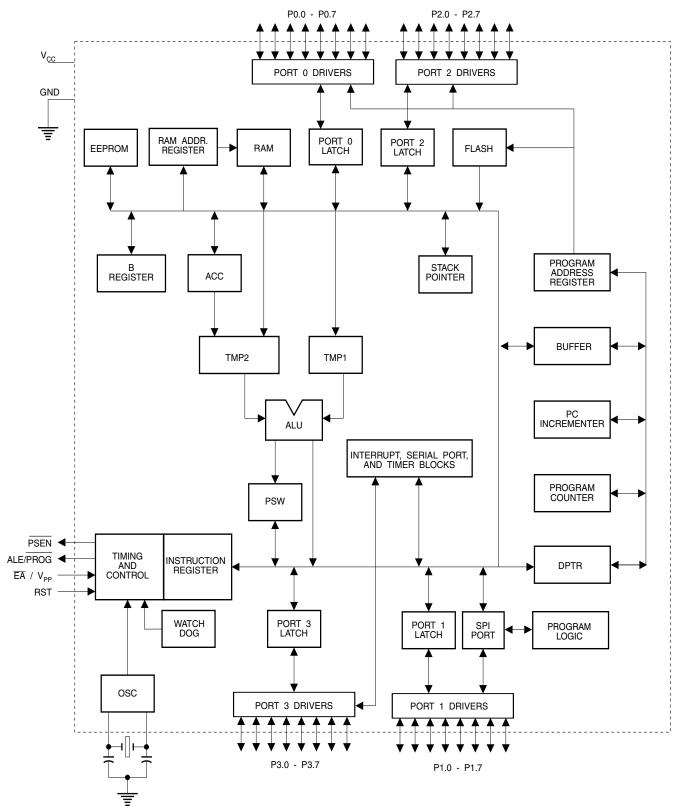


Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.


Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Obsolete
Core Processor	8051
Core Size	8-Bit
Speed	24MHz
Connectivity	SPI, UART/USART
Peripherals	POR, WDT
Number of I/O	32
Program Memory Size	8KB (8K x 8)
Program Memory Type	FLASH
EEPROM Size	2K x 8
RAM Size	256 x 8
Voltage - Supply (Vcc/Vdd)	$4V \sim 6V$
Data Converters	-
Oscillator Type	External
Operating Temperature	0°C ~ 70°C (TA)
Mounting Type	Through Hole
Package / Case	40-DIP (0.600", 15.24mm)
Supplier Device Package	40-PDIP
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/at89s8252-24pc

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Block Diagram

Some Port 1 pins provide additional functions. P1.0 and P1.1 can be configured to be the timer/counter 2 external count input (P1.0/T2) and the timer/counter 2 trigger input (P1.1/T2EX), respectively.

Pin Description

Furthermore, P1.4, P1.5, P1.6, and P1.7 can be configured as the SPI slave port select, data input/output and shift clock input/output pins as shown in the following table.

Port Pin	Alternate Functions
P1.0	T2 (external count input to Timer/Counter 2), clock-out
P1.1	T2EX (Timer/Counter 2 capture/reload trigger and direction control)
P1.4	SS (Slave port select input)
P1.5	MOSI (Master data output, slave data input pin for SPI channel)
P1.6	MISO (Master data input, slave data output pin for SPI channel)
P1.7	SCK (Master clock output, slave clock input pin for SPI channel)

Port 1 also receives the low-order address bytes during Flash programming and verification.

Port 2

Port 2 is an 8-bit bi-directional I/O port with internal pullups. The Port 2 output buffers can sink/source four TTL inputs. When 1s are written to Port 2 pins, they are pulled high by the internal pullups and can be used as inputs. As inputs, Port 2 pins that are externally being pulled low will source current (I_{IL}) because of the internal pullups.

Port 2 emits the high-order address byte during fetches from external program memory and during accesses to external data memory that use 16-bit addresses (MOVX @ DPTR). In this application, Port 2 uses strong internal pullups when emitting 1s. During accesses to external data memory that use 8-bit addresses (MOVX @ RI), Port 2 emits the contents of the P2 Special Function Register.

Port 2 also receives the high-order address bits and some control signals during Flash programming and verification.

Port 3

Port 3 is an 8 bit bi-directional I/O port with internal pullups. The Port 3 output buffers can sink/source four TTL inputs. When 1s are written to Port 3 pins, they are pulled high by the internal pullups and can be used as inputs. As inputs, Port 3 pins that are externally being pulled low will source current (I_{\rm IL}) because of the pullups.

Port 3 also serves the functions of various special features of the AT89S8252, as shown in the following table.

Port 3 also receives some control signals for Flash programming and verification.

Port Pin	Alternate Functions			
P3.0	RXD (serial input port)			
P3.1	TXD (serial output port)			
P3.2	INTO (external interrupt 0)			
P3.3	INT1 (external interrupt 1)			
P3.4	T0 (timer 0 external input)			
P3.5	T1 (timer 1 external input)			
P3.6	WR (external data memory write strobe)			
P3.7	RD (external data memory read strobe)			

RST

Reset input. A high on this pin for two machine cycles while the oscillator is running resets the device.

