E. Renesas Electronics America Inc - UPD78F0576MC-CAB-AX Datasheet

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	78K/0
Core Size	8-Bit
Speed	10MHz
Connectivity	3-Wire SIO, I ² C, LINbus, UART/USART
Peripherals	LVD, POR, PWM, WDT
Number of I/O	21
Program Memory Size	8KB (8K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	512 x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 5.5V
Data Converters	A/D 7x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	30-LSSOP (0.240", 6.10mm Width)
Supplier Device Package	-
Purchase URL	https://www.e-xfl.com/product-detail/renesas-electronics-america/upd78f0576mc-cab-ax

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

O Timer

- 16-bit timer/event counter ... PPG output, capture input, external event counter input
- 8-bit timer H ... PWM output
- 8-bit timer/event counter 5 ... PWM output, external event counter input
- Watchdog timer ... Operable with low-speed internal oscillation clock
- Real-time counter ...

Available to count up in year, month, week, day, hour, minute, and second units

	Item	16-bit timer/event	8-bit timer	Watchdog timer	Real-time counter
	Products	counter			
	78K0/KY2-L (16 pins)	1 ch	Timer H: 1 ch	1 ch	-
	78K0/KA2-L (20 pins)		Timer 5: 1 ch		
<r></r>	78K0/KA2-L (25 pins)				
<r></r>	78K0/KA2-L (32 pins)				
	78K0/KB2-L (30 pins)		Timer H: 2 ch		
<r></r>	78K0/KC2-L (40 pins)		Timer 5: 2 ch		1 ch
	78K0/KC2-L (44 pins)				
	78K0/KC2-L (48 pins)				

O Serial interface

- UART ... Asynchronous 2-wire serial interface
- IICA ... Clock synchronous 2-wire serial interface, multimaster supported, standby can be released upon address match in slave mode
- CSI ... Clock synchronous 3-wire serial interface

		Item	UART	IIC	CSI
	Products				
	78K0/KY2-L (1	6 pins)	1 ch	1 ch	-
	78K0/KA2-L (2	0 pins)			
<r></r>	78K0/KA2-L (2	25 pins)			1 ch (CSI11 ^{Note})
<r></r>	78K0/KA2-L (3	2 pins)			
	78K0/KB2-L (3	0 pins)			1 ch (CSI10)
<r></r>	78K0/KC2-L (4	0 pins)			2 ch (CSI10, CSI11)
	78K0/KC2-L (4	4 pins)			
	78K0/KC2-L (4	8 pins)			2 ch (CSI10, CSI11 ^{Note})

Note Can control by an enabled signal, when using CSI11 in the slave mode.

- O 10-bit resolution A/D conversion
 - 78K0/KY2-L: 4 ch

• 78K0/KB2-L: 7 ch

<R>

78K0/KA2-L (32 pins): 11 ch

<R>

- 78K0/KC2-L (40 pins): 10 ch, 78K0/KC2-L (44 pins, 48 pins): 11 ch
 - O Operational amplifier (products with operational amplifier only)

• 78K0/KA2-L (20 pins): 6 ch, 78K0/KA2-L (25 pins): 7 ch

- •78K0/KY2-L, 78K0/KA2-L: 1 ch
- 78K0/KB2-L, 78K0/KC2-L: 2 ch

<R>(4) Non-port functions: 78K0/KA2-L (25, 32 pins) (2/2)

Function Name	I/O	Function	After Reset	Alternate Function
SCK11	I/O	Clock input/output for CSI10	Input port	P35
SI11	Input	Serial data input to CSI10		P36
SO11	Output	Serial data output from CSI10		P37
SSI11	Input	Chip select input to CSI11		P02/INTP5
TI000 Note 1	Input	External count clock input to 16-bit timer/event counter	Input port	P00 Note 1/INTP0 Note 1
				(/TOH1) Note 1 (/TI51) Note 1
(TI000)		CR010) of 16-bit timer/event counter 00		P121/TOOLC0
				(/INTP0)
(TI000) Note 2				RESET/P125
			-	(/INTP0) Note 2
TI010 ^{Note 2}		Capture trigger input to capture register (CR000) of 16- bit timer/event counter 00		P01 Note 2/TO00 Note 2
(TI50) ^{Note 1}	Input	External count clock input to 8-bit timer/event counter 51	Input port	P34/INTP4(/TOH1)
TO00 Note 2	Output	16-bit timer/event counter 00 output	Input port	P01 Note 2/TI010 Note 2
(TOH1)	Output	8-bit timer H1 output	Input port	P34/INTP4(/TI51) ^{Note 1}
X1		Connecting resonator for main system clock	Input port	P121/TOOLC0
X2				P122/EXCLK/TOOLD0
EXCLK	Input	External clock input for main system clock	Input port	P122/X2/TOOLD0
Vdd	_	Positive power supply for pins other than port 2	-	-
AVREF		A/D converter reference voltage input and positive power supply for port 2 and A/D converter		
Vss	-	Ground potential. For 32-pin products, ground potential for pins other than port 2	-	-
AVSS Note 2		Ground potential for port 2 and A/D converter		
TOOLC0	Input	Clock input for flash memory programmer/on-chip	Input port	P121/X1
		debugger		(/TI000) (/INTP0)
TOOLC1				P31/INTP2
TOOLD0	I/O	Data I/O for flash memory programmer/on-chip debugger		P122/X2/EXCLK
TOOLD1				P32/INTP3
IC0 Note 2	_	Internally connected. Connect directly to Vss.	-	-

