

What is "<u>Embedded - Microcontrollers</u>"? "<u>Embedded - Microcontrollers</u>" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics,

Welcome to E-XFL.COM

range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

providing the intelligence and control needed for a wide

Details

Product Status	Obsolete
Core Processor	CIP-51 8051
Core Size	8-Bit
Speed	72MHz
Connectivity	I ² C, SMBus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	28
Program Memory Size	64KB (64K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	4.25K x 8
Voltage - Supply (Vcc/Vdd)	2.2V ~ 3.6V
Data Converters	A/D 20x14b; D/A 4x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 105°C (TA)
Mounting Type	Surface Mount
Package / Case	32-UFQFN Exposed Pad
Supplier Device Package	32-QFN (4x4)
Purchase URL	https://www.e-xfl.com/product-detail/silicon-labs/efm8lb12f64es0-b-qfn32r

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

3.4 Clocking

The CPU core and peripheral subsystem may be clocked by both internal and external oscillator resources. By default, the system clock comes up running from the 24.5 MHz oscillator divided by 8.

The clock control system offers the following features:

- Provides clock to core and peripherals.
- 24.5 MHz internal oscillator (HFOSC0), accurate to ±2% over supply and temperature corners.
- 72 MHz internal oscillator (HFOSC1), accurate to ±2% over supply and temperature corners.
- 80 kHz low-frequency oscillator (LFOSC0).
- External RC, CMOS, and high-frequency crystal clock options (EXTCLK).
- · Clock divider with eight settings for flexible clock scaling:
 - Divide the selected clock source by 1, 2, 4, 8, 16, 32, 64, or 128.
 - HFOSC0 and HFOSC1 include 1.5x pre-scalers for further flexibility.

3.5 Counters/Timers and PWM

Programmable Counter Array (PCA0)

The programmable counter array (PCA) provides multiple channels of enhanced timer and PWM functionality while requiring less CPU intervention than standard counter/timers. The PCA consists of a dedicated 16-bit counter/timer and one 16-bit capture/compare module for each channel. The counter/timer is driven by a programmable timebase that has flexible external and internal clocking options. Each capture/compare module may be configured to operate independently in one of five modes: Edge-Triggered Capture, Software Timer, High-Speed Output, Frequency Output, or Pulse-Width Modulated (PWM) Output. Each capture/compare module has its own associated I/O line (CEXn) which is routed through the crossbar to port I/O when enabled.

- 16-bit time base
- Programmable clock divisor and clock source selection
- · Up to six independently-configurable channels
- 8, 9, 10, 11 and 16-bit PWM modes (center or edge-aligned operation)
- Output polarity control
- Frequency output mode
- · Capture on rising, falling or any edge
- · Compare function for arbitrary waveform generation
- · Software timer (internal compare) mode
- · Can accept hardware "kill" signal from comparator 0 or comparator 1

Universal Asynchronous Receiver/Transmitter (UART1)

UART1 is an asynchronous, full duplex serial port offering a variety of data formatting options. A dedicated baud rate generator with a 16-bit timer and selectable prescaler is included, which can generate a wide range of baud rates. A received data FIFO allows UART1 to receive multiple bytes before data is lost and an overflow occurs.

UART1 provides the following features:

- · Asynchronous transmissions and receptions
- Dedicated baud rate generator supports baud rates up to SYSCLK/2 (transmit) or SYSCLK/8 (receive)
- 5, 6, 7, 8, or 9 bit data
- Automatic start and stop generation
- Automatic parity generation and checking
- · Single-byte buffer on transmit and receive
- Auto-baud detection
- · LIN break and sync field detection
- CTS / RTS hardware flow control

Serial Peripheral Interface (SPI0)

The serial peripheral interface (SPI) module provides access to a flexible, full-duplex synchronous serial bus. The SPI can operate as a master or slave device in both 3-wire or 4-wire modes, and supports multiple masters and slaves on a single SPI bus. The slave-select (NSS) signal can be configured as an input to select the SPI in slave mode, or to disable master mode operation in a multi-master environment, avoiding contention on the SPI bus when more than one master attempts simultaneous data transfers. NSS can also be configured as a firmware-controlled chip-select output in master mode, or disable to reduce the number of pins required. Additional general purpose port I/O pins can be used to select multiple slave devices in master mode.