ALE/PROG

Address Latch Enable is an output pulse for latching the low byte of the address during accesses to external memory. This pin is also the program pulse input (PROG) during Flash programming.

In normal operation, ALE is emitted at a constant rate of 1/6 the oscillator frequency and may be used for external timing or clocking purposes. Note, however, that one ALE pulse is skipped during each access to external data memory.

If desired, ALE operation can be disabled by setting bit 0 of SFR location 8EH. With the bit set, ALE is active only during a MOVX or MOVC instruction. Otherwise, the pin is weakly pulled high. Setting the ALE-disable bit has no effect if the microcontroller is in external execution mode.

PSEN

Program Store Enable is the read strobe to external program memory.

When the AT89S8252 is executing code from external program memory, <u>PSEN</u> is activated twice each machine cycle, except that two <u>PSEN</u> activations are skipped during each access to external data memory.

EA/VPP

External Access Enable. $\overline{\text{EA}}$ must be strapped to GND in order to enable the device to fetch code from external pro-

gram memory locations starting at 0000H up to FFFFH. Note, however, that if lock bit 1 is programmed, \overline{EA} will be internally latched on reset.

 $\overline{\text{EA}}$ should be strapped to V_{CC} for internal program executions. This pin also receives the 12-volt programming enable voltage (V_{PP}) during Flash programming when 12-volt programming is selected.

XTAL1

Input to the inverting oscillator amplifier and input to the internal clock operating circuit.

XTAL2

Output from the inverting oscillator amplifier.

0F8H									0FFH
0F0H	B 00000000								0F7H
0E8H									0EFH
0E0H	ACC 00000000								0E7H
0D8H									0DFH
0D0H	PSW 00000000					SPCR 000001XX			0D7H
0C8H	T2CON 00000000	T2MOD XXXXXX00	RCAP2L 00000000	RCAP2H 00000000	TL2 00000000	TH2 00000000			0CFH
0C0H									0C7H
0B8H	IP XX000000								0BFH
0B0H	P3 11111111								0B7H
0A8H	IE 0X000000		SPSR 00XXXXXX						0AFH
0A0H	P2 11111111								0A7H
98H	SCON 00000000	SBUF XXXXXXXX							9FH
90H	P1 11111111						WMCON 00000010		97H
88H	TCON 00000000	TMOD 00000000	TL0 00000000	TL1 00000000	TH0 00000000	TH1 00000000			8FH
80H	P0 11111111	SP 00000111	DP0L 00000000	DP0H 00000000	DP1L 00000000	DP1H 00000000	SPDR XXXXXXXX	PCON 0XXX0000	87H

Table 1. AT89S8252 SFR Map and Reset Values

Watchdog and Memory Control Register The WMCON register contains control bits for the Watchdog Timer (shown in Table 3). The EEMEN and EEMWE bits are used

to select the 2K bytes on-chip EEPROM, and to enable byte-write. The DPS bit selects one of two DPTR registers available.

Table 3.	WMCON—Watchdog	and Memor	v Control	Register

WMCON Address = 96H Reset Value = 0000 0010B								
	PS2	PS1	PS0	EEMWE	EEMEN	DPS	WDTRST	WDTEN
Bit	7	6	5	4	3	2	1	0

Symbol	Function
PS2 PS1 PS0	Prescaler Bits for the Watchdog Timer. When all three bits are set to "0", the watchdog timer has a nominal period of 16 ms. When all three bits are set to "1", the nominal period is 2048 ms.
EEMWE	EEPROM Data Memory Write Enable Bit. Set this bit to "1" before initiating byte write to on-chip EEPROM with the MOVX instruction. User software should set this bit to "0" after EEPROM write is completed.
EEMEN	Internal EEPROM Access Enable. When EEMEN = 1, the MOVX instruction with DPTR will access on-chip EEPROM instead of external data memory. When EEMEN = 0, MOVX with DPTR accesses external data memory.
DPS	Data Pointer Register Select. DPS = 0 selects the first bank of Data Pointer Register, DP0, and DPS = 1 selects the second bank, DP1
WDTRST RDY/BSY	Watchdog Timer Reset and EEPROM Ready/Busy Flag. Each time this bit is set to "1" by user software, a pulse is generated to reset the watchdog timer. The WDTRST bit is then automatically reset to "0" in the next instruction cycle. The WDTRST bit is Write-Only. This bit also serves as the RDY/BSY flag in a Read-Only mode during EEPROM write. RDY/BSY = 1 means that the EEPROM is ready to be programmed. While programming operations are being executed, the RDY/BSY bit equals "0" and is automatically reset to "1" when programming is completed.
WDTEN	Watchdog Timer Enable Bit. WDTEN = 1 enables the watchdog timer and WDTEN = 0 disables the watchdog timer.

SPI Registers Control and status bits for the Serial Peripheral Interface are contained in registers SPCR (shown in Table 4) and SPSR (shown in Table 5). The SPI data bits are contained in the SPDR register. Writing the SPI data register during serial data transfer sets the Write Collision bit, WCOL, in the SPSR register. The SPDR is double buffered for writing and the values in SPDR are not changed by Reset.

