

Welcome to **E-XFL.COM**

<u>Embedded - Microcontrollers - Application</u>
<u>Specific</u>: Tailored Solutions for Precision and Performance

Embedded - Microcontrollers - Application Specific represents a category of microcontrollers designed with unique features and capabilities tailored to specific application needs. Unlike general-purpose microcontrollers, application-specific microcontrollers are optimized for particular tasks, offering enhanced performance, efficiency, and functionality to meet the demands of specialized applications.

What Are <u>Embedded - Microcontrollers - Application Specific</u>?

Application charific microcontrollars are angineered to

Details	
Product Status	Obsolete
Applications	USB Type C
Core Processor	ARM® Cortex®-M0
Program Memory Type	FLASH (32KB)
Controller Series	-
RAM Size	4K x 8
Interface	I ² C, SPI, UART/USART, USB
Number of I/O	34
Voltage - Supply	1.71V ~ 5.5V
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	40-UFQFN Exposed Pad
Supplier Device Package	40-QFN (6x6)
Purchase URL	https://www.e-xfl.com/product-detail/infineon-technologies/cypd1134-40lqxit

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Functional Definition

CPU and Memory Subsystem

CPU

The Cortex-M0 CPU in the CCG1 is part of the 32-bit MCU subsystem, which is optimized for low-power operation with extensive clock gating. It mostly uses 16-bit instructions and executes a subset of the Thumb-2 instruction set. This enables fully compatible binary upward migration of the code to higher performance processors such as the Cortex-M3 and M4, thus enabling upward compatibility. The Cypress implementation includes a hardware multiplier that provides a 32-bit result in one cycle. It includes a nested vectored interrupt controller (NVIC) block with 32 interrupt inputs and a Wakeup Interrupt Controller (WIC). The WIC can wake the processor up from the Deep Sleep mode, allowing power to be switched off to the main processor when the chip is in the Deep Sleep mode. The Cortex-M0 CPU provides a Non-Maskable Interrupt (NMI) input, which is made available to the user when it is not in use for system functions requested by the user.

The CPU also includes a debug interface, the serial wire debug (SWD) interface, which is a 2-wire form of JTAG; the debug configuration used for CCG1 has four break-point (address) comparators and two watchpoint (data) comparators.

Flash

The CCG1 device has a flash module with a flash accelerator, tightly coupled to the CPU to improve average access times from the flash block. The flash block is designed to deliver 1 wait-state (WS) access time at 48 MHz and 0-WS access time at 24 MHz. The flash accelerator delivers 85% of single-cycle SRAM access performance on average. Part of the flash module can be used to emulate EEPROM operation if required.

SROM

A supervisory ROM that contains boot and configuration routines is provided.

System Resources

Power System

The power system is described in detail in the section Power on page 11. It provides assurance that voltage levels are as required for each respective mode and either delay mode entry (on power-on reset (POR), for example) until voltage levels are as required for proper function or generate resets (Brown-Out Detect (BOD)) or interrupts (Low Voltage Detect (LVD)). The CCG1 operates with a single external supply over the range of 3.2 V to 5.5 V operation and has three different power modes: Active, Sleep, and Deep Sleep; transitions between modes are managed by the power system.

Serial Communication Blocks (SCB)

The CCG1 has one SCB, which can implement an I^2C interface. The hardware I^2C block implements a full multi-master and slave interface (it is capable of multimaster arbitration). This block is capable of operating at speeds of up to 1 Mbps (Fast Mode Plus) and has flexible buffering options to reduce interrupt overhead and latency for the CPU. It also supports EZ- I^2C that creates a mailbox address range in the memory of the CCG1 and effectively reduces I^2C communication to reading from and writing to an array in memory. In addition, the block supports an 8-deep

FIFO for receive and transmit which, by increasing the time given for the CPU to read data, greatly reduces the need for clock stretching caused by the CPU not having read data on time.

The I²C peripheral is compatible with the I²C Standard-mode, Fast-mode, and Fast-mode Plus devices, as defined in the NXP I²C-bus specification and user manual (UM10204). The I²C bus I/O is implemented with GPIO in open-drain modes.

The CCG1 is not completely compliant with the I²C spec in the following respects:

- GPIO cells are not overvoltage tolerant and, therefore, cannot be hot-swapped or powered up independently of the rest of the I²C system.
- Fast-mode Plus has an I_{OL} specification of 20 mA at a V_{OL} of 0.4 V. The GPIO cells can sink a maximum of 8 mA I_{OL} with a V_{OL} maximum of 0.6 V.
- Fast-mode and Fast-mode Plus specify minimum Fall times, which are not met with the GPIO cell; Slow strong mode can help meet this spec depending on the Bus Load.
- When the SCB is an I²C Master, it interposes an IDLE state between NACK and Repeated Start; the I²C spec defines Bus free as following a Stop condition so other Active Masters do not intervene but a Master that has just become activated may start an Arbitration cycle.
- When the SCB is in the I²C Slave mode, and Address Match on External Clock is enabled (EC_AM = 1) along with operation in the internally clocked mode (EC_OP = 0), then its I²C address must be even.

GPIO

The CCG1 has up to 30 GPIOs, which are configured for various functions. Refer to the pinout tables for the definitions. The GPIO block implements the following:

- Eight drive strength modes:
 - ☐ Analog input mode (input and output buffers disabled)
 - □ Input only
 - □ Weak pull-up with strong pull-down
 - □ Strong pull-up with weak pull-down
 - □ Open drain with strong pull-down
 - ☐ Open drain with strong pull-up
 - □ Strong pull-up with strong pull-down
 - □ Weak pull-up with weak pull-down
- Input threshold select (CMOS or LVTTL).
- Individual control of input and output buffer enabling/disabling in addition to the drive strength modes.
- Hold mode for latching previous state (used for retaining I/O state in Deep Sleep mode).
- Selectable slew rates for dV/dt related noise control to improve EMI.