- Supports 3- or 4-wire master or slave modes
- · Supports external clock frequencies up to 12 Mbps in master or slave mode
- · Support for all clock phase and polarity modes
- 8-bit programmable clock rate (master)
- Programmable receive timeout (slave)
- · Two byte FIFO on transmit and receive
- · Can operate in suspend or snooze modes and wake the CPU on reception of a byte
- · Support for multiple masters on the same data lines

System Management Bus / I2C (SMB0)

The SMBus I/O interface is a two-wire, bi-directional serial bus. The SMBus is compliant with the System Management Bus Specification, version 1.1, and compatible with the I²C serial bus.

The SMBus module includes the following features:

- · Standard (up to 100 kbps) and Fast (400 kbps) transfer speeds
- · Support for master, slave, and multi-master modes
- Hardware synchronization and arbitration for multi-master mode
- · Clock low extending (clock stretching) to interface with faster masters
- · Hardware support for 7-bit slave and general call address recognition
- Firmware support for 10-bit slave address decoding
- · Ability to inhibit all slave states
- Programmable data setup/hold times
- · Transmit and receive FIFOs (one byte) to help increase throughput in faster applications

3.7 Analog

14/12/10-Bit Analog-to-Digital Converter (ADC0)

The ADC is a successive-approximation-register (SAR) ADC with 14-, 12-, and 10-bit modes, integrated track-and hold and a programmable window detector. The ADC is fully configurable under software control via several registers. The ADC may be configured to measure different signals using the analog multiplexer. The voltage reference for the ADC is selectable between internal and external reference sources.

- Up to 20 external inputs
- · Single-ended 14-bit, 12-bit and 10-bit modes
- Supports an output update rate of up to 1 Msps in 12-bit mode
- Channel sequencer logic with direct-to-XDATA output transfers
- Operation in a low power mode at lower conversion speeds
- Asynchronous hardware conversion trigger, selectable between software, external I/O and internal timer and configurable logic sources
- Output data window comparator allows automatic range checking
- Support for output data accumulation
- Conversion complete and window compare interrupts supported
- Flexible output data formatting
- Includes a fully-internal fast-settling 1.65 V reference and an on-chip precision 2.4 / 1.2 V reference, with support for using the supply as the reference, an external reference and signal ground
- Integrated factory-calibrated temperature sensor

12-Bit Digital-to-Analog Converters (DAC0, DAC1, DAC2, DAC3)

The DAC modules are 12-bit Digital-to-Analog Converters with the capability to synchronize multiple outputs together. The DACs are fully configurable under software control. The voltage reference for the DACs is selectable between internal and external reference sources.

- Voltage output with 12-bit performance
- · Hardware conversion trigger, selectable between software, external I/O and internal timer and configurable logic sources
- Outputs may be configured to persist through reset and maintain output state to avoid system disruption
- Multiple DAC outputs can be synchronized together
- · DAC pairs (DAC0 and 1 or DAC2 and 3) support complementary output waveform generation
- · Outputs may be switched between two levels according to state of configurable logic / PWM input trigger
- Flexible input data formatting
- · Supports references from internal supply, on-chip precision reference, or external VREF pin

Low Current Comparators (CMP0, CMP1)

An analog comparator is used to compare the voltage of two analog inputs, with a digital output indicating which input voltage is higher. External input connections to device I/O pins and internal connections are available through separate multiplexers on the positive and negative inputs. Hysteresis, response time, and current consumption may be programmed to suit the specific needs of the application.

The comparator includes the following features:

- · Up to 10 (CMP0) or 9 (CMP1) external positive inputs
- Up to 10 (CMP0) or 9 (CMP1) external negative inputs
- Additional input options:
 - Internal connection to LDO output
 - Direct connection to GND
 - Direct connection to VDD
 - Dedicated 6-bit reference DAC
- Synchronous and asynchronous outputs can be routed to pins via crossbar
- Programmable hysteresis between 0 and ±20 mV
- Programmable response time
- Interrupts generated on rising, falling, or both edges
- PWM output kill feature

Bootloader

Pins for Bootload Communication

Note:

1. The STK uses these pins for another purpose, so there is a special SMBus bootloader build for the STK only included in *AN945: EFM8 Factory Bootloader User Guide* that uses P1.2 (SDA) and P1.3 (SCL).