Interrupt Registers The global interrupt enable bit and the individual interrupt enable bits are in the IE register. In addition, the individual interrupt enable bit for the SPI is in the SPCR register. Two priorities can be set for each of the six interrupt sources in the IP register.

Dual Data Pointer Registers To facilitate accessing both internal EEPROM and external data memory, two banks of 16 bit Data Pointer Registers are provided: DP0 at SFR address locations 82H-83H and DP1 at 84H-85H. Bit DPS = 0 in SFR WMCON selects DP0 and DPS = 1 selects DP1. The user should always initialize the DPS bit to the appropriate value before accessing the respective Data Pointer Register.

Power Off Flag The Power Off Flag (POF) is located at bit_4 (PCON.4) in the PCON SFR. POF is set to "1" during power up. It can be set and reset under software control and is not affected by RESET.

the transition was detected. Since two machine cycles (24 oscillator periods) are required to recognize a 1-to-0 transition, the maximum count rate is 1/24 of the oscillator frequency. To ensure that a given level is sampled at least once before it changes, the level should be held for at least one full machine cycle.

RCLK + TCLK	CP/RL2	TR2	MODE
0	0	1	16-bit Auto-reload
0	1	1	16-bit Capture
1	Х	1	Baud Rate Generator
Х	Х	0	(Off)

Capture Mode

In the capture mode, two options are selected by bit EXEN2 in T2CON. If EXEN2 = 0, Timer 2 is a 16 bit timer or counter which upon overflow sets bit TF2 in T2CON. This bit can then be used to generate an interrupt. If EXEN2 = 1, Timer 2 performs the same operation, but a l-to-0 transition at external input T2EX also causes the current value in TH2 and TL2 to be captured into RCAP2H and RCAP2L, respectively. In addition, the transition at T2EX causes bit EXF2 in T2CON to be set. The EXF2 bit, like TF2, can generate an interrupt. The capture mode is illustrated in Figure 1.

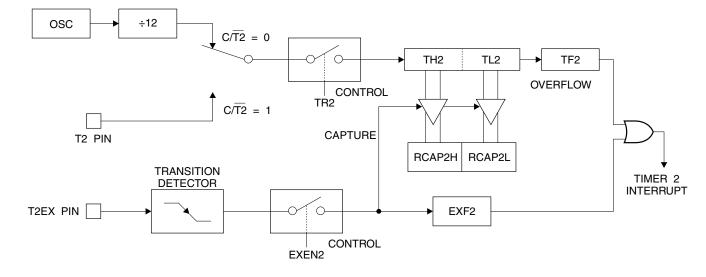


Figure 1. Timer 2 in Capture Mode

Figure 3. Timer 2 Auto Reload Mode (DCEN = 1)

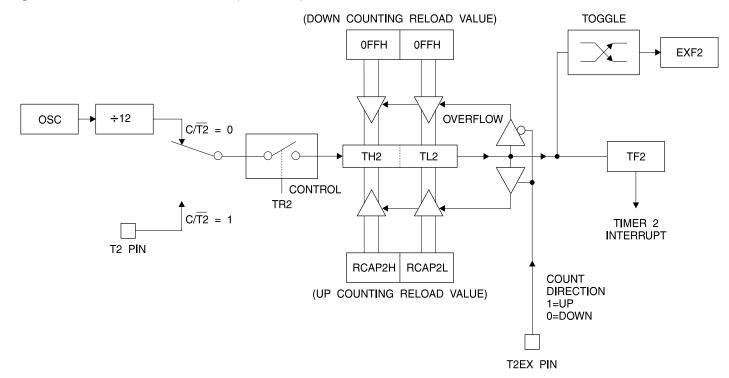
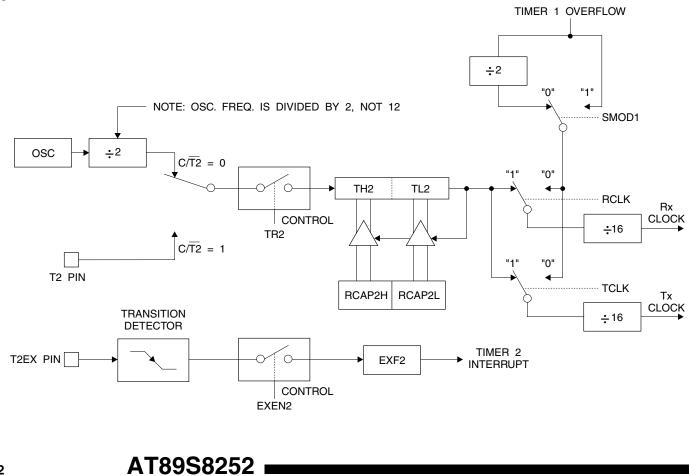



Figure 4. Timer 2 in Baud Rate Generator Mode

12

Baud Rate Generator

Timer 2 is selected as the baud rate generator by setting TCLK and/or RCLK in T2CON (Table 2). Note that the baud rates for transmit and receive can be different if Timer 2 is used for the receiver or transmitter and Timer 1 is used for the other function. Setting RCLK and/or TCLK puts Timer 2 into its baud rate generator mode, as shown in Figure 4.

