFO0CAL register back to its reset value when writing or erasing flash.
- 3. Flash can be safely programmed at any voltage above the supply monitor threshold (V_{VDDM}).

4. Data Retention Information is published in the Quarterly Quality and Reliability Report.

Parameter	Symbol	Test Condition	Min	Тур	Max	Unit
Power Supply Rejection Ratio	PSRR _{ADC}	At 1 kHz		66		dB
		At 1 MHz	_	43		dB
DC Performance						
Integral Nonlinearity	INL	14 Bit Mode	-3.5 ⁴	-1.2 / +5	8.5 ⁴	LSB
		12 Bit Mode	-1.9	-0.35 / +1	1.9	LSB
		10 Bit Mode	-0.6	±0.2	0.6	LSB
Differential Nonlinearity (Guaran-	DNL	14 Bit Mode	-1 ⁴	±1	2.5 ⁴	LSB
teed Monotonic)		12 Bit Mode	-0.9	±0.3	0.9	LSB
		10 Bit Mode	-0.5	±0.2	0.5	LSB
Offset Error ⁵	E _{OFF}	14 Bit Mode	-84	-2.5	8 ⁴	LSB
		12 Bit Mode	-2	0	2	LSB
		10 Bit Mode	-1	0	1	LSB
Offset Temperature Coefficient	TC _{OFF}		_	0.011	_	LSB/°C
Slope Error	E _M	14 Bit Mode	-15 ⁴	_	15 ⁴	LSB
		12 Bit Mode	-2.6	_	2.6	LSB
		10 Bit Mode	-1.1		1.1	LSB
Dynamic Performance 10 kHz Sin	e Wave Inpi	ut 1 dB below full scale, Max throug	ghput, using	AGND pin		
Signal-to-Noise	SNR	14 Bit Mode	66 ⁴	72	_	dB
		12 Bit Mode	64	68		dB
		10 Bit Mode	59	61		dB
Signal-to-Noise Plus Distortion	SNDR	14 Bit Mode	66 ⁴	72	_	dB
		12 Bit Mode	64	68		dB
		10 Bit Mode	59	61	_	dB
Total Harmonic Distortion (Up to	THD	14 Bit Mode	_	-74	_	dB
Sth Harmonic)		12 Bit Mode	—	-72	—	dB
		10 Bit Mode		-69	—	dB
Spurious-Free Dynamic Range	SFDR	14 Bit Mode	_	74	—	dB
		12 Bit Mode		74	_	dB
		10 Bit Mode		71		dB

Note:

1. This time is equivalent to four periods of a clock running at 18 MHz + 2%.

2. Conversion Time does not include Tracking Time. Total Conversion Time is:

Total Conversion Time = [RPT × (ADTK + NUMBITS + 1) × T(SARCLK)] + (T(ADCCLK) × 4)

where RPT is the number of conversions represented by the ADRPT field and ADCCLK is the clock selected for the ADC.

3. Absolute input pin voltage is limited by the $\ensuremath{\mathsf{V}_{\mathsf{IO}}}$ supply.

4. Measured with characterization data and not production tested.

5. The offset is determined using curve fitting since the specification is measured using linear search where the intercept is always positive.

