

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Obsolete
Core Processor	8051
Core Size	8-Bit
Speed	24MHz
Connectivity	SPI, UART/USART
Peripherals	POR, WDT
Number of I/O	32
Program Memory Size	8KB (8K x 8)
Program Memory Type	FLASH
EEPROM Size	2K x 8
RAM Size	256 x 8
Voltage - Supply (Vcc/Vdd)	4V ~ 6V
Data Converters	-
Oscillator Type	External
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	44-TQFP
Supplier Device Package	44-TQFP (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/at89s8252-24ai

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Block Diagram

Special Function Registers

A map of the on-chip memory area called the Special Function Register (SFR) space is shown in Table 1.

Note that not all of the addresses are occupied, and unoccupied addresses may not be implemented on the chip. Read accesses to these addresses will in general return random data, and write accesses will have an indeterminate effect.

User software should not write 1s to these unlisted

locations, since they may be used in future products to invoke new features. In that case, the reset or inactive values of the new bits will always be 0.

Timer 2 Registers Control and status bits are contained in registers T2CON (shown in Table 2) and T2MOD (shown in Table 9) for Timer 2. The register pair (RCAP2H, RCAP2L) are the Capture/Reload registers for Timer 2 in 16 bit capture mode or 16-bit auto-reload mode.

Table 2.	T2CON-	-Timer/Counter	2	Control	Register
----------	--------	----------------	---	---------	----------

T2CON Address = 0C8H Reset V						Reset Value :	= 0000 0000B	
Bit Addressable								
	TF2	EXF2	RCLK	TCLK	EXEN2	TR2	C/T2	CP/RL2
Bit	7	6	5	4	3	2	1	0

Symbol	Function
TF2	Timer 2 overflow flag set by a Timer 2 overflow and must be cleared by software. TF2 will not be set when either RCLK = 1 or TCLK = 1.
EXF2	Timer 2 external flag set when either a capture or reload is caused by a negative transition on T2EX and EXEN2 = 1. When Timer 2 interrupt is enabled, $EXF2 = 1$ will cause the CPU to vector to the Timer 2 interrupt routine. $EXF2$ must be cleared by software. $EXF2$ does not cause an interrupt in up/down counter mode ($DCEN = 1$).
RCLK	Receive clock enable. When set, causes the serial port to use Timer 2 overflow pulses for its receive clock in serial port Modes 1 and 3. RCLK = 0 causes Timer 1 overflows to be used for the receive clock.
TCLK	Transmit clock enable. When set, causes the serial port to use Timer 2 overflow pulses for its transmit clock in serial port Modes 1 and 3. TCLK = 0 causes Timer 1 overflows to be used for the transmit clock.
EXEN2	Timer 2 external enable. When set, allows a capture or reload to occur as a result of a negative transition on T2EX if Timer 2 is not being used to clock the serial port. EXEN2 = 0 causes Timer 2 to ignore events at T2EX.
TR2	Start/Stop control for Timer 2. TR2 = 1 starts the timer.
C/T2	Timer or counter select for Timer 2. $C/\overline{T2} = 0$ for timer function. $C/\overline{T2} = 1$ for external event counter (falling edge triggered).
CP/RL2	Capture/Reload select. $CP/RL2 = 1$ causes captures to occur on negative transitions at T2EX if EXEN2 = 1. $CP/RL2 = 0$ causes automatic reloads to occur when Timer 2 overflows or negative transitions occur at T2EX when EXEN2 = 1. When either RCLK or TCLK = 1, this bit is ignored and the timer is forced to auto-reload on Timer 2 overflow.

Table 4. SPCR—SPI Control Register

SPCR Address = D5H					Reset Value	e = 0000 01XX	В		
	SPIE	SPE	DORD	MSTR	CPOL	СРНА	SPR1	SPR0	
Bit	7	6	5	4	3	2	1	0	