Notes 1. 25-pin products only

- 2. 32-pin products only
- 3. μ PD78F0565, 78F0566, and 78F0567 (products with operational amplifier) only

(2) Non-port functions: 78K0/KC2-L (4/4)

Function Name	I/O	Function	After Reset	Alternate Function
TI50	Input	External count clock input to 8-bit timer/event counter 50	Input port	P17/TO50
TI51		External count clock input to 8-bit timer/event counter 51		P33/TO51/INTP4
TO00	Output	16-bit timer/event counter 00 output	Input port	P01/TI010
TO50	Output	8-bit timer/event counter 50 output	Input port	P17/TI50
TO51		8-bit timer/event counter 51 output		P33/TI51/INTP4
ТОН0	Output	8-bit timer H0 output	Input port	P15
TOH1		8-bit timer H1 output		P16/INTP5
X1	-	Connecting resonator for main system clock	Input port	P121/TOOLC0
X2				P122/EXCLK/TOOLD0
EXCLK	Input	External clock input for main system clock	Input port	P122/X2/TOOLD0
XT1	-	Connecting resonator for subsystem clock	Input port	P123
XT2				P124/EXCLKS
EXCLKS	Input	External clock input for subsystem clock	Input port	P124/XT2
VDD	-	Positive power supply for pins other than port 2	-	-
AVREF	_	A/D converter reference voltage input and positive power supply for port 2 and A/D converter	_	-
Vss	-	Ground potential for pins other than port 2	-	-
AVss		Ground potential for port 2 and A/D converter		
TOOLC0	Input	Clock input for flash memory programmer/on-chip	Input port	P121/X1
TOOLC1		debugger		P31/INTP2
TOOLD0	I/O	Data I/O for flash memory programmer/on-chip debugger		P122/X2/EXCLK
TOOLD1				P32/INTP3
IC	-	Internally connected. Leave open.	_	_

(1) Port mode

P20 to P27 function as an I/O port. P20 to P27 can be set to input or output port in 1-bit units using port mode register 2 (PM2).

(2) Control mode

P20 to P27 function as A/D converter analog input, operational amplifier I/O, and PGA input.

(a) ANI0 to ANI7

These are A/D converter analog input pins. When using these pins as analog input pins, refer to (5) ANI0/P20 to ANI7/P27 and ANI8/P10 to ANI10/P12 in 12.6 Cautions for A/D Converter.

(b) AMP0+, AMP0-

These are operational amplifier 0 input pins.

(c) AMPOOUT

This is an operational amplifier 0 output pin.

(d) PGAIN

This is a PGA (Programmable gain amplifier) input pin.

Caution ANI0/P20 to ANI7/P27 are set in the analog input mode after release of reset.

2.2.4 P30 to P37 (port 3)

P30 to P37 function as an I/O port. These pins also function as pins for external interrupt request input, timer I/O, clock input and data I/O for flash memory programmer/on-chip debugger, and clock I/O and data I/O for serial interface.

The timer I/O can be assigned to P34 of the 78K0/KA2-L (25-pin and 32-pin products) by setting the port alternate switch control register (MUXSEL).

<r></r>	78K0/KY2-L (µPD78F055x)		78K0/KA2-L (μPD78F056x)		78K0/KB2-L (μPD78F057x)		78K0/KC2-L (µPD78F058x)	
	16 Pins	20 Pins	25 Pins	32 Pins	30 Pins	40 Pins	44 Pins	48 Pins
	P30/TOH1/ TI51/INTP1	OH1/ P30/TOH1/ – NTP1 TI51/INTP1		-	P30/INTP1	P30/INTP1	P30/INTP1	P30/INTP1
	-	P31/INTP2/ TOOLC1	P31/INTP2/ TOOLC1	P31/INTP2/ TOOLC1	P31/INTP2/ TOOLC1	P31/INTP2/ TOOLC1	P31/INTP2/ TOOLC1	P31/INTP2/ TOOLC1
	_	P32/INTP3/ TOOLD1	P32/INTP3/ TOOLD1	P32/INTP3/ TOOLD1	P32/INTP3/ TOOLD1	P32/INTP3/ TOOLD1	P32/INTP3/ TOOLD1	P32/INTP3/ TOOLD1
	_	_	P33	P33	P33/TI51/ TO51/INTP4	P33/TI51/ TO51/INTP4	P33/TI51/ TO51/INTP4	P33/TI51/ TO51/INTP4
	_	_	P34/INTP4 (/TOH1) (/TI51)	P34/INTP4 (/TOH1)	_	_	_	_
	-	_	P35/SCK11	P35/SCK11	-	_	_	_
	_	_	P36/SI11	P36/SI11	_	_	_	_
	_	-	P37/SO11	P37/SO11	_	_	_	-

(a) INTP0

This functions as an external interrupt request input (INTP0) for which the valid edge (rising edge, falling edge, or both rising and falling edges) can be specified.