4.1.10 Voltage Reference

Table 4	4.10.	Voltage	Reference
---------	-------	---------	-----------

Parameter	Symbol	Test Condition	Min	Тур	Мах	Unit
Internal Fast Settling Reference		1		1		
Output Voltage	V _{REFFS}		1.62	1.65	1.68	V
(Full Temperature and Supply Range)						
Temperature Coefficient	TC _{REFFS}			50	_	ppm/°C
Turn-on Time	t _{REFFS}		_	—	1.5	μs
Power Supply Rejection	PSRR _{REF} FS		_	400		ppm/V
On-chip Precision Reference	1			·	·	
Valid Supply Range	V _{DD}	1.2 V Output	2.2	_	3.6	V
		2.4 V Output	2.7	—	3.6	V
Output Voltage	V _{REFP}	1.2 V Output, V _{DD} = 3.3 V, T = 25 °C	1.195	1.2	1.205	V
		1.2 V Output	1.18	1.2	1.22	V
		2.4 V Output, V _{DD} = 3.3 V, T = 25 °C	2.39	2.4	2.41	V
		2.4 V Output	2.36	2.4	2.44	V
Turn-on Time, settling to 0.5 LSB	t _{VREFP}	4.7 μF tantalum + 0.1 μF ceramic bypass on VREF pin	_	3	_	ms
		0.1 µF ceramic bypass on VREF pin	_	100	_	μs
Load Regulation	LR _{VREFP}	VREF = 2.4 V, Load = 0 to 200 μA to GND	—	8	_	μV/μΑ
		VREF = 1.2 V, Load = 0 to 200 μA to GND	_	5	_	μV/μΑ
Load Capacitor	C _{VREFP}	Load = 0 to 200 µA to GND	0.1	—	—	μF
Short-circuit current	ISC _{VREFP}		—	—	8	mA
Power Supply Rejection	PSRR _{VRE} FP		_	75	_	dB
External Reference						
Input Current	I _{EXTREF}	ADC Sample Rate = 1 Msps; VREF = 3.0 V	_	5	_	μA

Parameter	Symbol	Test Condition	Min	Тур	Max	Unit
Negative Hysteresis	HYS _{CP-}	CPHYN = 00	—	-1.5	—	mV
Mode 3 (CPMD = 11)		CPHYN = 01	—	-4	—	mV
		CPHYN = 10	—	-8	—	mV
		CPHYN = 11	_	-16	_	mV
Input Range (CP+ or CP-)	V _{IN}		-0.25	_	V _{IO} +0.25	V
Input Pin Capacitance	C _{CP}			7.5		pF
Internal Reference DAC Resolution	N _{bits}			6		bits
Common-Mode Rejection Ratio	CMRR _{CP}		—	70	_	dB
Power Supply Rejection Ratio	PSRR _{CP}		—	72	—	dB
Input Offset Voltage	V _{OFF}	T _A = 25 °C	-10	0	10	mV
Input Offset Tempco	TC _{OFF}		_	3.5	_	μV/°

4.1.14 Configurable Logic

Table 4.14. Configurable Logic

Parameter	Symbol	Test Condition	Min	Тур	Мах	Unit
Propagation Delay	t _{DLY}	Through single CLU	—	_	35.3	ns
		Using an external pin				
		Through single CLU	—	3	—	ns
		Using an internal connection				
Clocking Frequency	F _{CLK}	1 or 2 CLUs Cascaded	—	_	73.5	MHz
		3 or 4 CLUs Cascaded		_	36.75	MHz

5.2 Debug

The diagram below shows a typical connection diagram for the debug connections pins. The pin sharing resistors are only required if the functionality on the C2D (a GPIO pin) and the C2CK (RSTb) is routed to external circuitry. For example, if the RSTb pin is connected to an external switch with debouncing filter or if the GPIO sharing with the C2D pin is connected to an external circuit, the pin sharing resistors and connections to the debug adapter must be placed on the hardware. Otherwise, these components and connections can be omitted.

For more information on debug connections, see the example schematics and information available in AN127: "Pin Sharing Techniques for the C2 Interface." Application notes can be found on the Silicon Labs website (http://www.silabs.com/8bit-appnotes) or in Simplicity Studio.

Figure 5.2. Debug Connection Diagram

5.3 Other Connections

Other components or connections may be required to meet the system-level requirements. Application Note AN203: "8-bit MCU Printed Circuit Board Design Notes" contains detailed information on these connections. Application Notes can be accessed on the Silicon Labs website (www.silabs.com/8bit-appnotes).