Symbol	Function					
SPIE	SPI Interrupt Enable. This bit, in conjunction with the ES bit in the IE register, enables SPI interrupts: SPIE = 1 and ES = 1 enable SPI interrupts. SPIE = 0 disables SPI interrupts.					
SPE	SPI Enable. SPI = 1 enables the SPI channel and connects \overline{SS} , MOSI, MISO and SCK to pins P1.4, P1.5, P1.6, and P1.7. SPI = 0 disables the SPI channel.					
DORD	Data Order. DORD = 1 selects LSB first data transmission. DORD = 0 selects MSB first data transmission.					
MSTR	Master/Slave Select. MSTR = 1 selects Master SPI mode. MSTR = 0 selects Slave SPI mode.					
CPOL	Clock Polarity. When CPOL = 1, SCK is high when idle. When CPOL = 0, SCK of the master device is low when not transmitting. Please refer to figure on SPI Clock Phase and Polarity Control.					
СРНА	Clock Phase. The CPHA bit together with the CPOL bit controls the clock and data relationship between master and slave. Please refer to figure on SPI Clock Phase and Polarity Control.					
SPR0 SPR1	SPI Clock Rate Select. These two bits control the SCK rate of the device configured as master. SPR1 and SPR0 have no effect on the slave. The relationship between SCK and the oscillator frequency, $F_{OSC.}$, is as follows:SPR1SPR0SCK = $F_{OSC.}$ divided by0004011064111128					

Table 5. SPSR - SPI Status Register

SPSR Address = AAH						Reset Value	= 00XX XXXX	ίB	
		I	T	Γ					٦
	SPIF	WCOL	-	—	-	-	-	-	
Bit	7	6	5	4	3	2	1	0	

Symbol	Function
SPIF	SPI Interrupt Flag. When a serial transfer is complete, the SPIF bit is set and an interrupt is generated if SPIE = 1 and ES = 1. The SPIF bit is cleared by reading the SPI status register with SPIF and WCOL bits set, and then accessing the SPI data register.
WCOL	Write Collision Flag. The WCOL bit is set if the SPI data register is written during a data transfer. During data transfer, the result of reading the SPDR register may be incorrect, and writing to it has no effect. The WCOL bit (and the SPIF bit) are cleared by reading the SPI status register with SPIF and WCOL set, and then accessing the SPI data register.

Table 6. SPDR - SPI Data Register

SPDR Address = 86H Rese						Reset Value	e = unchanged	
	SPD7	SPD6	SPD5	SPD4	SPD3	SPD2	SPD1	SPD0
Bit	7	6	5	4	3	2	1	0

AT89S8252

the transition was detected. Since two machine cycles (24 oscillator periods) are required to recognize a 1-to-0 transition, the maximum count rate is 1/24 of the oscillator frequency. To ensure that a given level is sampled at least once before it changes, the level should be held for at least one full machine cycle.

Table 8.	Timer 2	Operating	Modes
10010 01	111101 2	oporating	100000

RCLK + TCLK	CP/RL2	TR2	MODE
0	0	1	16-bit Auto-reload
0	1	1	16-bit Capture
1	Х	1	Baud Rate Generator
X	Х	0	(Off)

Capture Mode

In the capture mode, two options are selected by bit EXEN2 in T2CON. If EXEN2 = 0, Timer 2 is a 16 bit timer or counter which upon overflow sets bit TF2 in T2CON. This bit can then be used to generate an interrupt. If EXEN2 = 1, Timer 2 performs the same operation, but a l-to-0 transition at external input T2EX also causes the current value in TH2 and TL2 to be captured into RCAP2H and RCAP2L, respectively. In addition, the transition at T2EX causes bit EXF2 in T2CON to be set. The EXF2 bit, like TF2, can generate an interrupt. The capture mode is illustrated in Figure 1.

Figure 1. Timer 2 in Capture Mode

Auto-reload (Up or Down Counter)

Timer 2 can be programmed to count up or down when configured in its 16 bit auto-reload mode. This feature is invoked by the DCEN (Down Counter Enable) bit located in the SFR T2MOD (see Table 9). Upon reset, the DCEN bit is set to 0 so that timer 2 will default to count up. When DCEN is set, Timer 2 can count up or down, depending on the value of the T2EX pin.

Figure 2 shows Timer 2 automatically counting up when DCEN = 0. In this mode, two options are selected by bit EXEN2 in T2CON. If EXEN2 = 0, Timer 2 counts up to 0FFFFH and then sets the TF2 bit upon overflow. The overflow also causes the timer registers to be reloaded with the 16 bit value in RCAP2H and RCAP2L. The values in RCAP2H and RCAP2L are preset by software. If EXEN2 = 1, a 16 bit reload can be triggered either by an overflow or

by a 1-to-0 transition at external input T2EX. This transition also sets the EXF2 bit. Both the TF2 and EXF2 bits can generate an interrupt if enabled.

