

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Details	
Product Status	Obsolete
Core Processor	CIP-51 8051
Core Size	8-Bit
Speed	72MHz
Connectivity	I ² C, SMBus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	20
Program Memory Size	32KB (32K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	2.25K x 8
Voltage - Supply (Vcc/Vdd)	2.2V ~ 3.6V
Data Converters	A/D 12x14b; D/A 4x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 105°C (TA)
Mounting Type	Surface Mount
Package / Case	24-VFQFN Exposed Pad
Supplier Device Package	24-QFN (3x3)
Purchase URL	https://www.e-xfl.com/product-detail/silicon-labs/efm8lb12f32es0-b-qfn24

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

3.2 Power

All internal circuitry draws power from the VDD supply pin. External I/O pins are powered from the VIO supply voltage (or VDD on devices without a separate VIO connection), while most of the internal circuitry is supplied by an on-chip LDO regulator. Control over the device power can be achieved by enabling/disabling individual peripherals as needed. Each analog peripheral can be disabled when not in use and placed in low power mode. Digital peripherals, such as timers and serial buses, have their clocks gated off and draw little power when they are not in use.

Table 3.1. Power Modes

Power Mode	Details	Mode Entry	Wake-Up Sources
Normal	Core and all peripherals clocked and fully operational		
ldle	 Core halted All peripherals clocked and fully operational Code resumes execution on wake event 	Set IDLE bit in PCON0	Any interrupt
Suspend	 Core and peripheral clocks halted HFOSC0 and HFOSC1 oscillators stopped Regulator in normal bias mode for fast wake Timer 3 and 4 may clock from LFOSC0 Code resumes execution on wake event 	 Switch SYSCLK to HFOSC0 Set SUSPEND bit in PCON1 	 Timer 4 Event SPI0 Activity I2C0 Slave Activity Port Match Event Comparator 0 Falling Edge CLUn Interrupt-Enabled Event
Stop	 All internal power nets shut down Pins retain state Exit on any reset source	1. Clear STOPCF bit in REG0CN 2. Set STOP bit in PCON0	Any reset source
Snooze	 Core and peripheral clocks halted HFOSC0 and HFOSC1 oscillators stopped Regulator in low bias current mode for energy savings Timer 3 and 4 may clock from LFOSC0 Code resumes execution on wake event 	 Switch SYSCLK to HFOSC0 Set SNOOZE bit in PCON1 	 Timer 4 Event SPI0 Activity I2C0 Slave Activity Port Match Event Comparator 0 Falling Edge CLUn Interrupt-Enabled Event
Shutdown	 All internal power nets shut down Pins retain state Exit on pin or power-on reset 	1. Set STOPCF bit in REG0CN 2. Set STOP bit in PCON0	RSTb pin resetPower-on reset

3.3 I/O

Digital and analog resources are externally available on the device's multi-purpose I/O pins. Port pins P0.0-P2.3 can be defined as general-purpose I/O (GPIO), assigned to one of the internal digital resources through the crossbar or dedicated channels, or assigned to an analog function. Port pins P2.4 to P3.7 can be used as GPIO. Additionally, the C2 Interface Data signal (C2D) is shared with P3.0 or P3.7, depending on the package option.

The port control block offers the following features:

- Up to 29 multi-functions I/O pins, supporting digital and analog functions.
- · Flexible priority crossbar decoder for digital peripheral assignment.
- Two drive strength settings for each port.
- State retention feature allows pins to retain configuration through most reset sources.
- Two direct-pin interrupt sources with dedicated interrupt vectors (INT0 and INT1).
- Up to 24 direct-pin interrupt sources with shared interrupt vector (Port Match).

3.4 Clocking

The CPU core and peripheral subsystem may be clocked by both internal and external oscillator resources. By default, the system clock comes up running from the 24.5 MHz oscillator divided by 8.

The clock control system offers the following features:

- Provides clock to core and peripherals.
- 24.5 MHz internal oscillator (HFOSC0), accurate to ±2% over supply and temperature corners.
- 72 MHz internal oscillator (HFOSC1), accurate to ±2% over supply and temperature corners.
- 80 kHz low-frequency oscillator (LFOSC0).
- External RC, CMOS, and high-frequency crystal clock options (EXTCLK).
- · Clock divider with eight settings for flexible clock scaling:
 - Divide the selected clock source by 1, 2, 4, 8, 16, 32, 64, or 128.
 - HFOSC0 and HFOSC1 include 1.5x pre-scalers for further flexibility.