Table 3.3. Summary of Pins for Bootload Mode Entry

Device Package	Pin for Bootload Mode Entry
QFN32	P3.7 / C2D
QFP32	P3.7 / C2D
QFN24	P3.0 / C2D
QSOP24	P3.0 / C2D

4.1.2 Power Consumption

Parameter	Symbol	Test Condition	Min	Тур	Max	Unit
Digital Core Supply Current	1		1			
Normal Mode-Full speed with code	I _{DD}	F _{SYSCLK} = 72 MHz (HFOSC1) ²	_	12.9	15	mA
executing from flash		F _{SYSCLK} = 24.5 MHz (HFOSC0) ²	_	4.2	5	mA
		F _{SYSCLK} = 1.53 MHz (HFOSC0) ²	_	625	1050	μA
		F _{SYSCLK} = 80 kHz ³	_	155	575	μA
dle Mode-Core halted with periph-	I _{DD}	F _{SYSCLK} = 72 MHz (HFOSC1) ²	_	9.6	11.1	mA
erals running		F _{SYSCLK} = 24.5 MHz (HFOSC0) ²	_	3.14	3.8	mA
		F _{SYSCLK} = 1.53 MHz (HFOSC0) ²	_	520	950	μA
		F _{SYSCLK} = 80 kHz ³	_	135	550	μA
Suspend Mode-Core halted and	I _{DD}	LFO Running	_	125	545	μA
nigh frequency clocks stopped, Supply monitor off.		LFO Stopped	_	120	535	μA
Snooze Mode-Core halted and	I _{DD}	LFO Running	_	23	430	μA
nigh frequency clocks stopped. Regulator in low-power state, Sup- oly monitor off.		LFO Stopped	-	19	425	μA
Stop Mode—Core halted and all clocks stopped,Internal LDO On, Supply monitor off.	I _{DD}		_	120	535	μA
Shutdown Mode—Core halted and all clocks stopped,Internal LDO Off, Supply monitor off.	IDD		_	0.2	2.1	μA
Analog Peripheral Supply Current	ts					
High-Frequency Oscillator 0	I _{HFOSC0}	Operating at 24.5 MHz,	_	120	135	μA
		T _A = 25 °C				
High-Frequency Oscillator 1	I _{HFOSC1}	Operating at 72 MHz,	_	1285	1340	μA
		T _A = 25 °C				
_ow-Frequency Oscillator	I _{LFOSC}	Operating at 80 kHz,	_	3.7	6	μA
		T _A = 25 °C				

Table 4.2. Power Consumption

Parameter	Symbol	Test Condition	Min	Тур	Max	Unit
ADC0 ⁴	I _{ADC}	High Speed Mode	_	1275	1700	μA
		1 Msps, 12-bit conversions				
		Normal bias settings				
		V _{DD} = 3.0 V				
		Low Power Mode	_	390	530	μA
		350 ksps, 12-bit conversions				
		Low power bias settings				
		V _{DD} = 3.0 V				
Internal ADC0 Reference ⁵	I _{VREFFS}	High Speed Mode	_	700	790	μA
		Low Power Mode		170	210	μA
On-chip Precision Reference	I _{VREFP}		_	75	_	μA
Temperature Sensor	ITSENSE		_	68	120	μA
Digital-to-Analog Converters (DAC0, DAC1, DAC2, DAC3) ⁶	I _{DAC}		-	125	_	μA
Comparators (CMP0, CMP1)	I _{CMP}	CPMD = 11		0.5		μA
		CPMD = 10	_	3	_	μA
		CPMD = 01	_	10	_	μA
		CPMD = 00	_	25	—	μA
Comparator Reference	I _{CPREF}		_	24	_	μA
Voltage Supply Monitor (VMON0)	I _{VMON}		_	15	20	μA

Note:

1. Currents are additive. For example, where I_{DD} is specified and the mode is not mutually exclusive, enabling the functions increases supply current by the specified amount.