Setting the DCEN bit enables Timer 2 to count up or down, as shown in Figure 3. In this mode, the T2EX pin controls the direction of the count. A logic 1 at T2EX makes Timer 2 count up. The timer will overflow at 0FFFFH and set the TF2 bit. This overflow also causes the 16 bit value in RCAP2H and RCAP2L to be reloaded into the timer registers, TH2 and TL2, respectively.

A logic 0 at T2EX makes Timer 2 count down. The timer underflows when TH2 and TL2 equal the values stored in RCAP2H and RCAP2L. The underflow sets the TF2 bit and causes 0FFFFH to be reloaded into the timer registers.

The EXF2 bit toggles whenever Timer 2 overflows or underflows and can be used as a 17th bit of resolution. In this operating mode, EXF2 does not flag an interrupt.

Figure 2. Timer 2 in Auto Reload Mode (DCEN = 0)

Table 9. T2MOD – Timer 2 Mode Control	Register
---------------------------------------	----------

T2MOD Address = 0C9HReset Value = XXXX XX00B									
Not Bit Addressable									
	_	_	_	_	_	_	T2OE	DCEN	
Bit	7	6	5	4	3	2	1	0	

Symbol	Function
_	Not implemented, reserved for future use.
T2OE	Timer 2 Output Enable bit.
DCEN	When set, this bit allows Timer 2 to be configured as an up/down counter.

UART

The UART in the AT89S8252 operates the same way as the UART in the AT89C51, AT89C52 and AT89C55. For further information, see the October 1995 Microcontroller Data Book, page 2-49, section titled, "Serial Interface."

Serial Peripheral Interface

The serial peripheral interface (SPI) allows high-speed synchronous data transfer between the AT89S8252 and peripheral devices or between several AT89S8252 devices. The AT89S8252 SPI features include the following:

- Full-Duplex, 3-Wire Synchronous Data Transfer
- Master or Slave Operation
- 1.5 MHz Bit Frequency (max.)
- LSB First or MSB First Data Transfer
- Four Programmable Bit Rates
- End of Transmission Interrupt Flag

Figure 7. SPI Master-slave Interconnection

- Write Collision Flag Protection
- Wakeup from Idle Mode (Slave Mode Only)

The interconnection between master and slave CPUs with SPI is shown in the following figure. The SCK pin is the clock output in the master mode but is the clock input in the slave mode. Writing to the SPI data register of the master CPU starts the SPI clock generator, and the data written shifts out of the MOSI pin and into the MOSI pin of the slave CPU. After shifting one byte, the SPI clock generator stops, setting the end of transmission flag (SPIF). If both the SPI interrupt enable bit (SPIE) and the serial port interrupt enable bit (ES) are set, an interrupt is requested.

The Slave Select input, $\overline{SS}/P1.4$, is set low to select an individual SPI device as a slave. When $\overline{SS}/P1.4$ is set high, the SPI port is deactivated and the MOSI/P1.5 pin can be used as an input.

There are four combinations of SCK phase and polarity with respect to serial data, which are determined by control bits CPHA and CPOL. The SPI data transfer formats are shown in Figure 8 and Figure 9.

*Not defined but normally MSB of character just received

Figure 9. SPI Transfer Format with CPHA = 1

*Not defined but normally LSB of previously transmitted character

Interrupts

The AT89S8252 has a total of six interrupt vectors: two external interrupts (INT0 and INT1), three timer interrupts (Timers 0, 1, and 2), and the serial port interrupt. These interrupts are all shown in Figure 10.

Each of these interrupt sources can be individually enabled or disabled by setting or clearing a bit in Special Function Register IE. IE also contains a global disable bit, EA, which disables all interrupts at once.

Note that Table 10 shows that bit position IE.6 is unimplemented. In the AT89C51, bit position IE.5 is also unimplemented. User software should not write 1s to these bit positions, since they may be used in future AT89 products.

Timer 2 interrupt is generated by the logical OR of bits TF2 and EXF2 in register T2CON. Neither of these flags is cleared by hardware when the service routine is vectored to. In fact, the service routine may have to determine whether it was TF2 or EXF2 that generated the interrupt, and that bit will have to be cleared in software.