The baud rate generator mode is similar to the auto-reload mode, in that a rollover in TH2 causes the Timer 2 registers to be reloaded with the 16 bit value in registers RCAP2H and RCAP2L, which are preset by software.

The baud rates in Modes 1 and 3 are determined by Timer 2's overflow rate according to the following equation.

Modes 1 and 3 Baud Rates = $\frac{\text{Timer 2 Overflow Rate}}{16}$

The Timer can be configured for either timer or counter operation. In most applications, it is configured for timer operation (CP/T2 = 0). The timer operation is different for Timer 2 when it is used as a baud rate generator. Normally, as a timer, it increments every machine cycle (at 1/12 the oscillator frequency). As a baud rate generator, however, it increments every state time (at 1/2 the oscillator frequency). The baud rate formula is given below.

Modes 1 and 3 $_$	Oscillator Frequency
Baud Rate	$\overline{32 \times [65536 - (RCAP2H, RCAP2L)]}$

where (RCAP2H, RCAP2L) is the content of RCAP2H and RCAP2L taken as a 16 bit unsigned integer.

Timer 2 as a baud rate generator is shown in Figure 4. This figure is valid only if RCLK or TCLK = 1 in T2CON. Note that a rollover in TH2 does not set TF2 and will not generate an interrupt. Note too, that if EXEN2 is set, a 1-to-0 transition in T2EX will set EXF2 but will not cause a reload from (RCAP2H, RCAP2L) to (TH2, TL2). Thus when Timer

2 is in use as a baud rate generator, T2EX can be used as an extra external interrupt.

Note that when Timer 2 is running (TR2 = 1) as a timer in the baud rate generator mode, TH2 or TL2 should not be read from or written to. Under these conditions, the Timer is incremented every state time, and the results of a read or write may not be accurate. The RCAP2 registers may be read but should not be written to, because a write might overlap a reload and cause write and/or reload errors. The timer should be turned off (clear TR2) before accessing the Timer 2 or RCAP2 registers.

Programmable Clock Out

A 50% duty cycle clock can be programmed to come out on P1.0, as shown in Figure 5. This pin, besides being a regular I/0 pin, has two alternate functions. It can be programmed to input the external clock for Timer/Counter 2 or to output a 50% duty cycle clock ranging from 61 Hz to 4 MHz at a 16 MHz operating frequency.

To configure the Timer/Counter 2 as a clock generator, bit $C/\overline{T2}$ (T2CON.1) must be cleared and bit T2OE (T2MOD.1) must be set. Bit TR2 (T2CON.2) starts and stops the timer.

The clock-out frequency depends on the oscillator frequency and the reload value of Timer 2 capture registers (RCAP2H, RCAP2L), as shown in the following equation.

Clock Out Frequency =
$$\frac{\text{Oscillator Frequency}}{4 \times [65536 - (\text{RCAP2H}, \text{RCAP2L})]}$$

In the clock-out mode, Timer 2 rollovers will not generate an interrupt. This behavior is similar to when Timer 2 is used as a baud-rate generator. It is possible to use Timer 2 as a baud-rate generator and a clock generator simultaneously. Note, however, that the baud-rate and clock-out frequencies cannot be determined independently from one another since they both use RCAP2H and RCAP2L.

Figure 5. Timer 2 in Clock-out Mode

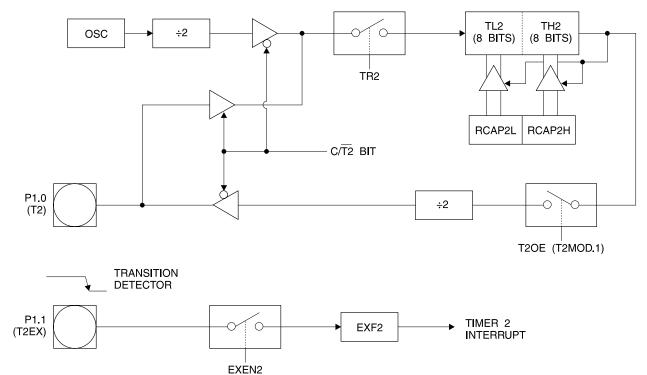
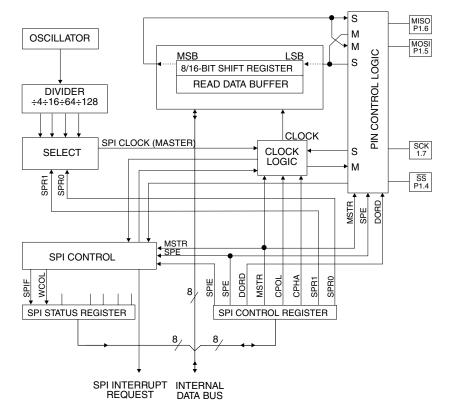
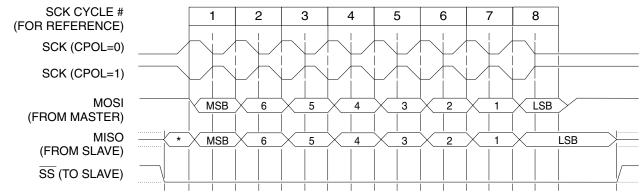




Figure 6. SPI Block Diagram

Figure 9. SPI Transfer Format with CPHA = 1

*Not defined but normally LSB of previously transmitted character

Interrupts

The AT89S8252 has a total of six interrupt vectors: two external interrupts (INT0 and INT1), three timer interrupts (Timers 0, 1, and 2), and the serial port interrupt. These interrupts are all shown in Figure 10.