During power-on and reset, the I/O pins are forced to the disable state so as not to crowbar any inputs and/or cause excess turn-on current. A multiplexing network, known as a high-speed I/O matrix, is used to multiplex between various signals that may connect to an I/O pin.

Pin Definitions

Table 1 provides the pin definition for 35-Ball WLCSP for the Cable/EMCA application. Refer to Table 23 for part numbers to package mapping.

Table 1. Pin Definitions for 35-ball WLCSP for EMCA Cable Application

Functional Pin Name	CYPD1103- 35FNXIT Balls	Туре	Description			
CC1_RX	C4	1	CC1 control 0: TX enabled z: RX sense			
CC1_TX	D7	0	Configuration Channel 1			
SWD_IO	D1	I/O	SWD I/O			
SWD_CLK	C1	I	SWD clock			
I2C_SCL	B1	I/O	I ² C clock signal			
I2C_SDA	B2	I/O	I ² C data signal			
XRES	B6	I	Reset			
VCCD	A7	POWER	Regulated digital supply output. Connect a 1 to 1.6-µF capacitor. No external source should be connected			
VDDD	C7	POWER	Power supply for both analog and digital sections			
VSSA	B7	GND	Analog ground			
CC_VREF	C5	I	Data reference signal for CC lines			
TX_U	В3	0	Signals for internal use only. The TX_U output signal should be connected to the TX_M signal			
TX_M	B5	I	_			
TX_REF_IN	D3	1	Reference signal for internal use. Connect to TX_REF output via a 2.4K 1% resistor			
TX_GND	A3	I	Connect to GND via 2K 1% resistor			
TX_REF_OUT	D4	0	Reference signal generated by connecting internal current source to two 1K external resistors			
RA_DISCONNECT	E4	0	Optional control signal to remove RA after assertion of VCONN 0: RA disconnected 1: RA connected			
VCONN_DET	C6	I	Local VCONN detection signal 0: VCONN is not locally applied 1: VCONN is locally applied			
CC1_LPREF	A5	I	Reference signal for internal use. Connect to the output of resistor divider from VDDD.			
RA_FAR_DISCONNECT	E5	0	Optional control signal to remove RA after assertion of VCONN (Note: 10 for 2 chip/cable) 0: RA disconnected 1: RA connected			
BYPASS	D5	I	Bypass capacitor for internal analog circuits			
CC1_LPRX	C3	I	Configuration channel 1 RX signal for Low Power States			
GPIO	A1, A2, A4, A6, B4, C2, D2, D6, E1, E2, E3, E6, E7	-	General-purpose I/Os			

Table 3 provides the pin definition for 40-pin QFN for Notebook (DFP) application. Refer to Table 23 for part numbers to package mapping.

Table 3. Pin Definitions for 40-Pin QFN for Notebook (DFP)

Functional Pin Name	Active HIGH/ LOW	Drive Mode	CYPD 1134-40LQXI Pins	Туре	Description
MUXSEL_1	_	Open drain, drives low	1	0	External Data Mux Select signal 1
MUXSEL_2	_	Open drain, drives low	2	0	External Data Mux Select signal 2
CC1_CTRL	-	Analog input/Strong drive (push pull)	3	Ю	CC1 control 0:Tx enabled z: RX sense
CC2_CTRL	_	Analog input/Strong drive (push pull)	4	Ю	CC2 control 0: TX enabled z: RX sense
MUXSEL_3	_	Open drain, drives low	5	0	External Data Mux Select signal 3
MUXSEL_4	_	Open drain, drives low	6	0	External Data Mux Select signal 4
CS_P	_	Analog input	7	I	Current Sensing Plus input
CS_M	_	Analog input	8	I	Current Sensing Minus input
VSS	_	_	9	GND	Ground
CC1	_	Strong drive (push pull)	10	0	Configuration Channel 1
CC1_RP_1.5	Active HIGH	Open drain, drives high	11	0	Open Drain signal to connect RP to CC1 line (1.5A current) z: RP not connected 1: RP connected
SWD_IO	_	_	12	Ю	SWD IO
SWD_CLK	_	_	13	I	SWD Clock
CC1_RP_3.0	Active HIGH	Open drain, drives high	14	0	Open Source signal to connect RP to CC1 line (3A current) z: RP not connected 1: RP connected
CC1_RP_DEF	Active HIGH	Open drain, drives high	15	0	Open Drain signal to connect RP to CC1 line (Default current) z: RP not connected 1: RP connected
CC2_RP_DEF	Active HIGH	Open drain, drives high	16	0	Open Drain signal to connect RP to CC2 line (Default current) z: RP not connected 1: RP connected
CC2_RP_1.5	Active HIGH	Open drain, drives high	17	0	Open Drain signal to connect RP to CC2 line (1.5A current) z: RP not connected 1: RP connected
I2C_SCL	Active LOW	Open drain, drives low	18	Ю	I ² C Clock signal
I2C_SDA	Active LOW	Open drain, drives low	19	Ю	I ² C Data signal
I2C_INT	Active LOW	Open drain, drives low	20	0	I ² C Interrupt

Table 3. Pin Definitions for 40-Pin QFN for Notebook (DFP) (continued)