The Timer 0 and Timer 1 flags, TF0 and TF1, are set at S5P2 of the cycle in which the timers overflow. The values are then polled by the circuitry in the next cycle. However, the Timer 2 flag, TF2, is set at S2P2 and is polled in the same cycle in which the timer overflows.

Table 10. Interrupt Enable (IE) Register

Enable Bit = 1 enables the interrupt.

Enable Bit = 0 disables the interrupt.

Symbol	Position	Function			
EA	IE.7	Disables all interrupts. If $EA = 0$, no interrupt is acknowledged. If $EA = 1$, each interrupt source is individually enabled or disabled by setting or clearing its enable bit.			
-	IE.6	Reserved.			
ET2	IE.5	Timer 2 interrupt enable bit.			
ES	IE.4	SPI and UART interrupt enable bit.			
ET1	IE.3	Timer 1 interrupt enable bit.			
EX1	IE.2	External interrupt 1 enable bit.			
ET0	IE.1	Timer 0 interrupt enable bit.			
EX0	IE.0	External interrupt 0 enable bit.			
User software should never write 1s to unimplemented bits, because they may be used in future AT89 products.					

Figure 10. Interrupt Sources

Figure 11. Oscillator Connections

Note: Note: C1, C2 = 30 pF \pm 10 pF for Crystals = 40 pF \pm 10 pF for Ceramic Resonators

Oscillator Characteristics

XTAL1 and XTAL2 are the input and output, respectively, of an inverting amplifier that can be configured for use as an on-chip oscillator, as shown in Figure 11. Either a quartz crystal or ceramic resonator may be used. To drive the device from an external clock source, XTAL2 should be left unconnected while XTAL1 is driven, as shown in Figure 12. There are no requirements on the duty cycle of the external clock signal, since the input to the internal clocking circuitry is through a divide-by-two flip-flop, but minimum and maximum voltage high and low time specifications must be observed.

Idle Mode

In idle mode, the CPU puts itself to sleep while all the onchip peripherals remain active. The mode is invoked by software. The content of the on-chip RAM and all the special functions registers remain unchanged during this mode. The idle mode can be terminated by any enabled interrupt or by a hardware reset.

Note that when idle mode is terminated by a hardware reset, the device normally resumes program execution

from where it left off, up to two machine cycles before the internal reset algorithm takes control. On-chip hardware inhibits access to internal RAM in this event, but access to the port pins is not inhibited. To eliminate the possibility of an unexpected write to a port pin when idle mode is terminated by a reset, the instruction following the one that invokes idle mode should not write to a port pin or to external memory.

Status of External Pins During Idle and Power-down Modes

Mode	Program Memory	ALE	PSEN	PORT0	PORT1	PORT2	PORT3
Idle	Internal	1	1	Data	Data	Data	Data
Idle	External	1	1	Float	Data	Address	Data
Power-down	Internal	0	0	Data	Data	Data	Data
Power-down	External	0	0	Float	Data	Data	Data

Power-down Mode

In the power-down mode, the oscillator is stopped and the instruction that invokes power-down is the last instruction executed. The on-chip RAM and Special Function Registers retain their values until the power-down mode is terminated. Exit from power-down can be initiated either by a hardware reset or by an enabled external interrupt. Reset redefines the SFRs but does not change the on-chip RAM. The reset should not be activated before V_{CC} is restored to its normal operating level and must be held active long enough to allow the oscillator to restart and stabilize.

To exit power-down via an interrupt, the external interrupt must be enabled as level sensitive before entering powerdown. The interrupt service routine starts at 16 ms (nominal) after the enabled interrupt pin is activated.

Program Memory Lock Bits

The AT89S8252 has three lock bits that can be left unprogrammed (U) or can be programmed (P) to obtain the additional features listed in the following table.

When lock bit 1 is programmed, the logic level at the \overline{EA} pin is sampled and latched during reset. If the device is powered up without a reset, the latch initializes to a random value and holds that value until reset is activated. The latched value of \overline{EA} must agree with the current logic level at that pin in order for the device to function properly.

Once programmed, the lock bits can only be unprogrammed with the Chip Erase operations in either the parallel or serial modes.