3.5 Counters/Timers and PWM

Programmable Counter Array (PCA0)

The programmable counter array (PCA) provides multiple channels of enhanced timer and PWM functionality while requiring less CPU intervention than standard counter/timers. The PCA consists of a dedicated 16-bit counter/timer and one 16-bit capture/compare module for each channel. The counter/timer is driven by a programmable timebase that has flexible external and internal clocking options. Each capture/compare module may be configured to operate independently in one of five modes: Edge-Triggered Capture, Software Timer, High-Speed Output, Frequency Output, or Pulse-Width Modulated (PWM) Output. Each capture/compare module has its own associated I/O line (CEXn) which is routed through the crossbar to port I/O when enabled.

- 16-bit time base
- Programmable clock divisor and clock source selection
- · Up to six independently-configurable channels
- 8, 9, 10, 11 and 16-bit PWM modes (center or edge-aligned operation)
- Output polarity control
- Frequency output mode
- · Capture on rising, falling or any edge
- · Compare function for arbitrary waveform generation
- · Software timer (internal compare) mode
- · Can accept hardware "kill" signal from comparator 0 or comparator 1

Universal Asynchronous Receiver/Transmitter (UART1)

UART1 is an asynchronous, full duplex serial port offering a variety of data formatting options. A dedicated baud rate generator with a 16-bit timer and selectable prescaler is included, which can generate a wide range of baud rates. A received data FIFO allows UART1 to receive multiple bytes before data is lost and an overflow occurs.

UART1 provides the following features:

- · Asynchronous transmissions and receptions
- Dedicated baud rate generator supports baud rates up to SYSCLK/2 (transmit) or SYSCLK/8 (receive)
- 5, 6, 7, 8, or 9 bit data
- Automatic start and stop generation
- Automatic parity generation and checking
- · Single-byte buffer on transmit and receive
- Auto-baud detection
- · LIN break and sync field detection
- CTS / RTS hardware flow control

Serial Peripheral Interface (SPI0)

The serial peripheral interface (SPI) module provides access to a flexible, full-duplex synchronous serial bus. The SPI can operate as a master or slave device in both 3-wire or 4-wire modes, and supports multiple masters and slaves on a single SPI bus. The slave-select (NSS) signal can be configured as an input to select the SPI in slave mode, or to disable master mode operation in a multi-master environment, avoiding contention on the SPI bus when more than one master attempts simultaneous data transfers. NSS can also be configured as a firmware-controlled chip-select output in master mode, or disable to reduce the number of pins required. Additional general purpose port I/O pins can be used to select multiple slave devices in master mode.

- Supports 3- or 4-wire master or slave modes
- · Supports external clock frequencies up to 12 Mbps in master or slave mode
- · Support for all clock phase and polarity modes
- 8-bit programmable clock rate (master)
- Programmable receive timeout (slave)
- · Two byte FIFO on transmit and receive
- · Can operate in suspend or snooze modes and wake the CPU on reception of a byte
- · Support for multiple masters on the same data lines

System Management Bus / I2C (SMB0)

The SMBus I/O interface is a two-wire, bi-directional serial bus. The SMBus is compliant with the System Management Bus Specification, version 1.1, and compatible with the I²C serial bus.

The SMBus module includes the following features:

- · Standard (up to 100 kbps) and Fast (400 kbps) transfer speeds
- · Support for master, slave, and multi-master modes
- Hardware synchronization and arbitration for multi-master mode
- · Clock low extending (clock stretching) to interface with faster masters
- · Hardware support for 7-bit slave and general call address recognition
- Firmware support for 10-bit slave address decoding
- · Ability to inhibit all slave states
- Programmable data setup/hold times
- · Transmit and receive FIFOs (one byte) to help increase throughput in faster applications

3.10 Bootloader

All devices come pre-programmed with a UART0 bootloader or an SMBus bootloader. These bootloaders reside in the code security page, which is the last page of code flash; they can be erased if they are not needed.

The byte before the Lock Byte is the Bootloader Signature Byte. Setting this byte to a value of 0xA5 indicates the presence of the bootloader in the system. Any other value in this location indicates that the bootloader is not present in flash.

When a bootloader is present, the device will jump to the bootloader vector after any reset, allowing the bootloader to run. The bootloader then determines if the device should stay in bootload mode or jump to the reset vector located at 0x0000. When the bootloader is not present, the device will jump to the reset vector of 0x0000 after any reset.

More information about the bootloader protocol and usage can be found in *AN945: EFM8 Factory Bootloader User Guide*. Application notes can be found on the Silicon Labs website (www.silabs.com/8bit-appnotes) or within Simplicity Studio by using the [Application Notes] tile.