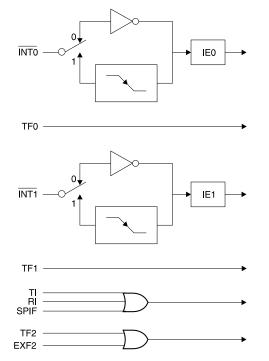
Each of these interrupt sources can be individually enabled or disabled by setting or clearing a bit in Special Function Register IE. IE also contains a global disable bit, EA, which disables all interrupts at once.

Note that Table 10 shows that bit position IE.6 is unimplemented. In the AT89C51, bit position IE.5 is also unimplemented. User software should not write 1s to these bit positions, since they may be used in future AT89 products.

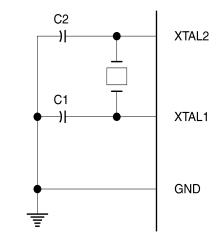
Timer 2 interrupt is generated by the logical OR of bits TF2 and EXF2 in register T2CON. Neither of these flags is cleared by hardware when the service routine is vectored to. In fact, the service routine may have to determine whether it was TF2 or EXF2 that generated the interrupt, and that bit will have to be cleared in software.

The Timer 0 and Timer 1 flags, TF0 and TF1, are set at S5P2 of the cycle in which the timers overflow. The values are then polled by the circuitry in the next cycle. However, the Timer 2 flag, TF2, is set at S2P2 and is polled in the same cycle in which the timer overflows.

Table 10. Interrupt Enable (IE) Register



Enable Bit = 1 enables the interrupt.


Enable Bit = 0 disables the interrupt.

Symbol	Position	Function		
EA	IE.7	Disables all interrupts. If $EA = 0$, no interrupt is acknowledged. If $EA = 1$, each interrupt source is individually enabled or disabled by setting or clearing its enable bit.		
_	IE.6	Reserved.		
ET2	IE.5	Timer 2 interrupt enable bit.		
ES	IE.4	SPI and UART interrupt enable bit.		
ET1	IE.3	Timer 1 interrupt enable bit.		
EX1	IE.2	External interrupt 1 enable bit.		
ET0	IE.1	Timer 0 interrupt enable bit.		
EX0	IE.0 External interrupt 0 enable bit.			
User software should never write 1s to unimplemented bits, because they may be used in future AT89 products.				

Figure 10. Interrupt Sources

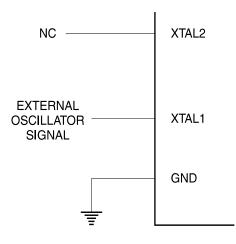


Figure 11. Oscillator Connections

Note: Note: C1, C2 = 30 pF \pm 10 pF for Crystals = 40 pF \pm 10 pF for Ceramic Resonators

Oscillator Characteristics

XTAL1 and XTAL2 are the input and output, respectively, of an inverting amplifier that can be configured for use as an on-chip oscillator, as shown in Figure 11. Either a quartz crystal or ceramic resonator may be used. To drive the device from an external clock source, XTAL2 should be left unconnected while XTAL1 is driven, as shown in Figure 12. There are no requirements on the duty cycle of the external clock signal, since the input to the internal clocking circuitry is through a divide-by-two flip-flop, but minimum and maximum voltage high and low time specifications must be observed.

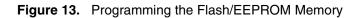
Instruction Set

	Input Format			
Instruction	Byte 1	Byte 2	Byte 3	Operation
Programming Enable	1010 1100	0101 0011	XXXX XXXX	Enable serial programming interface after RST goes high.
Chip Erase	1010 1100	xxxx x100	XXXX XXXX	Chip erase both 8K & 2K memory arrays.
Read Code Memory	aaaa a001	low addr	XXXX XXXX	Read data from Code memory array at the selected address. The 5 MSBs of the first byte are the high order address bits. The low order address bits are in the second byte. Data are available at pin MISO during the third byte.
Write Code Memory	aaaa a010	low addr	data in	Write data to Code memory location at selected address. The address bits are the 5 MSBs of the first byte together with the second byte.
Read Data Memory	00aa a101	low addr	XXXX XXXX	Read data from Data memory array at selected address. Data are available at pin MISO during the third byte.
Write Data Memory	00aa a110	low addr	data in	Write data to Data memory location at selected address.
Write Lock Bits	1010 1100	x x111	XXXX XXXX	Write lock bits. Set LB1, LB2 or LB3 = "0" to program lock bits.

Note: 1. DATA polling is used to indicate the end of a write cycle which typically takes less than 2.5 ms at 5V.

"aaaaa" = high order address.
 "x" = don't care.