Functional Pin Name	Active HIGH/ LOW	Drive Mode	CYPD 1134-40LQXI Pins	Туре	Description
CC2_RP_3.0	Active HIGH	Open drain, drives high	21	0	Open Source signal to connect RP to CC2 line (3A current) z: RP not connected 1: RP connected
CC1_LPRX	_	Analog input	22	1	Configuration channel 1 RX signal for Low Power states
CC1_LPREF	_	Analog input	23	1	Reference signal for internal use.
CC2_LPRX	_	Analog input	24	1	Configuration channel 2 RX signal for Low Power states
CC2_LPREF	_	Analog input	25	I	Reference signal for internal use.
CC2	-	Strong drive (push pull)	26	0	Configuration Channel 2
CC1_VCONN_CTRL	Active LOW	Open drain, drives low	27	0	Open Drain signal to control a PFET power switch for VCONN on CC1 line 0: VCONN switch closed z: VCONN switch open
CC2_VCONN_CTRL	Active LOW	Open drain, drives low	28	0	Open Drain signal to control a PFET power switch for VCONN on CC2 line 0: VCONN switch closed z: VCONN switch open
IFAULT	Active HIGH	Digital input	29	I	Current Fault Indication on VBUS 0: No fault 1: Over Current fault
XRES	Active LOW	Analog input	30	I	Reset
VCCD	-	-	31	POWER	Connect 1uf Capacitor between VCCD and Ground
VDDD	_	_	32	POWER	5-V Supply
VDDA	_	_	33	POWER	5-V Supply
VSSA	-	_	34	GND	_
E-PAD	_	_	E-PAD	GND	-
VBUS_VMON	_	Analog input	35	I	VBUS Over-voltage Protection monitoring signal
VBUS_VREF	_	Analog input	36	I	VBUS reference signal for Over-voltage Protection detection
VBUS_P_CTRL	Active HIGH	Strong drive (Push Pull)	37	0	Full rail control signal for enabling/disabling Provider load FET
HOTPLUG_DET	Active HIGH	Open drain, drives low	38	Ю	HotPlug Detection for Display Port Alternate Mode
CC_VREF/ VBUS_DISCHARGE	-/Active HIGH	Analog input/Strong drive (Push Pull)	39	Ю	Data reference signal for CC lines / Signal used for discharging VBUS line during voltage change
MUXSEL_5	_	Open drain, drives low	40	0	External Data Mux Select signal 5

Table 4 provides the pin definition for 16-pin SOIC for the Power Adapter application. Refer to Table 23 on page 23 for part numbers to package mapping.

Table 4. Pin Definitions for 16-pin SOIC for Power Adapter Application

Functional Pin Name	CYPD 1132-16SXI Pins	Туре	Description
SWD_CLK	1	I	SWD Clock
VBUS_P_CTRL	2	0	Full rail control signal for enabling/disabling provider load FET
VBUS_VMON	3	Ĺ	VBUS over-voltage protection monitoring signal
VBUS_VREF	4	I	VBUS reference signal for over-voltage protection detection
XRES	5	_	Active Low Reset
VCCD	6	_	Connect 1 µF capacitor between VCCD and GROUND
VSSD	7	-	Ground
VDDD	8	-	Power 3.3 V/5 V
VSSA	9	-	Ground
CC_VREF/VBUS_DISCHARGE	10	I/O	Data reference signal for CC line (0.55 Volt) / Signal used for discharging VBUS line during voltage decrease
CC_CTRL	11	I/O	CC1 control 0: TX enabled z: RX sense
CS	12	Ĺ	Low Side Current Sense
VSEL1	13	0	Voltage select signal for selecting the output voltage 5/12/20 V
VSEL2	14	0	Voltage select signal for selecting the output voltage 5/12/20 V
CC	15	I/O	Configuration Channel TX/RX
SWD_IO	16	I/O	SWD I/O

3 7 GPIO/ TX_GND/ GPIO/ CC1_LPRE CC1_VCO NN_CTRL CC_SEL_R EF_2 VCCD VBUS_DIS CHARGE Α CC2_RD F/CC1_RP I2C_INT TX M/ GPIO/ VSSA **XRES** CC2_VCON N_CTRL I2C_SDA I2C SCL В CC2_RP VCONN_D CC_VREF/ CC1_RX/ VBUS_VMO GPIO/ HOTPLUG VDDD/ ET/ CC1 LPRX/ С SWD_CLK VBUS_VRE CC_SEL_R EF 3 TX_REF_O CC1_TX/ VBUS_C_C GPIO/ BYPASS/ TX_REF_IN /CC1_CTRL UT/ CC_VREF D **GPIO** SWD_IO MUXSEL 2 MUXSEL 1 TRL RA FAR D RA DISCO GPIO/ GPIO/ GPIO/ ISCONNEC GPIO/ GPIO/ CS_M Е VBUS_P_C NNECT/ CC SEL R MUXSEL 4 T/ MUXSEL 3 CS P CC2_CTRL

Figure 5. Pinout for CYPD1103-35FNXIT/CYPD1131-FNXIT

Power

The following power system diagram shows the minimum set of power supply pins as implemented for the CCG1. The system has one regulator in Active mode for the digital circuitry. There is no analog regulator; the analog circuits run directly from the VDDA input. There is a separate regulator for the Deep Sleep mode. There is a separate low-noise regulator for the bandgap. The supply voltage range is 3.2 V to 5.5 V with all functions and circuits operating over that range.