Lock Bit Protection Modes ⁽¹⁾⁽²⁾	
---	--

P	Program Lock Bits		its						
	LB1 LB2 LB3		LB3	Protection Type					
1	U	U	U	No internal memory lock feature.					
2	Р	U	U	MOVC instructions executed from external program memory are disabled from fetching code bytes from internal memory. \overline{EA} is sampled and latched on reset and further programming of the Flash memory (parallel or serial mode) is disabled.					
3	Р	Р	U	Same as Mode 2, but parallel or serial verify are also disabled.					
4	4 P P P		Р	Same as Mode 3, but external execution is also disabled.					
Notes:	1. U:	= Unpro	aramme	d					

es: 1. U = Unprogrammed

2. P = Programmed

In the serial programming mode, a chip erase operation is initiated by issuing the Chip Erase instruction. In this mode, chip erase is self-timed and takes about 16 ms.

During chip erase, a serial read from any address location will return 00H at the data outputs.

Serial Programming Fuse: A programmable fuse is available to disable Serial Programming if the user needs maximum system security. The Serial Programming Fuse can only be programmed or erased in the Parallel Programming Mode.

The AT89S8252 is shipped with the Serial Programming Mode enabled.

Reading the Signature Bytes: The signature bytes are read by the same procedure as a normal verification of locations 030H and 031H, except that P3.6 and P3.7 must be pulled to a logic low. The values returned are as follows:

(030H) = 1EH indicates manufactured by Atmel (031H) = 72H indicates 89S8252

Programming Interface

Every code byte in the Flash and EEPROM arrays can be written, and the entire array can be erased, by using the appropriate combination of control signals. The write operation cycle is self-timed and once initiated, will automatically time itself to completion.

All major programming vendors offer worldwide support for the Atmel microcontroller series. Please contact your local programming vendor for the appropriate software revision.

Serial Downloading

Both the Code and Data memory arrays can be programmed using the serial SPI bus while RST is pulled to V_{cc} . The serial interface consists of pins SCK, MOSI (input) and MISO (output). After RST is set high, the Programming Enable instruction needs to be executed first before program/erase operations can be executed.

An auto-erase cycle is built into the self-timed programming operation (in the serial mode ONLY) and there is no need to first execute the Chip Erase instruction unless any of the lock bits have been programmed. The Chip Erase operation turns the content of every memory location in both the Code and Data arrays into FFH.

The Code and Data memory arrays have separate address spaces:

0000H to 1FFFH for Code memory and 000H to 7FFH for Data memory.

Either an external system clock is supplied at pin XTAL1 or a crystal needs to be connected across pins XTAL1 and XTAL2. The maximum serial clock (SCK) frequency should be less than 1/40 of the crystal frequency. With a 24 MHz oscillator clock, the maximum SCK frequency is 600 kHz.

Serial Programming Algorithm

To program and verify the AT89S8252 in the serial programming mode, the following sequence is recommended:

1. Power-up sequence:

Apply power between VCC and GND pins.

Set RST pin to "H".

If a crystal is not connected across pins XTAL1 and XTAL2, apply a 3 MHz to 24 MHz clock to XTAL1 pin and wait for at least 10 milliseconds.

- Enable serial programming by sending the Programming Enable serial instruction to pin MOSI/P1.5. The frequency of the shift clock supplied at pin SCK/P1.7 needs to be less than the CPU clock at XTAL1 divided by 40.
- 3. The Code or Data array is programmed one byte at a time by supplying the address and data together with the appropriate Write instruction. The selected memory location is first automatically erased before new data is written. The write cycle is self-timed and typically takes less than 2.5 ms at 5V.
- 4. Any memory location can be verified by using the Read instruction which returns the content at the selected address at serial output MISO/P1.6.
- 5. At the end of a programming session, RST can be set low to commence normal operation.

Power-off sequence (if needed):

Set XTAL1 to "L" (if a crystal is not used).

Set RST to "L".

Turn V_{CC} power off.