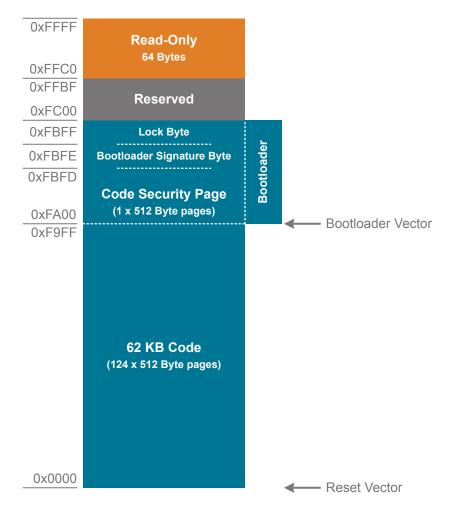


Figure 3.2. Flash Memory Map with Bootloader - 62.5 KB Devices

Table 3.2.	Summary	of Pins fo	or Bootloader	Communication
------------	---------	------------	---------------	---------------

Bootloader	Pins for Bootload Communication
UART	TX – P0.4
	RX – P0.5
SMBus	P0.2 – SDA ¹
	P0.3 – SCL ¹

4.1.2 Power Consumption

Parameter	Symbol	Test Condition	Min	Тур	Max	Unit
Digital Core Supply Current	1		1			
Normal Mode-Full speed with code	I _{DD}	F _{SYSCLK} = 72 MHz (HFOSC1) ²	_	12.9	15	mA
executing from flash		F _{SYSCLK} = 24.5 MHz (HFOSC0) ²	_	4.2	5	mA
		F _{SYSCLK} = 1.53 MHz (HFOSC0) ²	_	625	1050	μA
		F _{SYSCLK} = 80 kHz ³	_	155	575	μA
dle Mode-Core halted with periph-	I _{DD}	F _{SYSCLK} = 72 MHz (HFOSC1) ²	_	9.6	11.1	mA
erals running		F _{SYSCLK} = 24.5 MHz (HFOSC0) ²	_	3.14	3.8	mA
		F _{SYSCLK} = 1.53 MHz (HFOSC0) ²	_	520	950	μA
		F _{SYSCLK} = 80 kHz ³	_	135	550	μA
Suspend Mode-Core halted and	I _{DD}	LFO Running	_	125	545	μA
nigh frequency clocks stopped, Supply monitor off.		LFO Stopped	_	120	535	μA
Snooze Mode-Core halted and	I _{DD}	LFO Running	_	23	430	μA
nigh frequency clocks stopped. Regulator in low-power state, Sup- oly monitor off.		LFO Stopped	-	19	425	μA
Stop Mode—Core halted and all clocks stopped,Internal LDO On, Supply monitor off.	I _{DD}		_	120	535	μA
Shutdown Mode—Core halted and all clocks stopped,Internal LDO Off, Supply monitor off.	IDD		_	0.2	2.1	μA
Analog Peripheral Supply Current	ts					
High-Frequency Oscillator 0	I _{HFOSC0}	Operating at 24.5 MHz,	_	120	135	μA
		T _A = 25 °C				
High-Frequency Oscillator 1	I _{HFOSC1}	Operating at 72 MHz,	_	1285	1340	μA
		T _A = 25 °C				
_ow-Frequency Oscillator	I _{LFOSC}	Operating at 80 kHz,	_	3.7	6	μA
		T _A = 25 °C				

Table 4.2. Power Consumption

4.1.3 Reset and Supply Monitor

Parameter	Symbol	Test Condition	Min	Тур	Мах	Unit
VDD Supply Monitor Threshold	V _{VDDM}		1.95	2.05	2.15	V
Power-On Reset (POR) Threshold	V _{POR}	Rising Voltage on VDD	_	1.4	_	V
		Falling Voltage on VDD	0.75		1.36	V
VDD Ramp Time	t _{RMP}	Time to V _{DD} > 2.2 V	10	_	_	μs
Reset Delay from POR	t _{POR}	Relative to V _{DD} > V _{POR}	3	10	31	ms
Reset Delay from non-POR source	t _{RST}	Time between release of reset source and code execution	_	50		μs
RST Low Time to Generate Reset	t _{RSTL}		15	_		μs
Missing Clock Detector Response Time (final rising edge to reset)	t _{MCD}	F _{SYSCLK} >1 MHz	_	0.625	1.2	ms
Missing Clock Detector Trigger Frequency	F _{MCD}		_	7.5	13.5	kHz
VDD Supply Monitor Turn-On Time	t _{MON}		_	2	_	μs