VDDA and VDDD must be shorted together; the grounds, VSSA and VSS must also be shorted together. Bypass capacitors must be used from VDDD to ground. The typical practice for systems in this frequency range is to use a capacitor in the 1- μ F range in parallel with a smaller capacitor (0.1 μ F, for example). Note that these are simply rules of thumb and that, for critical applications, the PCB layout, lead inductance, and the bypass capacitor parasitic should be simulated to design and obtain optimal bypassing.

Refer to Application Diagrams for bypassing schemes.

XRES

Table 10. XRES DC Specifications

Spec ID	Parameter	Description	Min	Тур	Max	Units	Details/ Conditions
SID77	V _{IH}	Input voltage high threshold	0.70 × V _{DDD}	_	_	V	CMOS input
SID78	V _{IL}	Input voltage low threshold	-	_	$0.30 \times V_{DDD}$	V	CMOS input
SID79	R _{PULLUP}	Pull-up resistor	3.50	5.60	8.50	kΩ	_
SID80	C _{IN}	Input capacitance	-	3.00	_	pF	_
SID81	V _{HYSXRES}	Input voltage hysteresis	_	100.00	_	mV	Guaranteed by characterization
SID82	I _{DIODE}	Current through protection diode to V_{DDD}/V_{SS}	_	-	100.00	μΑ	Guaranteed by characterization

Digital Peripherals

The following specifications apply to the Timer/Counter/PWM peripherals in the Timer mode.

Pulse Width Modulation (PWM) for VSEL and CUR_LIM Pins

Table 11. PWM AC Specifications

(Guaranteed by Characterization)

Spec ID	Parameter	Description	Min	Тур	Max	Units	Details/ Conditions
SID140	T _{PWMFREQ}	Operating frequency	_	_	48.00	MHz	_
SID141	T _{PWMPWINT}	Pulse width (internal)	42.00	_	_	ns	_
SID142	T _{PWMEXT}	Pulse width (external)	42.00	_	-	ns	_
SID143	T _{PWMKILLINT}	Kill pulse width (internal)	42.00	_	-	ns	_
SID144	T _{PWMKILLEXT}	Kill pulse width (external)	42.00	_	-	ns	_
SID145	T _{PWMEINT}	Enable pulse width (internal)	42.00	_	-	ns	_
SID146	T _{PWMENEXT}	Enable pulse width (external)	42.00	_	-	ns	_
SID147	T _{PWMRESWINT}	Reset pulse width (internal)	42.00	_	-	ns	_
SID148	T _{PWMRESWEXT}	Reset pulse width (external)	42.00	_	_	ns	_

²C

Table 12. Fixed I²C DC Specifications

(Guaranteed by Characterization)

Spec ID	Parameter	Description	Min	Тур	Max	Units	Details/Conditions
SID149	I _{I2C1}	Block current consumption at 100 kHz	_	_	50	μΑ	_
SID150	I _{I2C2}	Block current consumption at 400 kHz	-	-	135.00	μA	_
SID151	I _{I2C3}	Block current consumption at 1 Mbps	-	-	310.00	μA	_
SID152	I _{I2C4}	I ² C enabled in Deep Sleep mode	_	_	1.40	μΑ	_

Table 13. Fixed I²C AC Specifications

(Guaranteed by Characterization)

Spec ID	Parameter	Description	Min	Тур	Max	Units	Details/Conditions
SID153	F _{I2C1}	Bit rate	-	_	1.00	Mbps	-

Memory

Table 14. Flash DC Specifications

Spec ID	Parameter	Description	Min	Тур	Max	Units	Details/Conditions
SID173	V _{PE}	Erase and program voltage	3.20	_	5.50	V	_

Table 15. Flash AC Specifications

Spec ID	Parameter	Description	Min	Тур	Max	Units	Details/Conditions
SID174	T _{ROWWRITE} ^[13]	Row (block) write time (erase and program)	_	_	20.00	ms	Row (block) = 128 bytes
SID175	T _{ROWERASE} ^[13]	Row erase time	_	-	13.00	ms	-
SID176	T _{ROWPROGRAM} ^[13]	Row program time after erase	-	_	7.00	ms	_
SID178	T _{BULKERASE} ^[13]	Bulk erase time (32 KB)	-	_	35.00	ms	_
SID180	T _{DEVPROG} ^[13]	Total device program time	_	_	7.00	seconds	Guaranteed by characterization
SID181	F _{END}	Flash endurance	100 K	_	_	cycles	Guaranteed by characterization
SID182	F _{RET} ^[14]	Flash retention. $T_A \le 55$ °C, 100 K P/E cycles	20	_	_	years	Guaranteed by characterization
SID182A	-	Flash retention. $T_A \le 85$ °C, 10 K P/E cycles	10	_	_	years	Guaranteed by characterization
SID182B	_	Flash retention. 85 °C < $T_A \le 105$ °C, 10K P/E cycles	3	-	_	years	Guaranteed by characterization

Notes

^{13.} It can take as much as 20 milliseconds to write to flash. During this time the device should not be Reset, or flash operations will be interrupted and cannot be relied on to have completed. Reset sources include the XRES pin, software resets, CPU lockup states and privilege violations, improper power supply levels, and watchdogs. Make certain that these are not inadvertently activated.

^{14.} Cypress provides a retention calculator to calculate the retention lifetime based on customers' individual temperature profiles for operation over the -40 °C to +105 °C ambient temperature range. Contact customercare@cypress.com.