Flash and EEPROM Parallel Programming Modes


Mode	RST	PSEN	ALE/PROG	EA/V _{PP}	P2.6	P2.7	P3.6	P3.7	Data I/O P0.7:0	Address P2.5:0 P1.7:0
Serial Prog. Modes	н	h ⁽¹⁾	h ⁽¹⁾	x						
Chip Erase	Н	L	(2)	12V	н	L	L	L	х	х
Write (10K bytes) Memory	н	L	~~	12V	L	Н	н	Н	DIN	ADDR
Read (10K bytes) Memory	Н	L	Н	12V	L	L	Н	Н	DOUT	ADDR
Write Lock Bits:	н	L		12V	н	L	н	L	DIN	х
Bit -	1								P0.7 = 0	х
Bit -	2								P0.6 = 0	х
Bit -	3								P0.5 = 0	х
Read Lock Bits:	н	L	Н	12V	н	н	L	L	DOUT	Х
Bit -	1								@P0.2	х
Bit -	2								@P0.1	х
Bit -	3								@P0.0	х
Read Atmel Code	н	L	Н	12V	L	L	L	L	DOUT	30H
Read Device Code	н	L	Н	12V	L	L	L	L	DOUT	31H
Serial Prog. Enable	н	L	(2)	12V	L	н	L	Н	P0.0 = 0	х
Serial Prog. Disable	н	L	(2)	12V	L	н	L	н	P0.0 = 1	х
Read Serial Prog. Fuse	н	L	Н	12V	н	н	L	Н	@P0.0	Х

Notes: 1. "h" = weakly pulled "High" internally.

2. Chip Erase and Serial Programming Fuse require a 10 ms PROG pulse. Chip Erase needs to be performed first before reprogramming any byte with a content other than FFH.

 P3.4 is pulled Low during programming to indicate RDY/BSY.

4. "X" = don't care

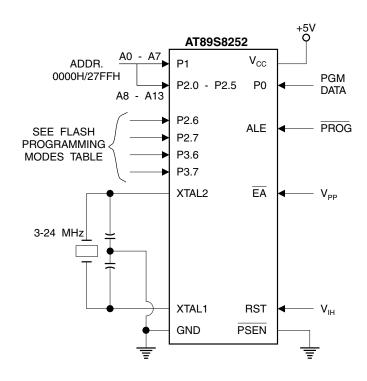
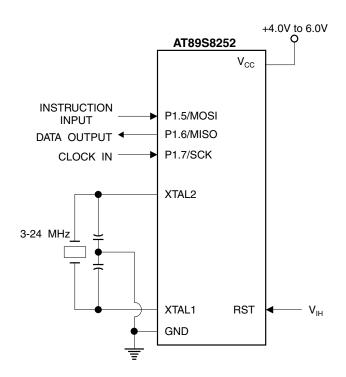
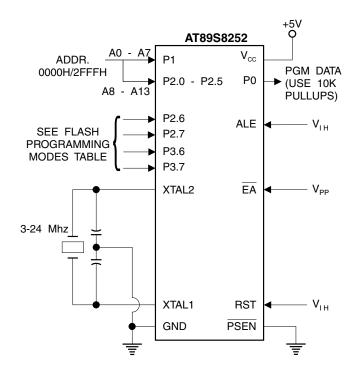
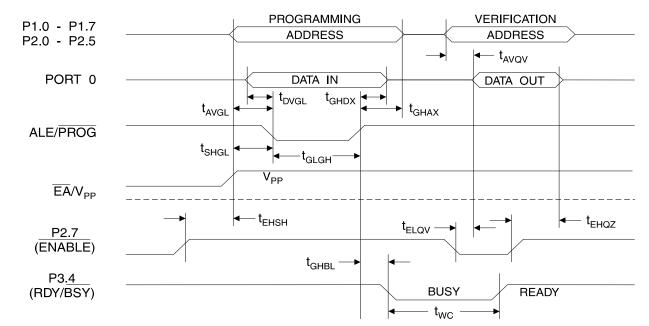
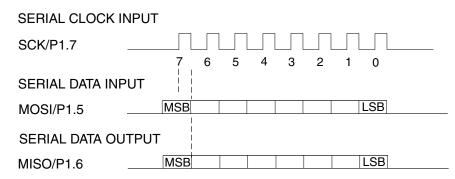