6. Pin Definitions

6.1 EFM8LB1x-QFN32 Pin Definitions

Figure 6.1. EFM8LB1x-QFN32 Pinout

Pin	Pin Name	Description	Crossbar Capability	Additional Digital Functions	Analog Functions
15	P2 2	Multifunction I/O	Vec		ADC0 15
	1 2.2				CMP1P 4
					CMP1N 4
				CLU2B 14	
16	P2 1	Multifunction I/O	Yes	P2MAT 1	ADC0 14
				12C0_SCI	CMP1P 3
				CLU1B.14	CMP1N.3
				CLU2A.15	
				CLU3B.15	
17	P2.0	Multifunction I/O	Yes	P2MAT.0	CMP1P.2
				I2C0 SDA	CMP1N.2
				 CLU1A.14	
				CLU2A.14	
				CLU3B.14	
18	P1.7	Multifunction I/O	Yes	P1MAT.7	ADC0.13
				CLU0B.15	CMP0P.9
				CLU1B.13	CMP0N.9
				CLU2A.13	
19	P1.6	Multifunction I/O	Yes	P1MAT.6	ADC0.12
				CLU0A.15	
				CLU1B.12	
				CLU2A.12	
20	P1.5	Multifunction I/O	Yes	P1MAT.5	ADC0.11
				CLU0B.14	
				CLU1A.13	
				CLU2B.13	
21	P1.4	Multifunction I/O	Yes	P1MAT.4	ADC0.10
				CLU0A.14	
				CLU1A.12	
				CLU2B.12	
22	P1.3	Multifunction I/O	Yes	P1MAT.3	ADC0.9
				CLU0B.13	
				CLU1B.11	
				CLU2B.11	
				CLU3A.13	

Pin Number	Pin Name	Description	Crossbar Capability	Additional Digital Functions	Analog Functions
29	P0.4	Multifunction I/O	Yes	P0MAT.4	ADC0.2
				INT0.4	CMP0P.2
				INT1.4	CMP0N.2
				UART0_TX	
				CLU0A.10	
				CLU1A.8	
				CLU3B.10	
30	P0.3	Multifunction I/O	Yes	P0MAT.3	XTAL2
				EXTCLK	
				INT0.3	
				INT1.3	
				CLU0B.9	
				CLU2B.9	
				CLU3A.9	
31	P0.2	Multifunction I/O	Yes	P0MAT.2	XTAL1
				INT0.2	ADC0.1
				INT1.2	CMP0P.1
				CLU0OUT	CMP0N.1
				CLU0A.9	
				CLU2B.8	
				CLU3A.8	
32	P0.1	Multifunction I/O	Yes	P0MAT.1	ADC0.0
				INT0.1	CMP0P.0
				INT1.1	CMP0N.0
				CLU0B.8	AGND
				CLU2A.9	
				CLU3B.9	
Center	GND	Ground			

Pin	Pin Name	Description	Crossbar Capability	Additional Digital	Analog Functions
Number					
6	P3.7 /	Multifunction I/O /			
	C2D	C2 Debug Data			
7	P3.3	Multifunction I/O			DAC3
8	P3.2	Multifunction I/O			DAC2
9	P3.1	Multifunction I/O			DAC1
10	P3.0	Multifunction I/O			DAC0
11	P2.6	Multifunction I/O			ADC0.19
					CMP1P.8
					CMP1N.8
12	P2.5	Multifunction I/O		CLU3OUT	ADC0.18
					CMP1P.7
					CMP1N.7
13	P2.4	Multifunction I/O			ADC0.17
					CMP1P.6
					CMP1N.6
14	P2.3	Multifunction I/O	Yes	P2MAT.3	ADC0.16
				CLU1B.15	CMP1P.5
				CLU2B.15	CMP1N.5
				CLU3A.15	
15	P2.2	Multifunction I/O	Yes	P2MAT.2	ADC0.15
				CLU2OUT	CMP1P.4
				CLU1A.15	CMP1N.4
				CLU2B.14	
				CLU3A.14	
16	P2.1	Multifunction I/O	Yes	P2MAT.1	ADC0.14
				I2C0_SCL	CMP1P.3
				CLU1B.14	CMP1N.3
				CLU2A.15	
				CLU3B.15	
17	P2.0	Multifunction I/O	Yes	P2MAT.0	CMP1P.2
				I2C0_SDA	CMP1N.2
				CLU1A.14	
				CLU2A.14	
				CLU3B.14	