Table 4.3. Reset and Supply Monitor

4.1.4 Flash Memory

Table 4.4. Flash Memory

Parameter	Symbol	Test Condition	Min	Тур	Мах	Units
Write Time ^{1,2}	t _{WRITE}	One Byte,	19	20	21	μs
		F _{SYSCLK} = 24.5 MHz				
Erase Time ^{1 ,2}	t _{ERASE}	One Page,	5.2	5.35	5.5	ms
		F _{SYSCLK} = 24.5 MHz				
V _{DD} Voltage During Programming ³	V _{PROG}		2.2	_	3.6	V
Endurance (Write/Erase Cycles)	N _{WE}		20k	100k	—	Cycles
CRC Calculation Time	t _{CRC}	One 256-Byte Block	_	5.5	_	μs
		SYSCLK = 48 MHz				

Note:

1. Does not include sequencing time before and after the write/erase operation, which may be multiple SYSCLK cycles.

- 2. The internal High-Frequency Oscillator 0 has a programmable output frequency, which is factory programmed to 24.5 MHz. If user firmware adjusts the oscillator speed, it must be between 22 and 25 MHz during any flash write or erase operation. It is recommended to write the HFO0CAL register back to its reset value when writing or erasing flash.
- 3. Flash can be safely programmed at any voltage above the supply monitor threshold (V_{VDDM}).

4. Data Retention Information is published in the Quarterly Quality and Reliability Report.

4.1.5 Power Management Timing

Table 4.5. Power Management Timing

Parameter	Symbol	Test Condition	Min	Тур	Max	Units
Idle Mode Wake-up Time	t _{IDLEWK}		2	_	3	SYSCLKs
Suspend Mode Wake-up Time	t _{SUS-}	SYSCLK = HFOSC0	_	170	_	ns
	PENDWK	CLKDIV = 0x00				
Snooze Mode Wake-up Time	t _{SLEEPWK}	SYSCLK = HFOSC0	_	12	_	μs
		CLKDIV = 0x00				

4.1.6 Internal Oscillators

Table 4.6. Internal Oscillators

Parameter	Symbol	Test Condition	Min	Тур	Мах	Unit
High Frequency Oscillator 0	(24.5 MHz)					
Oscillator Frequency	f _{HFOSC0}	Full Temperature and Supply Range	24	24.5	25	MHz
Power Supply Sensitivity	PSS _{HFOS} C0	T _A = 25 °C	-	0.5	_	%/V
Temperature Sensitivity	TS _{HFOSC0}	V _{DD} = 3.0 V	_	40	_	ppm/°C
High Frequency Oscillator 1	(72 MHz)					1
Oscillator Frequency	f _{HFOSC1}	Full Temperature and Supply Range	70.5	72	73.5	MHz
Power Supply Sensitivity	PSS _{HFOS} C1	T _A = 25 °C	_	300		ppm/V
Temperature Sensitivity	TS _{HFOSC1}	V _{DD} = 3.0 V	_	103	_	ppm/°C
Low Frequency Oscillator (80) kHz)				1	1
Oscillator Frequency	f _{LFOSC}	Full Temperature and Supply Range	75	80	85	kHz
Power Supply Sensitivity	PSS _{LFOSC}	T _A = 25 °C		0.05	_	%/V
Temperature Sensitivity	TS _{LFOSC}	V _{DD} = 3.0 V	_	65		ppm/°C

4.1.7 External Clock Input

Table 4.7. External Clock Input

Parameter	Symbol	Test Condition	Min	Тур	Max	Unit
External Input CMOS Clock	f _{CMOS}		0	—	50	MHz
Frequency (at EXTCLK pin)						
External Input CMOS Clock High Time	t _{CMOSH}		9		_	ns
External Input CMOS Clock Low Time	t _{CMOSL}		9			ns

4.1.8 Crystal Oscillator

Table 4.8. Crystal Oscillator

Parameter	Symbol	Test Condition	Min	Тур	Max	Unit
Crystal Frequency	f _{XTAL}		0.02	-	25	MHz
Crystal Drive Current	I _{XTAL}	XFCN = 0	_	0.5	—	μA
		XFCN = 1	—	1.5	—	μA
		XFCN = 2	—	4.8	—	μA
		XFCN = 3	—	14	_	μA
		XFCN = 4	—	40	_	μA
		XFCN = 5	—	120	_	μA
		XFCN = 6	_	550	_	μA
		XFCN = 7	_	2.6	_	mA

4.1.11 Temperature Sensor

Parameter	Symbol	Test Condition	Min	Тур	Max	Unit
Uncalibrated Offset	V _{OFF}	T _A = 0 °C		751		mV
Uncalibrated Offset Error ¹	EOFF	T _A = 0 °C		19		mV
Slope	м			2.82	_	mV/°C
Slope Error ¹	E _M		_	29	_	µV/°C
Linearity	LIN	T = 0 °C to 70 °C	-	-0.1 to 0.15	_	°C
		T = -20 °C to 85 °C	-	-0.2 to 0.35	_	°C
		T = -40 °C to 105 °C	_	-0.4 to 0.8	_	°C
Turn-on Time	t _{ON}		_	3.5	_	μs
Temp Sensor Error Using Typical Slope and Factory-Calibrated Off- set ^{2, 3}	E _{TOT}	T = 0 °C to 70 °C	-2.6	_	1.8	°C
		T = -20 °C to 85 °C	-2.9	_	2.7	°C
		T = -40 °C to 105 °C	-3.2	_	4.2	°C