System Resources

Power-on-Reset (POR) with Brown Out

Table 16. Imprecise Power On Reset (PRES)

Spec ID	Parameter	Description	Min	Тур	Max	Units	Details/Conditions
SID185	V _{RISEIPOR}	Rising trip voltage	0.80	-	1.45	V	Guaranteed by characterization
SID186	V _{FALLIPOR}	Falling trip voltage	0.75	_	1.40	V	Guaranteed by characterization
SID187	V _{IPORHYST}	Hysteresis	15.0	_	200.0	mV	Guaranteed by characterization

Table 17. Precise Power On Reset (POR)

Spec ID	Parameter	Description	Min	Тур	Max	Units	Details/Conditions
SID190	V _{FALLPPOR}	BOD trip voltage in active and sleep modes	1.64	-	-	V	Guaranteed by characterization
SID192	V _{FALLDPSLP}	BOD trip voltage in Deep Sleep	1.40	_	_	V	Guaranteed by characterization

SWD Interface

Table 18. SWD Interface Specifications

Spec ID	Parameter	Description	Min	Тур	Max	Units	Details/Conditions
SID213	F_SWDCLK1	$3.2~V \leq V_{DDD} \leq 5.5~V$	_	_	14.00	IV/IH/	SWDCLK ≤1/3 CPU clock frequency
SID215	T_SWDI_SETUP	T = 1/f SWDCLK	0.25 × T	_	_	ns	Guaranteed by characterization
SID216	T_SWDI_HOLD	T = 1/f SWDCLK	0.25 × T	_	_	ns	Guaranteed by characterization
SID217	T_SWDO_VALID	T = 1/f SWDCLK	_	_	0.50*T	ns	Guaranteed by characterization
SID217A	T_SWDO_HOLD	T = 1/f SWDCLK	1	_	_	ns	Guaranteed by characterization

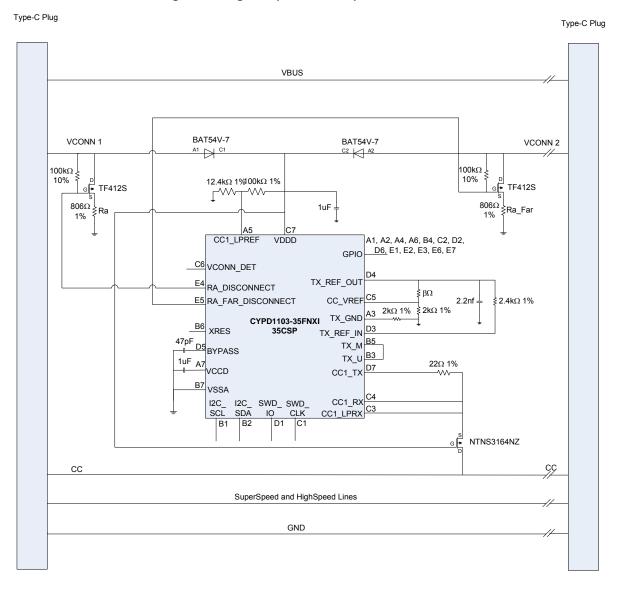
Internal Main Oscillator

Table 19. IMO DC Specifications

(Guaranteed by Design)

Spec ID	Parameter	Description	Min	Тур	Max	Units	Details/Conditions
SID218	I _{IMO1}	IMO operating current at 48 MHz	1	_	1000.00	μΑ	-

Table 20. IMO AC Specifications


Spec ID	Parameter	Description	Min	Тур	Max	Units	Details/Conditions
SID223	F _{IMOTOL1}	Frequency variation	-	-	±2.00	%	With API-called calibration
SID226	T _{STARTIMO}	IMO startup time	-	_	12.00	μs	_
SID229	T _{JITRMSIMO3}	RMS Jitter at 48 MHz	_	139.00	-	ps	_

Document Number: 001-93639 Rev. *J Page 16 of 31

Applications in Detail

Figure 6. Single Chip/Cable, Component Count = 19

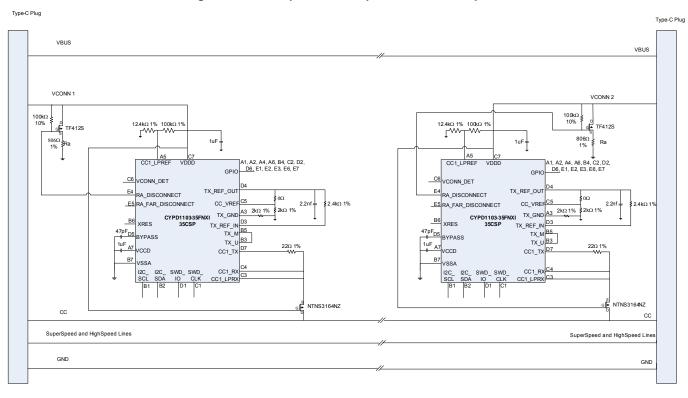
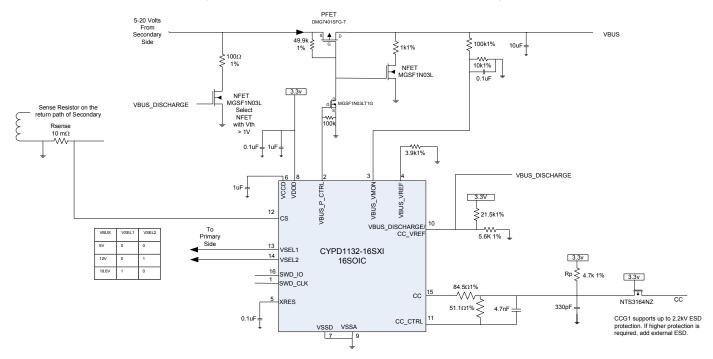