Serial Programming Instruction

The Instruction Set for Serial Programming follows a 3-byte protocol and is shown in the following table:

Instruction Set

		Input Format		
Instruction	Byte 1	Byte 2	Byte 3	Operation
Programming Enable	1010 1100	0101 0011	XXXX XXXX	Enable serial programming interface after RST goes high.
Chip Erase	1010 1100	xxxx x100	XXXX XXXX	Chip erase both 8K & 2K memory arrays.
Read Code Memory	aaaa a001	low addr	XXXX XXXX	Read data from Code memory array at the selected address. The 5 MSBs of the first byte are the high order address bits. The low order address bits are in the second byte. Data are available at pin MISO during the third byte.
Write Code Memory	aaaa a010	low addr	data in	Write data to Code memory location at selected address. The address bits are the 5 MSBs of the first byte together with the second byte.
Read Data Memory	00aa a101	low addr	XXXX XXXX	Read data from Data memory array at selected address. Data are available at pin MISO during the third byte.
Write Data Memory	00aa a110	low addr	data in	Write data to Data memory location at selected address.
Write Lock Bits	1010 1100	x x111	xxxx xxxx	Write lock bits. Set LB1, LB2 or LB3 = "0" to program lock bits.

Note: 1. DATA polling is used to indicate the end of a write cycle which typically takes less than 2.5 ms at 5V.

"aaaaa" = high order address.
 "x" = don't care.

Flash and EEPROM Parallel Programming Modes

Mode	RST	PSEN	ALE/PROG	EA/V _{PP}	P2.6	P2.7	P3.6	P3.7	Data I/O P0.7:0	Address P2.5:0 P1.7:0
Serial Prog. Modes	Н	h ⁽¹⁾	h ⁽¹⁾	x						
Chip Erase	н	L	(2)	12V	Н	L	L	L	х	х
Write (10K bytes) Memory	н	L	~	12V	L	н	Н	Н	DIN	ADDR
Read (10K bytes) Memory	Н	L	Н	12V	L	L	Н	Н	DOUT	ADDR
Write Lock Bits:	н	L		12V	Н	L	н	L	DIN	х
Bit - 1									P0.7 = 0	х
Bit - 2									P0.6 = 0	х
Bit - 3									P0.5 = 0	х
Read Lock Bits:	н	L	н	12V	н	н	L	L	DOUT	х
Bit - 1									@P0.2	х
Bit - 2									@P0.1	x
Bit - 3									@P0.0	х
Read Atmel Code	Н	L	Н	12V	L	L	L	L	DOUT	30H
Read Device Code	Н	L	Н	12V	L	L	L	L	DOUT	31H
Serial Prog. Enable	н	L	(2)	12V	L	н	L	Н	P0.0 = 0	х
Serial Prog. Disable	н	L	(2)	12V	L	н	L	н	P0.0 = 1	х
Read Serial Prog. Fuse	Н	L	н	12V	н	н	L	Н	@P0.0	Х

Notes: 1. "h" = weakly pulled "High" internally.

2. Chip Erase and Serial Programming Fuse require a 10 ms PROG pulse. Chip Erase needs to be performed first before reprogramming any byte with a content other than FFH.

 P3.4 is pulled Low during programming to indicate RDY/BSY.

4. "X" = don't care

Flash Programming and Verification Characteristics – Parallel Mode

 T_{A} = 0°C to 70°C, V_{CC} = 5.0V \pm 10%

Symbol	Parameter	Min	Max	Units
V _{PP}	Programming Enable Voltage	11.5	12.5	V
I _{PP}	Programming Enable Current		1.0	mA
1/t _{CLCL}	Oscillator Frequency	3	24	MHz
t _{AVGL}	Address Setup to PROG Low	48t _{CLCL}		
t _{GHAX}	Address Hold after PROG	48t _{CLCL}		
t _{DVGL}	Data Setup to PROG Low	48t _{CLCL}		
t _{GHDX}	Data Hold after PROG	48t _{CLCL}		
t _{EHSH}	P2.7 (ENABLE) High to V _{PP}	48t _{CLCL}		
t _{SHGL}	V _{PP} Setup to PROG Low	10		μs
t _{GLGH}	PROG Width	1	110	μs
t _{AVQV}	Address to Data Valid		48t _{CLCL}	
t _{ELQV}	ENABLE Low to Data Valid		48t _{CLCL}	
t _{EHQZ}	Data Float after ENABLE	0	48t _{CLCL}	
t _{GHBL}	PROG High to BUSY Low		1.0	μs
t _{WC}	Byte Write Cycle Time		2.0	ms

Absolute Maximum Ratings*

Operating Temperature55°C to +125°C
Storage Temperature65°C to +150°C
Voltage on Any Pin with Respect to Ground1.0V to +7.0V
Maximum Operating Voltage 6.6V
DC Output Current 15.0 mA

*NOTICE: Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

DC Characteristics

The values shown in this table are valid for $T_A = -40^{\circ}C$ to $85^{\circ}C$ and $V_{CC} = 5.0V \pm 20\%$, unless otherwise noted.