Table 4.11. Temperature Sensor

Note:

1. Represents one standard deviation from the mean.

2. The factory-calibrated offset value is stored in the read-only area of flash in locations 0xFFD4 (low byte) and 0xFFD5 (high byte). The 14-bit result represents the output of the ADC when sampling the temp sensor using the 1.65 V internal voltage reference.

3. The temp sensor error includes the offset calibration error, slope error, and linearity error. The values are based upon characterization and are not tested across temperature in production. The values represent three standard deviations above and below the mean. Additional information on achieving high measurement accuracy is available in AN929: Accurate Temperature Sensing with the EFM8 Laser Bee MCU Family.

4.1.15 Port I/O

Table 4.15. Port I/O

Parameter	Symbol	Test Condition	Min	Тур	Max	Unit
Output High Voltage (High Drive)	V _{OH}	I _{OH} = -7 mA, V _{IO} ≥ 3.0 V	V _{IO} - 0.7	_	—	V
		I_{OH} = -3.3 mA, 2.2 V ≤ V _{IO} < 3.0 V	V _{IO} x 0.8		_	V
		I _{OH} = -1.8 mA, 1.71 V ≤ V _{IO} < 2.2 V				
Output Low Voltage (High Drive)	V _{OL}	I _{OL} = 13.5 mA, V _{IO} ≥ 3.0 V		_	0.6	V
		I_{OL} = 7 mA, 2.2 V ≤ V _{IO} < 3.0 V		_	V _{IO} x 0.2	V
		I_{OL} = 3.6 mA, 1.71 V ≤ V_{IO} < 2.2 V				
Output High Voltage (Low Drive)	V _{OH}	I _{OH} = -4.75 mA, V _{IO} ≥ 3.0 V	V _{IO} - 0.7	_	_	V
		I_{OH} = -2.25 mA, 2.2 V ≤ V _{IO} < 3.0 V	V _{IO} x 0.8	_	_	V
		I_{OH} = -1.2 mA, 1.71 V \leq V _{IO} < 2.2 V				
Output Low Voltage (Low Drive)	V _{OL}	I _{OL} = 6.5 mA, V _{IO} ≥ 3.0 V		_	0.6	V
		I_{OL} = 3.5 mA, 2.2 V ≤ V_{IO} < 3.0 V	_	_	V _{IO} x 0.2	V
		I_{OL} = 1.8 mA, 1.71 V \leq V _{IO} < 2.2 V				
Input High Voltage	VIH		0.7 x	_	—	V
			V _{IO}			
Input Low Voltage	VIL		_	_	0.3 x	V
					V _{IO}	
Pin Capacitance	C _{IO}		—	7	—	pF
Weak Pull-Up Current	I _{PU}	V _{DD} = 3.6	-30	-20	-10	μA
(V _{IN} = 0 V)						
Input Leakage (Pullups off or Ana- log)	I _{LK}	GND < V _{IN} < V _{IO}	-1.1		4	μA
Input Leakage Current with VIN	I _{LK}	V _{IO} < V _{IN} < V _{IO} +2.5 V	0	5	150	μA
above V _{IO}		Any pin except P3.0, P3.1, P3.2, or P3.3				

4.1.16 SMBus

Parameter	Symbol	Test Condition	Min	Тур	Мах	Unit
Standard Mode (100 kHz Class)						
I2C Operating Frequency	f _{I2C}		0	—	70 ²	kHz
SMBus Operating Frequency	f _{SMB}		40 ¹	_	70 ²	kHz
Bus Free Time Between STOP and START Conditions	t _{BUF}		9.4	_	-	μs
Hold Time After (Repeated) START Condition	t _{HD:STA}		4.7	—	-	μs
Repeated START Condition Setup Time	t _{SU:STA}		9.4	_	_	μs
STOP Condition Setup Time	t _{su:sтo}		9.4		_	μs
Data Hold Time	t _{HD:DAT}		0	_	_	μs
Data Setup Time	t _{SU:DAT}		4.7	—	_	μs
Detect Clock Low Timeout	t _{TIMEOUT}		25	_	_	ms
Clock Low Period	t _{LOW}		4.7		_	μs
Clock High Period	t _{HIGH}		9.4	_	50 ³	μs
Fast Mode (400 kHz Class)						
I2C Operating Frequency	f _{I2C}		0	—	256 ²	kHz
SMBus Operating Frequency	f _{SMB}		40 ¹	_	256 ²	kHz
Bus Free Time Between STOP and START Conditions	t _{BUF}		2.6	—	-	μs
Hold Time After (Repeated) START Condition	t _{HD:STA}		1.3	_	-	μs
Repeated START Condition Setup Time	t _{SU:STA}		2.6	_	-	μs
STOP Condition Setup Time	t _{SU:STO}		2.6	_	-	μs
Data Hold Time	thd:dat		0	_	_	μs
Data Setup Time	t _{SU:DAT}		1.3	_	_	μs
Detect Clock Low Timeout	t _{TIMEOUT}		25	_	_	ms
Clock Low Period	t _{LOW}		1.3	_	_	μs
Clock High Period	t _{HIGH}		2.6	_	50 ³	μs