- 2. Includes supply current from internal LDO regulator, supply monitor, and High Frequency Oscillator.
- 3. Includes supply current from internal LDO regulator, supply monitor, and Low Frequency Oscillator.
- 4. ADC0 power excludes internal reference supply current.
- 5. The internal reference is enabled as-needed when operating the ADC in low power mode. Total ADC + Reference current will depend on sampling rate.

6. DAC supply current for each enabled DA and not including external load on pin.

4.1.5 Power Management Timing

Table 4.5. Power Management Timing

Parameter	Symbol	Test Condition	Min	Тур	Max	Units
Idle Mode Wake-up Time	t _{IDLEWK}		2	_	3	SYSCLKs
Suspend Mode Wake-up Time	t _{SUS-}	SYSCLK = HFOSC0	_	170	_	ns
	PENDWK	CLKDIV = 0x00				
Snooze Mode Wake-up Time	t _{SLEEPWK}	SYSCLK = HFOSC0	_	12	_	μs
		CLKDIV = 0x00				

4.1.6 Internal Oscillators

Table 4.6. Internal Oscillators

Parameter	Symbol	Test Condition	Min	Тур	Мах	Unit		
High Frequency Oscillator 0 (24.5 MHz)								
Oscillator Frequency	f _{HFOSC0}	Full Temperature and Supply 24 Range		24.5	25	MHz		
Power Supply Sensitivity	PSS _{HFOS} C0	T _A = 25 °C	-	0.5	_	%/V		
Temperature Sensitivity	TS _{HFOSC0}	V _{DD} = 3.0 V	_	40	_	ppm/°C		
High Frequency Oscillator 1	(72 MHz)					1		
Oscillator Frequency	f _{HFOSC1}	Full Temperature and Supply Range	70.5	72	73.5	MHz		
Power Supply Sensitivity	PSS _{HFOS} C1	T _A = 25 °C	_	300		ppm/V		
Temperature Sensitivity	TS _{HFOSC1}	V _{DD} = 3.0 V	_	103	_	ppm/°C		
Low Frequency Oscillator (80) kHz)				1	1		
Oscillator Frequency	f _{LFOSC}	Full Temperature and Supply Range	75	80	85	kHz		
Power Supply Sensitivity	PSS _{LFOSC}	T _A = 25 °C		0.05	_	%/V		
Temperature Sensitivity	TS _{LFOSC}	V _{DD} = 3.0 V	_	65		ppm/°C		

Parameter	Symbol	Test Condition	Min	Тур	Max	Unit
Power Supply Rejection Ratio	PSRR _{ADC}	At 1 kHz	_	66	_	dB
		At 1 MHz	_	43	_	dB
DC Performance	·		·			
Integral Nonlinearity	INL	14 Bit Mode	-3.5 ⁴	-1.2 / +5	8.5 ⁴	LSB
		12 Bit Mode	-1.9	-0.35 / +1	1.9	LSB
		10 Bit Mode	-0.6	±0.2	0.6	LSB
Differential Nonlinearity (Guaran-	DNL	14 Bit Mode	-14	±1	2.5 ⁴	LSB
teed Monotonic)		12 Bit Mode	-0.9	±0.3	0.9	LSB
		10 Bit Mode	-0.5	±0.2	0.5	LSB
Offset Error ⁵	E _{OFF}	14 Bit Mode	-84	-2.5	84	LSB
		12 Bit Mode	-2	0	2	LSB
		10 Bit Mode	-1	0	1	LSB
Offset Temperature Coefficient	TC _{OFF}		_	0.011	_	LSB/°C
Slope Error	E _M	14 Bit Mode	-15 ⁴	_	15 ⁴	LSB
		12 Bit Mode	-2.6	_	2.6	LSB
		10 Bit Mode	-1.1	_	1.1	LSB
Dynamic Performance 10 kHz Si	ne Wave Inp	ut 1 dB below full scale, Max thr	oughput, usin	g AGND pin		
Signal-to-Noise	SNR	14 Bit Mode	66 ⁴	72	_	dB
		12 Bit Mode	64	68	_	dB
		10 Bit Mode	59	61	_	dB
Signal-to-Noise Plus Distortion	SNDR	14 Bit Mode	66 ⁴	72	_	dB
		12 Bit Mode	64	68		dB
		10 Bit Mode	59	61	_	dB
Total Harmonic Distortion (Up to	THD	14 Bit Mode	_	-74	_	dB
5th Harmonic)		12 Bit Mode		-72	_	dB
		10 Bit Mode	_	-69	_	dB
Spurious-Free Dynamic Range	SFDR	14 Bit Mode		74	_	dB
		12 Bit Mode	_	74	_	dB
		10 Bit Mode	_	71	_	dB