Figure 7. Two Chip/Cable, Component Count = 15/paddle

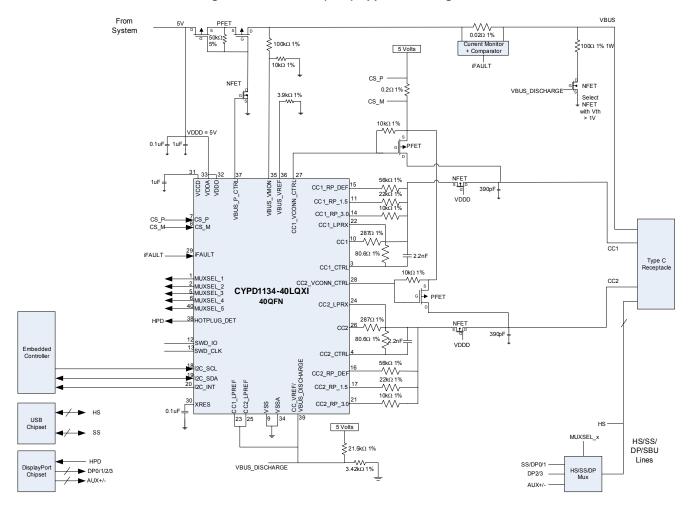
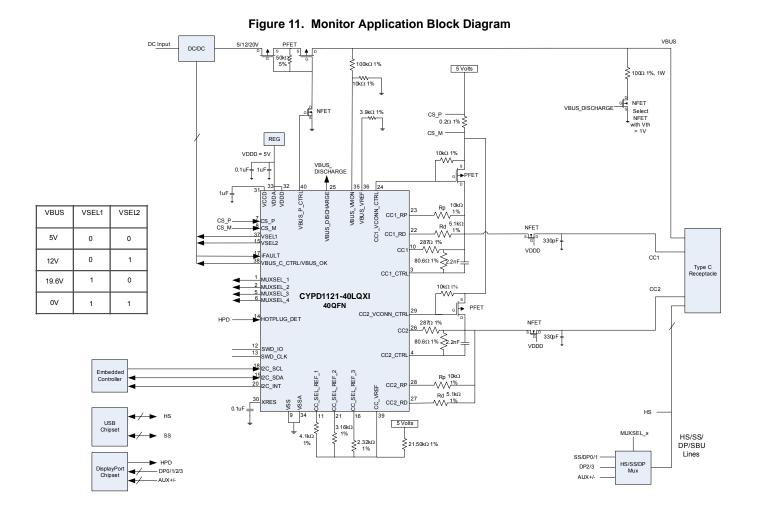
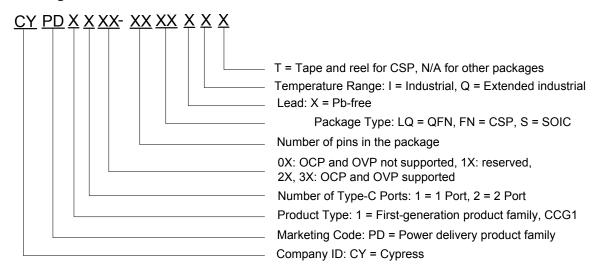



Figure 10. Notebook (DFP) Application Diagram

Document Number: 001-93639 Rev. *J


Ordering Information

The CCG1 part numbers and features are listed in the following table.

Table 23. CCG1 Ordering Information

Part Number ^[15]	Application	Type-C Ports ^[16]	Overcurrent Protection	Overvoltage Protection	Termination Resistor ^[17]	Role ^[18]	Package	Si ID
CYPD1103-35FNXIT	Cable, EMCA	1	No	No	R _a ^[19]	Cable	35-WLCSP ^[20]	0490
CYPD1131-35FNXIT	Notebook, Tablet, Smartphone	1	Yes	Yes	R _p ^[23] , R _d ^[21]	DRP ^[24]	35-WLCSP ^[22]	0491
CYPD1121-40LQXI	Monitor	1	Yes	Yes	$R_p^{[23]}, R_d^{[21]}$	DRP ^[24]	40-QFN	0489
CYPD1122-40LQXI	Notebook	1	Yes	Yes	$R_p^{[23]}, R_d^{[21]}$	DRP ^[24]	40-QFN	048A
CYPD1134-40LQXI	Notebook, Desktop	1	Yes	Yes	R _p ^[23]	DFP	40-QFN	048B
CYPD1132-16SXI	Power Adapter	1	Yes	Yes	R _p ^[23]	DFP	16-SOIC	0498
CYPD1132-16SXQ	Power Adapter	1	Yes	Yes	R _p ^[23]	DFP	16-SOIC	0498

Ordering Code Definitions

- 15. All part numbers support: Input voltage range from 3.2 V to 5.5 V. Industrial parts support -40 °C to +85 °C, Extended Industrial parts support -40 °C to 105 °C. 16. Number of USB Type-C Ports supported .
- 17. Default V_{CONN} termination.
- 18. PD Role.
 19. Type-C Cable Termination.
 20. 35-WLCSP #1 pinout.

- 21. USB Device Termination. 22. 35-WLCSP #2 pinout. 23. USB Host Termination.
- 24. Dual Role Port.