Table 4.16. SMBus Peripheral Timing Performance (Master Mode)

Note:

1. The minimum SMBus frequency is limited by the maximum Clock High Period requirement of the SMBus specification.

2. The maximum I2C and SMBus frequencies are limited by the minimum Clock Low Period requirements of their respective specifications.

3. SMBus has a maximum requirement of 50 µs for Clock High Period. Operating frequencies lower than 40 kHz will be longer than 50 µs. I2C can support periods longer than 50 µs.

4.3 Absolute Maximum Ratings

Stresses above those listed in Table 4.19 Absolute Maximum Ratings on page 30 may cause permanent damage to the device. This is a stress rating only and functional operation of the devices at those or any other conditions above those indicated in the operation listings of this specification is not implied. Exposure to maximum rating conditions for extended periods may affect device reliability. For more information on the available quality and reliability data, see the Quality and Reliability Monitor Report at http://www.silabs.com/support/quality/pages/default.aspx.

Table 4.19. Absolute Maximum Ratings

Parameter	Symbol	Test Condition	Min	Мах	Unit
Ambient Temperature Under Bias	T _{BIAS}		-55	125	°C
Storage Temperature	T _{STG}		-65	150	°C
Voltage on VDD	V _{DD}		GND-0.3	4.2	V
Voltage on VIO ²	V _{IO}		GND-0.3	V _{DD} +0.3	V
Voltage on I/O pins or RSTb, excluding		V _{IO} > 3.3 V	GND-0.3	5.8	V
P2.0-P2.3 (QFN24 and QSOP24) or P3.0-P3.3 (QFN32 and QFP32)		V _{IO} < 3.3 V	GND-0.3	V _{IO} +2.5	V
Voltage on P2.0-P2.3 (QFN24 and QSOP24) or P3.0-P3.3 (QFN32 and QFP32)	V _{IN}		GND-0.3	V _{DD} +0.3	V
Total Current Sunk into Supply Pin	I _{VDD}		_	400	mA
Total Current Sourced out of Ground Pin	I _{GND}		400	_	mA
Current Sourced or Sunk by any I/O Pin or RSTb	I _{IO}		-100	100	mA
Operating Junction Temperature	TJ	T _A = -40 °C to 105 °C	-40	130	°C

Note:

1. Exposure to maximum rating conditions for extended periods may affect device reliability.

2. In certain package configurations, the VIO and VDD supplies are bonded to the same pin.

Pin Number	Pin Name	Description	Crossbar Capability	Additional Digital Functions	Analog Functions
15	P2.2	Multifunction I/O	Yes	P2MAT.2	ADC0.15
				CLU2OUT	CMP1P.4
				CLU1A.15	CMP1N.4
				CLU2B.14	
				CLU3A.14	
16	P2.1	Multifunction I/O	Yes	P2MAT.1	ADC0.14
				I2C0_SCL	CMP1P.3
				CLU1B.14	CMP1N.3
				CLU2A.15	
				CLU3B.15	
17	P2.0	Multifunction I/O	Yes	P2MAT.0	CMP1P.2
				I2C0_SDA	CMP1N.2
				CLU1A.14	
				CLU2A.14	
				CLU3B.14	
18	P1.7	Multifunction I/O	Yes	P1MAT.7	ADC0.13
				CLU0B.15	CMP0P.9
				CLU1B.13	CMP0N.9
				CLU2A.13	
19	P1.6	Multifunction I/O	Yes	P1MAT.6	ADC0.12
				CLU0A.15	
				CLU1B.12	
				CLU2A.12	
20	P1.5	Multifunction I/O	Yes	P1MAT.5	ADC0.11
				CLU0B.14	
				CLU1A.13	
				CLU2B.13	
21	P1.4	Multifunction I/O	Yes	P1MAT.4	ADC0.10
				CLU0A.14	
				CLU1A.12	
				CLU2B.12	
22	P1.3	Multifunction I/O	Yes	P1MAT.3	ADC0.9
				CLU0B.13	
				CLU1B.11	
				CLU2B.11	
				CLU3A.13	