Note:

1. This time is equivalent to four periods of a clock running at 18 MHz + 2%.

2. Conversion Time does not include Tracking Time. Total Conversion Time is:

Total Conversion Time = [RPT × (ADTK + NUMBITS + 1) × T(SARCLK)] + (T(ADCCLK) × 4)

where RPT is the number of conversions represented by the ADRPT field and ADCCLK is the clock selected for the ADC.

3. Absolute input pin voltage is limited by the $\ensuremath{\mathsf{V}_{\mathsf{IO}}}$ supply.

4. Measured with characterization data and not production tested.

5. The offset is determined using curve fitting since the specification is measured using linear search where the intercept is always positive.

5. Typical Connection Diagrams

5.1 Power

Figure 5.1 Power Connection Diagram on page 31 shows a typical connection diagram for the power pins of the device.

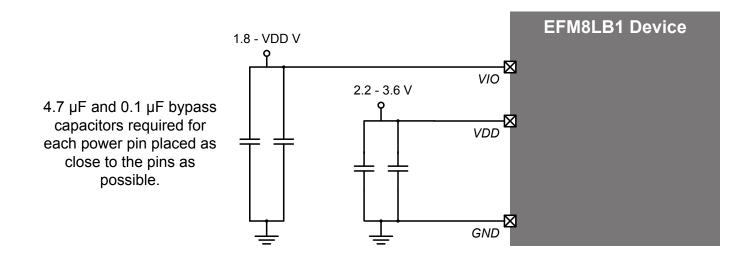
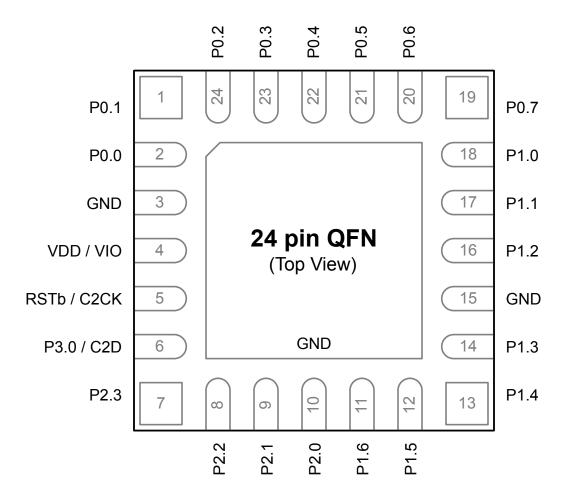



Figure 5.1. Power Connection Diagram

Pin Number	Pin Name	Description	Crossbar Capability	Additional Digital Functions	Analog Functions
1	P0.0	Multifunction I/O	Yes	P0MAT.0	VREF
				INT0.0	
				INT1.0	
				CLU0A.8	
				CLU2A.8	
				CLU3B.8	
2	VIO	I/O Supply Power Input			
3	VDD	Supply Power Input			
4	RSTb /	Active-low Reset /			
	C2CK	C2 Debug Clock			
5	P3.7 /	Multifunction I/O /			
	C2D	C2 Debug Data			
6	P3.4	Multifunction I/O			
7	P3.3	Multifunction I/O			DAC3
8	P3.2	Multifunction I/O			DAC2
9	P3.1	Multifunction I/O			DAC1
10	P3.0	Multifunction I/O			DAC0
11	P2.6	Multifunction I/O			ADC0.19
					CMP1P.8
					CMP1N.8
12	P2.5	Multifunction I/O		CLU3OUT	ADC0.18
					CMP1P.7
					CMP1N.7
13	P2.4	Multifunction I/O			ADC0.17
					CMP1P.6
					CMP1N.6
14	P2.3	Multifunction I/O	Yes	P2MAT.3	ADC0.16
				CLU1B.15	CMP1P.5
				CLU2B.15	CMP1N.5
				CLU3A.15	