Packaging

Table 24. Package Characteristics

Parameter	Description	Conditions	Min	Тур	Max	Units
T _A (40-QFN, 35-CSP)	Operating ambient temperature	_	-40	25.00	85.00	°C
T _J (40-QFN, 35-CSP)	Operating junction temperature	-	-40	_	100.00	°C
T _A (16-SOIC)	Operating ambient temperature	_	-40	25.00	105.00	°C
T _J (16-SOIC)	Operating junction temperature	-	-40	_	120.00	°C
T_{JA}	Package θJA (40-pin QFN)	_	_	15.34	_	°C/Watt
T_{JA}	Package θJA (35-CSP)	_	_	28.00	_	°C/Watt
T_{JA}	Package θJA (16-SOIC)	-	_	85.00	_	°C/Watt
T_{JC}	Package θJC (40-pin QFN)	-	_	02.50	_	°C/Watt
T_{JC}	Package θ _{JC} (35-CSP)	_	_	00.40	_	°C/Watt
T_{JC}	Package θJC (16-SOIC)	_	_	49.00	_	°C/Watt

Table 25. Solder Reflow Peak Temperature

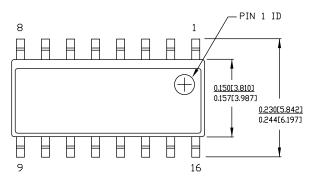
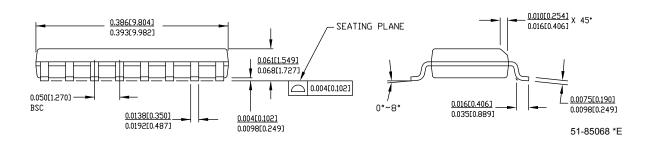

Package	Maximum Peak Temperature	Maximum Time at Peak Temperature
16-pin SOIC	260 °C	30 seconds
40-pin QFN	260 °C	30 seconds
35-ball WLCSP	260 °C	30 seconds

Table 26. Package Moisture Sensitivity Level (MSL), IPC/JEDEC J-STD-2

Package	MSL
16-pin SOIC	MSL 3
40-pin QFN	MSL 3
35-ball WLCSP	MSL 1


Figure 14. 16-pin SOIC (150 Mils) S16.15/SZ16.15 Package Outline, 51-85068

NDTE:

- 1. DIMENSIONS IN INCHES[MM] MAN.
- 2. REFERENCE JEDEC MS-012
- 3. PACKAGE WEIGHT : refer to PMDD spec. 001-04308

	PART #
S16.15	STANDARD PKG.
SZ16.15	LEAD FREE PKG.

Acronyms

Table 27. Acronyms Used in this Document

Acronym	Description
ADC	analog-to-digital converter
API	application programming interface
ARM [®]	advanced RISC machine, a CPU architecture
CC	Configuration Channel
CPU	central processing unit
CRC	cyclic redundancy check, an error-checking protocol
CS	Current Sense
DFP	downstream facing port
DIO	digital input/output, GPIO with only digital capabilities, no analog. See GPIO.
EEPROM	electrically erasable programmable read-only memory
EMI	electromagnetic interference
ESD	electrostatic discharge
FPB	flash patch and breakpoint
FS	full-speed
GPIO	general-purpose input/output, applies to a PSoC pin
IC	integrated circuit
IDE	integrated development environment
I ² C, or IIC	Inter-Integrated Circuit, a communications protocol
ILO	internal low-speed oscillator, see also IMO
IMO	internal main oscillator, see also ILO
I/O	input/output, see also GPIO, DIO, SIO, USBIO
LVD	low-voltage detect
LVTTL	low-voltage transistor-transistor logic
MCU	microcontroller unit
NC	no connect
NMI	nonmaskable interrupt

Table 27. Acronyms Used in this Document (continued)

Acronym	Description
opamp	operational amplifier
OCP	Overcurrent protection
OVP	Overvoltage protection
PCB	printed circuit board
PGA	programmable gain amplifier
PHY	physical layer
POR	power-on reset
PRES	precise power-on reset
PSoC [®]	Programmable System-on-Chip™
PWM	pulse-width modulator
RAM	random-access memory
RISC	reduced-instruction-set computing
RMS	root-mean-square
RTC	real-time clock
RX	receive
SAR	successive approximation register
SCL	I ² C serial clock
SDA	I ² C serial data
S/H	sample and hold
SPI	Serial Peripheral Interface, a communications protocol
SRAM	static random access memory
SWD	serial wire debug, a test protocol
TX	transmit
UART	Universal Asynchronous Transmitter Receiver, a communications protocol
UFP	upstream facing port
USB	Universal Serial Bus
USBIO	USB input/output, PSoC pins used to connect to a USB port
XRES	external reset I/O pin

Document Conventions

Units of Measure

Table 28. Units of Measure

Symbol	Unit of Measure
°C	
	degrees Celsius
Hz	hertz
KB	1024 bytes
kHz	kilohertz
kΩ	kilo ohm
Mbps	megabits per second
MHz	megahertz
ΜΩ	mega-ohm
Msps	megasamples per second
μA	microampere
μF	microfarad
μs	microsecond
μV	microvolt
μW	microwatt
mA	milliampere
ms	millisecond
mV	millivolt
nA	nanoampere
ns	nanosecond
Ω	ohm
pF	picofarad
ppm	parts per million
ps	picosecond
s	second
sps	samples per second
V	volt

Revision History (continued)

Revision	ECN	Orig. of Change	Submission Date	Description of Change
۰۵*	4800534	VGT	07/02/2015	Updated Low-Power Operation. Updated the number of GPIOs to "up to 30" in GPIO. Updated "1.8 to 5.5 V" to "3.2 V to 5.5 V" in Low-Power Operation, Power System, Power, Device-Level Specifications and Note 15. Updated Table 2, Table 4, Table 5, Table 6, Table 7, Table 8, Table 14 and Table 18. Added table footnotes 8, 9 and 10. Deleted footnotes 25 through 28. Updated Figure 2 and Figure 8 through Figure 11. Added Figure 3. Updated the following in Power: Removed Figures 5 through 8. Updated the section.
*H	4939764	VGT	09/29/2015	Removed specs SID241 and 242. Updated 40-pin QFN package to current revision.
*	5179365	KISB	03/17/2016	Updated max value of I_{12C1} from 10.50 μA to 50 μA . Updated copyright information and sales links at the end of the document.
*J	5459633	VGT	10/03/2016	Added compliance information regarding the USB Specification. Updated copyright notice to include WICED. Added IoT link in Sales, Solutions, and Legal Information.