Figure 15. Flash/EEPROM Serial Downloading

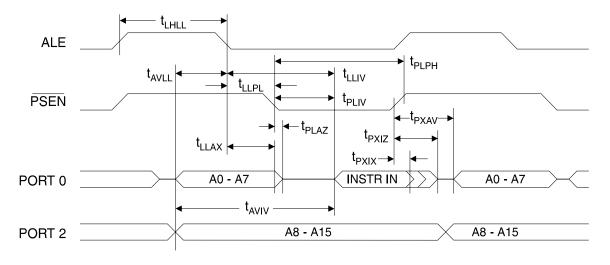

Figure 14. Verifying the Flash/EEPROM Memory

Flash/EEPROM Programming and Verification Waveforms – Parallel Mode

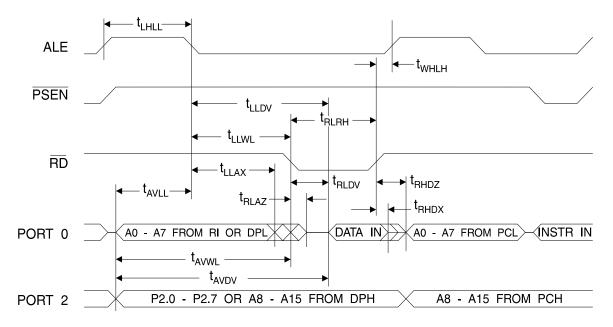
Serial Downloading Waveforms

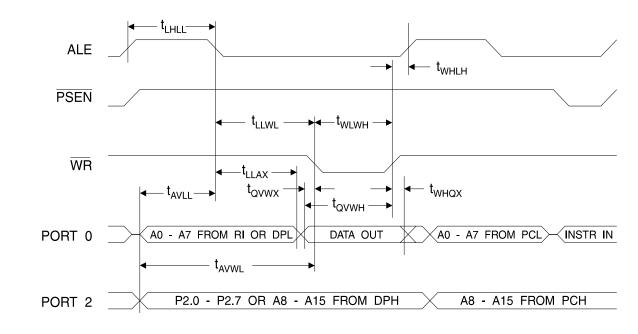
AC Characteristics

Under operating conditions, load capacitance for Port 0, ALE/ \overline{PROG} , and $\overline{PSEN} = 100 \text{ pF}$; load capacitance for all other outputs = 80 pF.

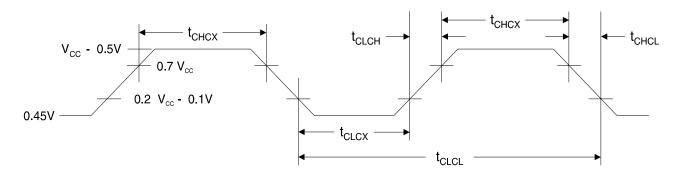

External Program and Data Memory Characteristics

		Variable	Variable Oscillator		
Symbol	Parameter	Min	Max	Units	
1/t _{CLCL}	Oscillator Frequency	0	24	MHz	
t _{LHLL}	ALE Pulse Width	2t _{CLCL} - 40		ns	
t _{AVLL}	Address Valid to ALE Low	t _{CLCL} - 13		ns	
t _{LLAX}	Address Hold after ALE Low	t _{CLCL} - 20		ns	
t _{LLIV}	ALE Low to Valid Instruction In		4t _{CLCL} - 65	ns	
t _{LLPL}	ALE Low to PSEN Low	t _{CLCL} - 13		ns	
t _{PLPH}	PSEN Pulse Width	3t _{CLCL} - 20		ns	
t _{PLIV}	PSEN Low to Valid Instruction In		3t _{CLCL} - 45	ns	
t _{PXIX}	Input Instruction Hold after PSEN	0		ns	
t _{PXIZ}	Input Instruction Float after PSEN		t _{CLCL} - 10	ns	
t _{PXAV}	PSEN to Address Valid	t _{CLCL} - 8		ns	
t _{AVIV}	Address to Valid Instruction In		5t _{CLCL} - 55	ns	
t _{PLAZ}	PSEN Low to Address Float		10	ns	
t _{RLRH}	RD Pulse Width	6t _{CLCL} - 100		ns	
t _{wLWH}	WR Pulse Width	6t _{CLCL} - 100		ns	
t _{RLDV}	RD Low to Valid Data In		5t _{CLCL} - 90	ns	
t _{RHDX}	Data Hold after RD	0		ns	
t _{RHDZ}	Data Float after RD		2t _{CLCL} - 28	ns	
t _{LLDV}	ALE Low to Valid Data In		8t _{CLCL} - 150	ns	
t _{AVDV}	Address to Valid Data In		9t _{CLCL} - 165	ns	
t _{LLWL}	ALE Low to RD or WR Low	3t _{CLCL} - 50	3t _{CLCL} + 50	ns	
t _{AVWL}	Address to RD or WR Low	4t _{CLCL} - 75		ns	
t _{QVWX}	Data Valid to \overline{WR} Transition	t _{CLCL} - 20		ns	
t _{QVWH}	Data Valid to WR High	7t _{CLCL} - 120		ns	
t _{WHQX}	Data Hold after WR	t _{CLCL} - 20		ns	
t _{RLAZ}	RD Low to Address Float		0	ns	
t _{WHLH}	RD or WR High to ALE High	t _{CLCL} - 20	t _{CLCL} + 25	ns	





External Program Memory Read Cycle

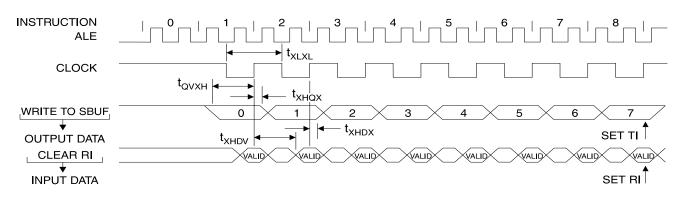

External Data Memory Read Cycle

External Data Memory Write Cycle

External Clock Drive Waveforms

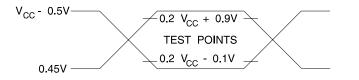
External Clock Drive

Symbol	Parameter	V _{CC} = 4.0	V _{CC} = 4.0V to 6.0V		
		Min	Мах		
1/t _{CLCL}	Oscillator Frequency	0	24	MHz	
t _{CLCL}	Clock Period	41.6		ns	
t _{CHCX}	High Time	15		ns	
t _{CLCX}	Low Time	15		ns	
t _{CLCH}	Rise Time		20	ns	
t _{CHCL}	Fall Time		20	ns	