Table 6.1. Pin Definitions for EFM8LB1x-QFN32

Pin Number	Pin Name	Description	Crossbar Capability	Additional Digital Functions	Analog Functions
23	P1.2	Multifunction I/O	Yes	P1MAT.2	ADC0.8
				CLU0A.13	CMP0P.8
				CLU1A.11	CMP0N.8
				CLU2B.10	
				CLU3A.12	
24	P1.1	Multifunction I/O	Yes	P1MAT.1	ADC0.7
				CLU0B.12	CMP0P.7
				CLU1B.10	CMP0N.7
				CLU2A.11	
				CLU3B.13	
25	P1.0	Multifunction I/O	Yes	P1MAT.0	ADC0.6
				CLU1OUT	CMP0P.6
				CLU0A.12	CMP0N.6
				CLU1A.10	CMP1P.1
				CLU2A.10	CMP1N.1
				CLU3B.12	
26	P0.7	Multifunction I/O	Yes	P0MAT.7	ADC0.5
				INT0.7	CMP0P.5
				INT1.7	CMP0N.5
				CLU0B.11	CMP1P.0
				CLU1B.9	CMP1N.0
				CLU3A.11	
27	P0.6	Multifunction I/O	Yes	P0MAT.6	ADC0.4
				CNVSTR	CMP0P.4
				INT0.6	CMP0N.4
				INT1.6	
				CLU0A.11	
				CLU1B.8	
				CLU3A.10	
28	P0.5	Multifunction I/O	Yes	P0MAT.5	ADC0.3
				INT0.5	CMP0P.3
				INT1.5	CMP0N.3
				UART0_RX	
				CLU0B.10	
				CLU1A.9	
				CLU3B.11	

Table 6.3.	Pin Definitions	for EFM8LB1x-QFN24
------------	-----------------	--------------------

Pin Number	Pin Name	Description	Crossbar Capability	Additional Digital Functions	Analog Functions
1	P0.1	Multifunction I/O	Yes	P0MAT.1	ADC0.0
				INT0.1	CMP0P.0
				INT1.1	CMP0N.0
				CLU0B.8	AGND
				CLU2A.9	
				CLU3B.9	

Pin Number	Pin Name	Description	Crossbar Capability	Additional Digital Functions	Analog Functions
2	P0.2	Multifunction I/O	Yes	P0MAT.2	XTAL1
				INT0.2	ADC0.1
				INT1.2	CMP0P.1
				CLU0OUT	CMP0N.1
				CLU0A.9	
				CLU2B.8	
				CLU3A.8	
3	P0.1	Multifunction I/O	Yes	P0MAT.1	ADC0.0
				INT0.1	CMP0P.0
				INT1.1	CMP0N.0
				CLU0B.8	AGND
				CLU2A.9	
				CLU3B.9	
4	P0.0	Multifunction I/O	Yes	P0MAT.0	VREF
				INT0.0	
				INT1.0	
				CLU0A.8	
				CLU2A.8	
				CLU3B.8	
5	GND	Ground			
6	VDD / VIO	Supply Power Input			
7	RSTb /	Active-low Reset /			
	C2CK	C2 Debug Clock			
8	P3.0 /	Multifunction I/O /			
	C2D	C2 Debug Data			
9	P2.3	Multifunction I/O	Yes	P2MAT.3	DAC3
				CLU1B.15	
				CLU2B.15	
				CLU3A.15	
10	P2.2	Multifunction I/O	Yes	P2MAT.2	DAC2
				CLU1A.15	
				CLU2B.14	
				CLU3A.14	