Sales, Solutions, and Legal Information

Worldwide Sales and Design Support

Cypress maintains a worldwide network of offices, solution centers, manufacturer's representatives, and distributors. To find the office closest to you, visit us at Cypress Locations.

cypress.com/usb

cypress.com/wireless

Products

USB Controllers

Wireless/RF

ARM® Cortex® Microcontrollers cypress.com/arm Automotive cypress.com/automotive Clocks & Buffers cypress.com/clocks Interface cypress.com/interface Internet of Things cypress.com/iot Lighting & Power Control cypress.com/powerpsoc Memory cypress.com/memory **PSoC** cypress.com/psoc Touch Sensing cypress.com/touch

PSoC® Solutions

cypress.com/psoc PSoC 1 | PSoC 3 | PSoC 4 | PSoC 5LP

Cypress Developer Community

Community | Forums | Blogs | Video | Training

Technical Support

cypress.com/support

Notice regarding compliance with Universal Serial Bus specification: Cypress offers firmware and hardware solutions that are certified to comply with the Universal Serial Bus specification, USB Type-C™ Cable and Connector Specification, and other specifications of USB Implementers Forum, Inc (USB-IF). You may use Cypress or third-party software tools, including sample code, to modify the firmware for Cypress USB products. Modification of such firmware could cause the firmware/hardware combination to no longer comply with the relevant USB-IF specification. You are solely responsible for ensuring the compliance of any modifications you make, and you must follow the compliance requirements of USB-IF before using any USB-IF trademarks or logos in connection with any modifications you make. In addition, if Cypress modifies firmware based on your specifications, then you are responsible for ensuring compliance with any desired standard or specifications as if you had made the modification. CYPRESS IS NOT RESPONSIBLE IN THE EVENT THAT YOU MODIFY OR HAVE MODIFIED A CERTIFIED CYPRESS PRODUCT AND SUCH MODIFIED PRODUCT NO LONGER COMPLIES WITH THE RELEVANT USB-IF SPECIFICATIONS.

© Cypress Semiconductor Corporation 2014-2016. This document is the property of Cypress Semiconductor Corporation and its subsidiaries, including Spansion LLC ("Cypress"). This document, including any software or firmware included or referenced in this document ("Software"), is owned by Cypress under the intellectual property laws and treaties and other countries worldwide. Cypress reserves all rights under such laws and treaties and does not, except as specifically stated in this paragraph, grant any license under its patents, copyrights, trademarks, or other intellectual property rights. If the Software is not accompanied by a license agreement and you do not otherwise have a written agreement with Cypress governing the use of the Software, then Cypress hereby grants you under its copyright rights in the Software, a personal, non-exclusive, nontransferable license (without the right to sublicense) (a) for Software provided in source code form, to modify and reproduce the Software solely for use with Cypress hardware products, only internally within your organization, and (b) to distribute the Software in binary code form externally to end users (either directly or indirectly through resellers and distributors), solely for use on Cypress hardware product units. Cypress also grants you a personal, non-exclusive, nontransferable, license (without the right to sublicense) under those claims of Cypress's patents that are infringed by the Software (as provided by Cypress, unmodified) to make, use, distribute, and import the Software solely to the minimum extent that is necessary for you to exercise your rights under the copyright license granted in the previous sentence. Any other use, reproduction, modification, translation, or compilation of the Software is prohibited.

CYPRESS MAKES NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARD TO THIS DOCUMENT OR ANY SOFTWARE, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. Cypress reserves the right to make changes to this document without further notice. Cypress does not programming code, is provided only for reference purposes. It is the responsibility of the user of this document. Any information provided in this document, including any sample design information or programming code, is provided only for reference purposes. It is the responsibility of the user of this document to properly design, program, and test the functionality and safety of any application made of this information and any resulting product. Cypress products are not designed, intended, or authorized for use as critical components in systems designed or intended for the operation of weapons, weapons systems, nuclear installations, life-support devices or systems, other medical devices or systems (including resuscitation equipment and surgical implants), pollution control or hazardous substances management, or other uses where the failure of the device or system could cause personal injury, death, or property damage ("Unintended Uses"). A critical component is any component of a device or system whose failure to perform can be reasonably expected to cause the failure of the device or system, or to affect its safety or effectiveness. Cypress is not liable, in whole or in part, and Company shall and hereby does release Cypress from any claim, damage, or other liability arising from or related to all Unintended Uses of Cypress products. Company shall indemnify and hold Cypress harmless from and against all claims, costs, damages, and other liabilities, including claims for personal injury or death, arising from or related to any Unintended Uses of Cypress products.

Cypress, the Cypress logo, Spansion, the Spansion logo, and combinations thereof, WICED, PSoC, CapSense, EZ-USB, F-RAM, and Traveo are trademarks or registered trademarks of Cypress in the United States and other countries. For a more complete list of Cypress trademarks, visit cypress.com. Other names and brands may be claimed as property of their respective owners.

Document Number: 001-93639 Rev. *J Revised October 3, 2016 Page 31 of 31