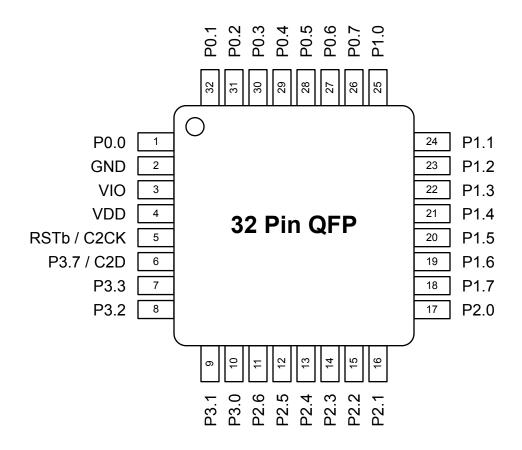
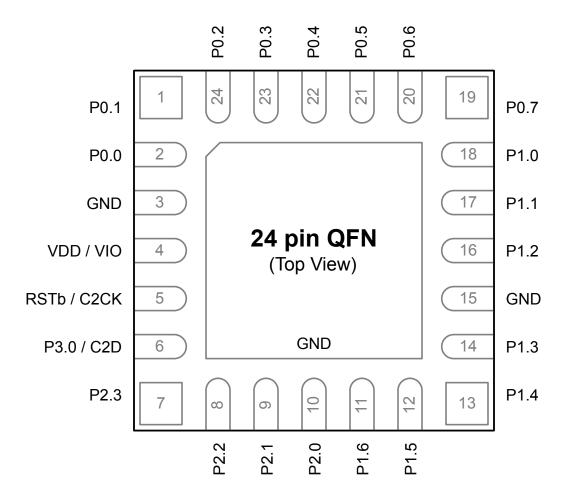



Figure 6.2. EFM8LB1x-QFP32 Pinout

Table 6.2.	Pin Definitions	for EFM8LB1x-QFP32
------------	-----------------	--------------------

Pin Number	Pin Name	Description	Crossbar Capability	Additional Digital Functions	Analog Functions
1	P0.0	Multifunction I/O	Yes	P0MAT.0	VREF
				INT0.0	
				INT1.0	
				CLU0A.8	
				CLU2A.8	
				CLU3B.8	
2	GND	Ground			
3	VIO	I/O Supply Power Input			
4	VDD	Supply Power Input			
5	RSTb /	Active-low Reset /			
	C2CK	C2 Debug Clock			

Table 6.3.	Pin Definitions	for EFM8LB1x-QFN24
------------	-----------------	--------------------

Pin Number	Pin Name	Description	Crossbar Capability	Additional Digital Functions	Analog Functions
1	P0.1	Multifunction I/O	Yes	P0MAT.1	ADC0.0
				INT0.1	CMP0P.0
				INT1.1	CMP0N.0
				CLU0B.8	AGND
				CLU2A.9	
				CLU3B.9	

Pin Number	Pin Name	Description	Crossbar Capability	Additional Digital Functions	Analog Functions
12	P1.5	Multifunction I/O	Yes	P1MAT.5	ADC0.10
				CLU2OUT	CMP1P.4
				CLU0B.14	CMP1N.4
				CLU1A.13	
				CLU2B.13	
13	P1.4	Multifunction I/O	Yes	P1MAT.4	ADC0.9
				I2C0_SCL	CMP1P.3
				CLU0A.14	CMP1N.3
				CLU1A.12	
				CLU2B.12	
14	P1.3	Multifunction I/O	Yes	P1MAT.3	CMP1P.2
				I2C0_SDA	CMP1N.2
				CLU0B.13	
				CLU1B.11	
				CLU2B.11	
				CLU3A.13	
15	GND	Ground			
16	P1.2	Multifunction I/O	Yes	P1MAT.2	ADC0.8
				CLU0A.13	
				CLU1A.11	
				CLU2B.10	
				CLU3A.12	
17	P1.1	Multifunction I/O	Yes	P1MAT.1	ADC0.7
				CLU0B.12	
				CLU1B.10	
				CLU2A.11	
				CLU3B.13	
18	P1.0	Multifunction I/O	Yes	P1MAT.0	ADC0.6
				CLU0A.12	
				CLU1A.10	
				CLU2A.10	
				CLU3B.12	