7. QFN32 Package Specifications

7.1 QFN32 Package Dimensions

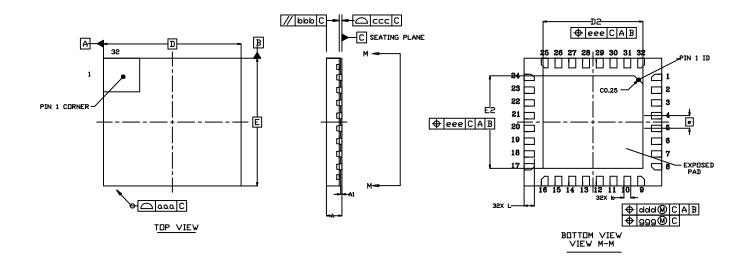


Figure 7.1. QFN32 Package Drawing

Dimension	Min	Тур	Мах
A	0.45	0.50	0.55
A1	0.00	0.035	0.05
b	0.15	0.20	0.25
D	4.00 BSC.		
D2	2.80	2.90	3.00
e	0.40 BSC.		
E	4.00 BSC.		
E2	2.80	2.90	3.00
L	0.20	0.30	0.40
ааа	_	_	0.10
bbb	—	_	0.10
ссс	—	_	0.08
ddd	_	_	0.10
eee	—	—	0.10
999	_	_	0.05

Table 7.1. QFN32 Package Dimensions

8. QFP32 Package Specifications

8.1 QFP32 Package Dimensions

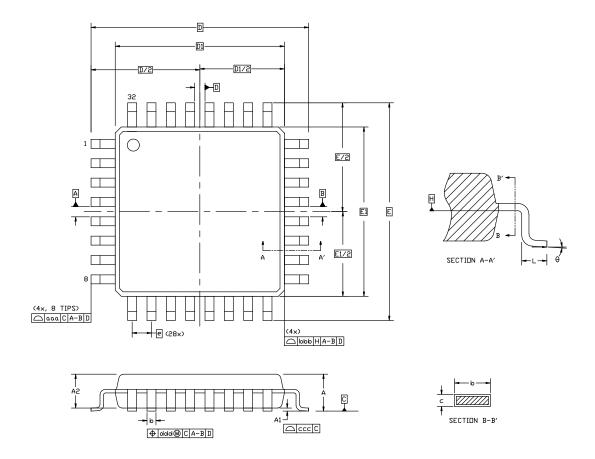
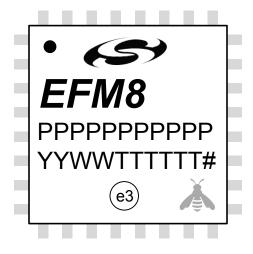
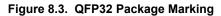


Figure 8.1. QFP32 Package Drawing

Table 8.1. QFP32 Package Dimensions

Dimension	Min	Тур	Мах
A	_		1.20
A1	0.05	—	0.15
A2	0.95	1.00	1.05
b	0.30	0.37	0.45
C	0.09	_	0.20
D	9.00 BSC		
D1	7.00 BSC		
е	0.80 BSC		
E	9.00 BSC		
E1	7.00 BSC		
L	0.50	0.60	0.70


Dimension	Min	Тур	Мах
ааа	0.20		
bbb	0.20		
ССС	0.10		
ddd	0.20		
theta	0°	3.5°	7°
Note:	•		


1. All dimensions shown are in millimeters (mm) unless otherwise noted.

2. Dimensioning and Tolerancing per ANSI Y14.5M-1994.

3. This drawing conforms to JEDEC outline MS-026.

4. Recommended card reflow profile is per the JEDEC/IPC J-STD-020 specification for Small Body Components.

The package marking consists of:

- PPPPPPP The part number designation.
- TTTTTT A trace or manufacturing code.
- YY The last 2 digits of the assembly year.
- WW The 2-digit workweek when the device was assembled.
- # The device revision (A, B, etc.).