Symbol	Parameter	Condition	Min	Мах	Units
V _{IL}	Input Low-voltage	(Except EA)	-0.5	0.2 V _{CC} - 0.1	V
V _{IL1}	Input Low-voltage (EA)		-0.5	0.2 V _{CC} - 0.3	V
V _{IH}	Input Hifh-voltage	(Except XTAL1, RST)	0.2 V _{CC} + 0.9	V _{CC} + 0.5	V
V _{IH1}	Input Hifh-voltage	(XTAL1, RST)	0.7 V _{CC}	V _{CC} + 0.5	V
V _{OL}	Output Low-voltage ⁽¹⁾ (Ports 1,2,3)	I _{OL} = 1.6 mA		0.5	V
V _{OL1}	Output Low-voltage ⁽¹⁾ (Port 0, ALE, PSEN)	I _{OL} = 3.2 mA		0.5	V
		I_{OH} = -60 μ A, V_{CC} = 5V ± 10%	2.4		V
V _{OH}	Output Hifh-voltage (Ports 1 2 3 ALE PSEN)	I _{OH} = -25 μA	0.75 V _{CC}		V
		I _{OH} = -10 μA	0.9 V _{CC}	NMAX 0.2 V _{CC} - 0.1 0.2 V _{CC} - 0.3 V _{CC} + 0.5 V _{CC} + 0.5 100 40 tput pins: 71 mA	V
V _{OH1}		I_{OH} = -800 $\mu\text{A},V_{CC}$ = 5V \pm 10%	2.4		V
	Output Hifh-voltage (Port 0 in External Bus Mode)	I _{OH} = -300 μA	0.75 V _{CC}		V
		I _{OH} = -80 μA	0.9 V _{CC}	Max $0.2 V_{CC} - 0.1$ $0.2 V_{CC} - 0.3$ $V_{CC} + 0.5$ $V_{CC} + 0.5$ 0.5 <	V
I _{IL}	Logical 0 Input Current (Ports 1,2,3)	V _{IN} = 0.45V		-50	μA
I _{TL}	Logical 1 to 0 Transition Current (Ports 1,2,3)	$V_{\rm IN}$ = 2V, $V_{\rm CC}$ = 5V \pm 10%		-650	μA
I _{LI}	Input Le <u>akag</u> e Current (Port 0, EA)	0.45 < V _{IN} < V _{CC}		±10	μA
RRST	Reset Pull-down Resistor		50	300	KΩ
C _{IO}	Pin Capacitance	Test Freq. = 1 MHz, T _A = 25°C		10	pF
	Device Current Current	Active Mode, 12 MHz		25	mA
	Power Supply Current	Idle Mode, 12 MHz		6.5	mA
'CC	Dower down Mode ⁽²⁾	$V_{CC} = 6V$		Max 0.2 V _{CC} - 0.1 0.2 V _{CC} - 0.3 V _{CC} + 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5	μA
		$V_{\rm CC} = 3V$			μA
Notes: 1.	Under steady state (non-transient) conditions,	I _{OL} Maximum t	otal I _{OL} for all out	put pins: 71 mA	

 Notes: 1. Under steady state (non-transient) conditions, I must be externally limited as follows: Maximum I_{OL} per port pin: 10 mA Maximum I_{OL} per 8-bit port: Port 0: 26 mA Ports 1, 2, 3: 15 mA Maximum total I_{OL} for all output pins: 71 mA If I_{OL} exceeds the test condition, V_{OL} may exceed the related specification. Pins are not guaranteed to sink current greater than the listed test conditions.

2. Minimum V_{CC} for Power-down is 2V

AC Characteristics

Under operating conditions, load capacitance for Port 0, ALE/ \overline{PROG} , and $\overline{PSEN} = 100 \text{ pF}$; load capacitance for all other outputs = 80 pF.