Pin Number	Pin Name	Description	Crossbar Capability	Additional Digital Functions	Analog Functions
2	P0.2	Multifunction I/O	Yes	P0MAT.2	XTAL1
				INT0.2	ADC0.1
				INT1.2	CMP0P.1
				CLU0OUT	CMP0N.1
				CLU0A.9	
				CLU2B.8	
				CLU3A.8	
3	P0.1	Multifunction I/O	Yes	P0MAT.1	ADC0.0
				INT0.1	CMP0P.0
				INT1.1	CMP0N.0
				CLU0B.8	AGND
				CLU2A.9	
				CLU3B.9	
4	P0.0	Multifunction I/O	Yes	P0MAT.0	VREF
				INT0.0	
				INT1.0	
				CLU0A.8	
				CLU2A.8	
				CLU3B.8	
5	GND	Ground			
6	VDD / VIO	Supply Power Input			
7	RSTb /	Active-low Reset /			
	C2CK	C2 Debug Clock			
8	P3.0 /	Multifunction I/O /			
	C2D	C2 Debug Data			
9	P2.3	Multifunction I/O	Yes	P2MAT.3	DAC3
				CLU1B.15	
				CLU2B.15	
				CLU3A.15	
10	P2.2	Multifunction I/O	Yes	P2MAT.2	DAC2
				CLU1A.15	
				CLU2B.14	
				CLU3A.14	

8.2 QFP32 PCB Land Pattern

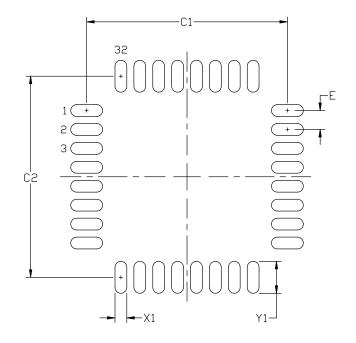


Figure 8.2. QFP32 PCB Land Pattern Drawing

Table 8.2.	QFP32 PCB La	and Pattern	Dimensions
------------	--------------	-------------	------------

Dimension	Min	Мах		
C1	8.40	8.50		
C2	8.40	8.50		
E	0.80	0.80 BSC		
X1	0.55			
Y1	1.5			

Note:

1. All dimensions shown are in millimeters (mm) unless otherwise noted.

2. This Land Pattern Design is based on the IPC-7351 guidelines.

3. All metal pads are to be non-solder mask defined (NSMD). Clearance between the solder mask and the metal pad is to be 60 µm minimum, all the way around the pad.

4. A stainless steel, laser-cut and electro-polished stencil with trapezoidal walls should be used to assure good solder paste release.

5. The stencil thickness should be 0.125 mm (5 mils).

6. The ratio of stencil aperture to land pad size should be 1:1 for all perimeter pads.

7. A No-Clean, Type-3 solder paste is recommended.

8. The recommended card reflow profile is per the JEDEC/IPC J-STD-020C specification for Small Body Components.

Min	Тур	Мах
	0.20	
	0.18	
	0.10	
	0.10	
	Min	0.20 0.18 0.10

Note:

1. All dimensions shown are in millimeters (mm) unless otherwise noted.

2. Dimensioning and Tolerancing per ANSI Y14.5M-1994.

3. This drawing conforms to JEDEC outline MO-137, variation AE.

4. Recommended card reflow profile is per the JEDEC/IPC J-STD-020 specification for Small Body Components.

	6.2 EFM8LB1x-QFP32 Pin Definitions		 		 										.38
	6.3 EFM8LB1x-QFN24 Pin Definitions		 		 										.43
	6.4 EFM8LB1x-QSOP24 Pin Definitions		 		 				•						.48
7.	. QFN32 Package Specifications.		 		 										53
	7.1 QFN32 Package Dimensions														
	7.2 QFN32 PCB Land Pattern														
	7.3 QFN32 Package Marking														
8	. QFP32 Package Specifications.														
0.	8.1 QFP32 Package Dimensions														
	8.2 QFP32 PCB Land Pattern														
	8.3 QFP32 Package Marking														
•															
9.	9.1 QFN24 Package Specifications 9.1 QFN24 Package Dimensions														
	-														
	9.2 QFN24 PCB Land Pattern														
	9.3 QFN24 Package Marking														
10	0. QSOP24 Package Specifications														
	10.1 QSOP24 Package Dimensions														
	10.2 QSOP24 PCB Land Pattern														
	10.3 QSOP24 Package Marking														
11	1. Revision History	•	 	•	 	•	•	•	•	•	•	•	•	•	69
	11.1 Revision 1.01	•	 		 				•						.69
	11.2 Revision 1.0	•	 		 				•						.69
	11.3 Revision 0.5	•	 		 				•						.69
	11.4 Revision 0.4	•	 		 				•						.69
	11.5 Revision 0.3	•	 		 				•	•					.69
	11.6 Revision 0.1	•	 		 				•		•				.69
Та	able of Contents		 		 										70