9.2 QFN24 PCB Land Pattern

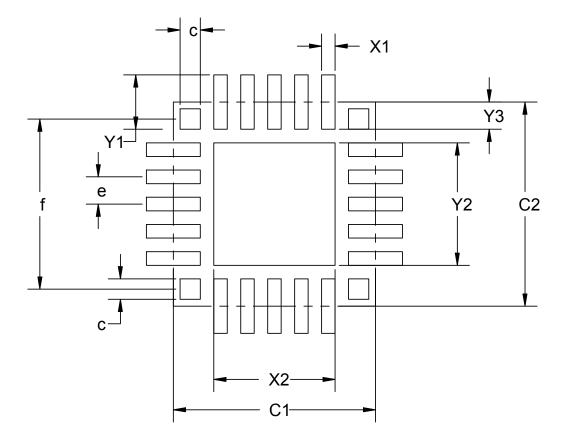


Figure 9.2. QFN24 PCB Land Pattern Drawing

Table 9.2. QFN24 PCB Land Pattern Dimensions

Dimension	Min	Мах	
C1	3.00		
C2	3.00		
е	0.4 REF		
X1	0.20		
X2	1.80		
Y1	0.80		
Y2	1.80		
Y3	0.4		
f	2.50 REF		
С	0.25	0.35	

Min	Тур	Мах
	0.20	
	0.18	
	0.10	
	0.10	
	Min	0.20 0.18 0.10

Note:

1. All dimensions shown are in millimeters (mm) unless otherwise noted.

2. Dimensioning and Tolerancing per ANSI Y14.5M-1994.

3. This drawing conforms to JEDEC outline MO-137, variation AE.

4. Recommended card reflow profile is per the JEDEC/IPC J-STD-020 specification for Small Body Components.

Silicon Labs

Simplicity Studio⁴

Simplicity Studio

One-click access to MCU and wireless tools, documentation, software, source code libraries & more. Available for Windows, Mac and Linux!

www.silabs.com/quality

Support and Community community.silabs.com

Disclaimer

Silicon Labs intends to provide customers with the latest, accurate, and in-depth documentation of all peripherals and modules available for system and software implementers using or intending to use the Silicon Labs products. Characterization data, available modules and peripherals, memory sizes and memory addresses refer to each specific device, and "Typical" parameters provided can and do vary in different applications. Application examples described herein are for illustrative purposes only. Silicon Labs reserves the right to make changes without further notice and limitation to product information, specifications, and descriptions herein, and does not give warranties as to the accuracy or completeness of the included information. Silicon Labs shall have no liability for the consequences of use of the information supplied herein. This document does not imply or express copyright licenses granted hereunder to design or fabricate any integrated circuits. The products are not designed or authorized to be used within any Life Support System without the specific written consent of Silicon Labs. A "Life Support System" is any product or system intended to support or sustain life and/or health, which, if it fails, can be reasonably expected to result in significant personal injury or death. Silicon Labs products are not designed or authorized for military applications. Silicon Labs products shall under no circumstances be used in weapons of mass destruction including (but not limited to) nuclear, biological or chemical weapons, or missiles capable of delivering such weapons.

Trademark Information

Silicon Laboratories Inc.®, Silicon Laboratories®, Silicon Labs®, SiLabs® and the Silicon Labs logo®, Bluegiga®, Bluegiga Logo®, Clockbuilder®, CMEMS®, DSPLL®, EFM®, EFM32®, EFR, Ember®, Energy Micro, Energy Micro logo and combinations thereof, "the world's most energy friendly microcontrollers", Ember®, EZLink®, EZRadio®, EZRadioPRO®, Gecko®, ISOmodem®, Precision32®, ProSLIC®, Simplicity Studio®, SiPHY®, Telegesis, the Telegesis Logo®, USBXpress® and others are trademarks or registered trademarks of Silicon Labs. ARM, CORTEX, Cortex-M3 and THUMB are trademarks or registered trademarks of ARM Holdings. Keil is a registered trademark of ARM Limited. All other products or brand names mentioned herein are trademarks of their respective holders.

Silicon Laboratories Inc. 400 West Cesar Chavez Austin, TX 78701 USA

http://www.silabs.com