External Program and Data Memory Characteristics

		Variable Oscillator		
Symbol	Parameter	Min	Max	Units
1/t _{CLCL}	Oscillator Frequency	0	24	MHz
t _{LHLL}	ALE Pulse Width	2t _{CLCL} - 40		ns
t _{AVLL}	Address Valid to ALE Low	t _{CLCL} - 13		ns
t _{LLAX}	Address Hold after ALE Low	t _{CLCL} - 20		ns
t _{LLIV}	ALE Low to Valid Instruction In		4t _{CLCL} - 65	ns
t _{LLPL}	ALE Low to PSEN Low	t _{CLCL} - 13		ns
t _{PLPH}	PSEN Pulse Width	3t _{CLCL} - 20		ns
t _{PLIV}	PSEN Low to Valid Instruction In		3t _{CLCL} - 45	ns
t _{PXIX}	Input Instruction Hold after PSEN	0		ns
t _{PXIZ}	Input Instruction Float after PSEN		t _{CLCL} - 10	ns
t _{PXAV}	PSEN to Address Valid	t _{CLCL} - 8		ns
t _{AVIV}	Address to Valid Instruction In		5t _{CLCL} - 55	ns
t _{PLAZ}	PSEN Low to Address Float		10	ns
t _{RLRH}	RD Pulse Width	6t _{CLCL} - 100		ns
t _{wLWH}	WR Pulse Width	6t _{CLCL} - 100		ns
t _{RLDV}	RD Low to Valid Data In		5t _{CLCL} - 90	ns
t _{RHDX}	Data Hold after RD	0		ns
t _{RHDZ}	Data Float after RD		2t _{CLCL} - 28	ns
t _{LLDV}	ALE Low to Valid Data In		8t _{CLCL} - 150	ns
t _{AVDV}	Address to Valid Data In		9t _{CLCL} - 165	ns
t _{LLWL}	ALE Low to RD or WR Low	3t _{CLCL} - 50	3t _{CLCL} + 50	ns
t _{AVWL}	Address to RD or WR Low	4t _{CLCL} - 75		ns
t _{QVWX}	Data Valid to WR Transition	t _{CLCL} - 20		ns
t _{QVWH}	Data Valid to WR High	7t _{CLCL} - 120		ns
t _{wHQX}	Data Hold after WR	t _{CLCL} - 20		ns
t _{RLAZ}	RD Low to Address Float		0	ns
t _{WHLH}	RD or WR High to ALE High	t _{CLCL} - 20	t _{CLCL} + 25	ns

External Program Memory Read Cycle

External Data Memory Read Cycle

External Data Memory Write Cycle

External Clock Drive Waveforms

External Clock Drive

Symbol	Parameter	V _{CC} = 4.0V to 6.0V		Units
		Min	Мах	
1/t _{CLCL}	Oscillator Frequency	0	24	MHz
t _{CLCL}	Clock Period	41.6		ns
t _{CHCX}	High Time	15		ns
t _{CLCX}	Low Time	15		ns
t _{CLCH}	Rise Time		20	ns
t _{CHCL}	Fall Time		20	ns

Serial Port Timing: Shift Register Mode Test Conditions

The values in this table are valid for V_{CC} = 4.0V to 6V and Load Capacitance = 80 pF.

Symbol	Parameter	Variable Oscillator		Units
		Min	Max	
t _{XLXL}	Serial Port Clock Cycle Time	12t _{CLCL}		μs
t _{QVXH}	Output Data Setup to Clock Rising Edge	10t _{CLCL} - 133		ns
t _{XHQX}	Output Data Hold after Clock Rising Edge	2t _{CLCL} - 117		ns
t _{XHDX}	Input Data Hold after Clock Rising Edge	0		ns
t _{XHDV}	Clock Rising Edge to Input Data Valid		10t _{CLCL} - 133	ns

Shift Register Mode Timing Waveforms

AC Testing Input/Output Waveforms⁽¹⁾

Float Waveforms⁽¹⁾

Notes: 1. AC Inputs during testing are driven at V_{CC} - 0.5V for a logic 1 and 0.45V for a logic 0. Timing measurements are made at V_{IH} min. for a logic 1 and V_{IL} max. for a logic 0.

Notes: 1. For timing purposes, a port pin is no longer floating when a 100 mV change from load voltage occurs. A port pin begins to float when a 100 mV change from the loaded V_{OH}/V_{OL} level occurs.

Notes: 1. XTAL1 tied to GND for Icc (power-down) 2. Lock bits programmed

Packaging Information