Pin Number	Pin Name	Description	Crossbar Capability	Additional Digital Functions	Analog Functions
25	P1.0	Multifunction I/O	Yes	P1MAT.0	ADC0.6
				CLU1OUT	CMP0P.6
				CLU0A.12	CMP0N.6
				CLU1A.10	CMP1P.1
				CLU2A.10	CMP1N.1
				CLU3B.12	
26	P0.7	Multifunction I/O	Yes	P0MAT.7	ADC0.5
				INT0.7	CMP0P.5
				INT1.7	CMP0N.5
				CLU0B.11	CMP1P.0
				CLU1B.9	CMP1N.0
				CLU3A.11	
27	P0.6	Multifunction I/O	Yes	P0MAT.6	ADC0.4
				CNVSTR	CMP0P.4
				INT0.6	CMP0N.4
				INT1.6	
				CLU0A.11	
				CLU1B.8	
				CLU3A.10	
28	P0.5	Multifunction I/O	Yes	P0MAT.5	ADC0.3
				INT0.5	CMP0P.3
				INT1.5	CMP0N.3
				UART0_RX	
				CLU0B.10	
				CLU1A.9	
				CLU3B.11	
29	P0.4	Multifunction I/O	Yes	P0MAT.4	ADC0.2
				INT0.4	CMP0P.2
				INT1.4	CMP0N.2
				UART0_TX	
				CLU0A.10	
				CLU1A.8	
				CLU3B.10	

Dimension	Min	Мах				
Note:						
1. All dimensions shown are in millimeters (mm) unless otherwise noted.						
2. Dimensioning and Tolerancing is per the ANSI Y14.5M-1994 specification.						
3. This Land Pattern Design is based on the	3. This Land Pattern Design is based on the IPC-7351 guidelines.					
4. All dimensions shown are at Maximum Material Condition (MMC). Least Material Condition (LMC) is calculated based on a Fabri- cation Allowance of 0.05mm.						
5. All metal pads are to be non-solder mask defined (NSMD). Clearance between the solder mask and the metal pad is to be 60 µm minimum, all the way around the pad.						
6. A stainless steel, laser-cut and electro-polished stencil with trapezoidal walls should be used to assure good solder paste release						
7. The stencil thickness should be 0.125 mm (5 mils).						
8. The ratio of stencil aperture to land pad size should be 1:1 for all perimeter pads.						
9. A 2 x 2 array of 1.10 mm square openings on a 1.30 mm pitch should be used for the center pad.						
· · · · · · · · · · · · · · · · · · ·	5					

- 10. A No-Clean, Type-3 solder paste is recommended.
- 11. The recommended card reflow profile is per the JEDEC/IPC J-STD-020 specification for Small Body Components.

7.3 QFN32 Package Marking

Figure 7.3. QFN32 Package Marking

The package marking consists of:

- PPPPPPP The part number designation.
- TTTTTT A trace or manufacturing code.
- YY The last 2 digits of the assembly year.
- WW The 2-digit workweek when the device was assembled.
- # The device revision (A, B, etc.).

8. QFP32 Package Specifications

8.1 QFP32 Package Dimensions

Figure 8.1. QFP32 Package Drawing

Table 8.1. QFP32 Package Dimensions

Dimension	Min	Тур	Мах	
A	—	—	1.20	
A1	0.05	—	0.15	
A2	0.95	1.00	1.05	
b	0.30	0.37	0.45	
с	0.09	_	0.20	
D	9.00 BSC			
D1	7.00 BSC			
е	0.80 BSC			
E	9.00 BSC			
E1	7.00 BSC			
L	0.50	0.60 0.70		

The package marking consists of:

- PPPPPPP The part number designation.
- TTTTTT A trace or manufacturing code.
- YY The last 2 digits of the assembly year.
- WW The 2-digit workweek when the device was assembled.
- # The device revision (A, B, etc.).

Min	Тур	Мах	
	0.20		
0.18			
	0.10		
	0.10		
		Min Typ 0.20 0.18 0.10 0.10	

Note:

1. All dimensions shown are in millimeters (mm) unless otherwise noted.

2. Dimensioning and Tolerancing per ANSI Y14.5M-1994.

3. This drawing conforms to JEDEC outline MO-137, variation AE.

4. Recommended card reflow profile is per the JEDEC/IPC J-STD-020 specification for Small Body Components.