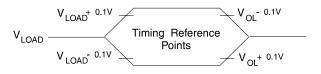


Serial Port Timing: Shift Register Mode Test Conditions

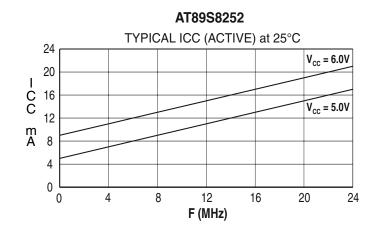
The values in this table are valid for V_{CC} = 4.0V to 6V and Load Capacitance = 80 pF.

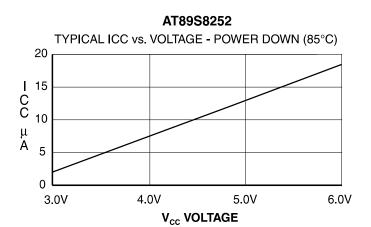

Symbol	Parameter	Variable	Variable Oscillator		
		Min	Max		
t _{xLXL}	Serial Port Clock Cycle Time	12t _{CLCL}		μs	
t _{QVXH}	Output Data Setup to Clock Rising Edge	10t _{CLCL} - 133		ns	
t _{XHQX}	Output Data Hold after Clock Rising Edge	2t _{CLCL} - 117		ns	
t _{xHDX}	Input Data Hold after Clock Rising Edge	0		ns	
t _{xHDV}	Clock Rising Edge to Input Data Valid		10t _{CLCL} - 133	ns	

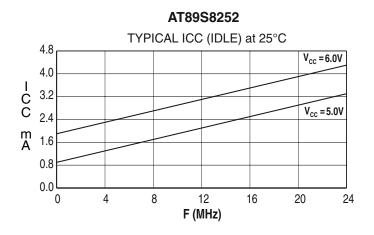
Shift Register Mode Timing Waveforms



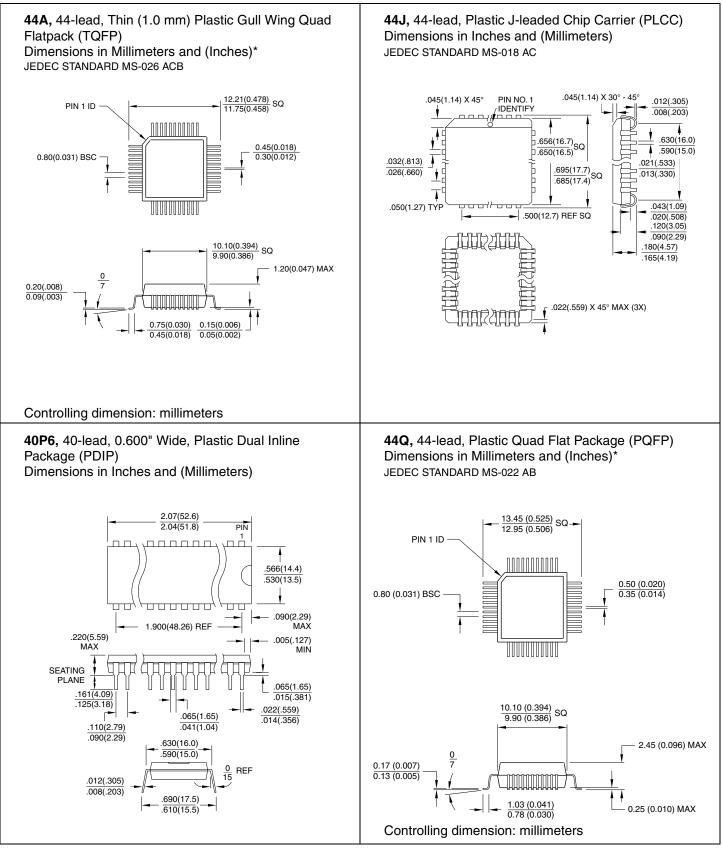
AC Testing Input/Output Waveforms⁽¹⁾


Float Waveforms⁽¹⁾




Notes: 1. AC Inputs during testing are driven at V_{CC} - 0.5V for a logic 1 and 0.45V for a logic 0. Timing measurements are made at V_{IH} min. for a logic 1 and V_{IL} max. for a logic 0.

Notes: 1. For timing purposes, a port pin is no longer floating when a 100 mV change from load voltage occurs. A port pin begins to float when a 100 mV change from the loaded V_{OH}/V_{OL} level occurs.



Notes: 1. XTAL1 tied to GND for Icc (power-down) 2. Lock bits programmed

Packaging Information