(b) EXLVI

This is a potential input pin for external low-voltage detection.

(c) X1, X2

These are pins for connecting a resonator for main system clock.

(d) EXCLK

This is an external clock input pin for main system clock.

(e) XT1, XT2

These are pins for connecting a resonator for subsystem clock.

(f) EXCLKS

This is an external clock input pin for subsystem clock.

(g) SO11

This is a serial data output pin of serial interface CSI11.

(h) **RESET**

This is an active-low system reset input pin.

(i) TOOLC0

This is a clock input pin for flash memory programmer/on-chip debugger.

(j) TOOLD0

This is a data I/O pin for flash memory programmer/on-chip debugger.

(k) TI000

This is a pin for inputting an external count clock to 16-bit timer/event counter 00 and is also for inputting a capture trigger signal to the capture registers (CR000, CR010) of 16-bit timer/event counter 00.

<R> Caution Because RESET/P125 is set in the external reset input immediately after release of reset, if a reset signal is generated during low level input, the reset status continues until the input rises to the high level.

Remark For how to connect a flash memory programmer using TOOLC0/X1, TOOLD0/X2, refer to CHAPTER 25 FLASH MEMORY. For how to connect TOOLC0/X1, TOOLD0/X2 and an on-chip debug emulator, refer to CHAPTER 26 ON-CHIP DEBUG FUNCTION.

Figure 3-13. Data to Be Restored from Stack Memory

(a) POP rp instruction (when SP = FEDEH)

(b) RET instruction (when SP = FEDEH)

(c) RETI, RETB instructions (when SP = FEDDH)

3.4.3 Direct addressing

[Function]

The memory to be manipulated is directly addressed with immediate data in an instruction word becoming an operand address.

This addressing can be carried out for all of the memory spaces.

[Operand format]

Identifier	Description
addr16	Label or 16-bit immediate data

[Description example]

MOV A, !0FE00H; when setting !addr16 to FE00H

[Illustration]

Symbol	7	6	5	4	3	2	1	0	Address	After reset	R/W
PU0	0	0	0	0	0	PU02	PU01 ^{Note 2}	PU00 ^{Note 1}	FF30H	00H	R/W
PU3	PU37	PU36	PU35	PU34	PU33	PU32	PU31	0	FF33H	00H	R/W
									1		
PU6	0	0	0	0	0	0	PU61	PU60	FF36H	00H	R/W
PU12	0	0	PU125	0	0	0	0	0	FF3CH	20H	R/W

Figure 4-42. Format of Pull-up Resistor Option Register (78K0/KA2-L (25-pin and 32-pin products))

PUmn	Pmn pin on-chip pull-up resistor selection
	(m = 0, 3, 6, 12; n = 0 to 7)
0	On-chip pull-up resistor not connected
1	On-chip pull-up resistor connected

Notes 1. 25-pin products only

2. 32-pin products only

Figure 4-43. Format of Pull-up Resistor Option Register (78K0/KB2-L)

Symbol	7	6	5	4	3	2	1	0	Address	After reset	R/W
PU0	0	0	0	0	0	0	PU01	PU00	FF30H	00H	R/W
PU1	PU17	PU16	PU15	PU14	PU13	PU12	PU11	PU10	FF31H	00H	R/W
PU3	0	0	0	0	PU33	PU32	PU31	PU30	FF33H	00H	R/W
PU6	0	0	0	0	0	0	PU61	PU60	FF36H	00H	R/W
PU12	0	0	PU125	0	0	0	0	PU120	FF3CH	20H	R/W
	PUmn		Pmn pin on-chip pull-up resistor selection								

1 Onin	i min pin on chip pair up resistor selection
	(m = 0, 1, 3, 6, 12; n = 0 to 7)
0	On-chip pull-up resistor not connected
1	On-chip pull-up resistor connected

(3) Internal low-speed oscillation clock (clock for watchdog timer)

Internal low-speed oscillator

This circuit oscillates a clock of $f_{IL} = 30$ kHz (TYP.). After a reset release, the internal low-speed oscillation clock always starts operating.

Oscillation can be stopped by using the internal oscillation mode register (RCM) when "internal low-speed oscillator can be stopped by software" is set by option byte.

The internal low-speed oscillation clock cannot be used as the CPU clock. The following hardware operates with the internal low-speed oscillation clock.

• Watchdog timer

• 8-bit timer H1 (when fill, fill/ 2^6 , or fill/ 2^{15} is selected)

Remark fil: Internal low-speed oscillation clock frequency

5.2 Configuration of Clock Generator

The clock generator includes the following hardware.

Table 5-1. Configuration of Clock Generator

Item	Configuration
Control registers	Clock operation mode select register (OSCCTL)
	Processor clock control register (PCC)
	Internal oscillation mode register (RCM)
	Main OSC control register (MOC)
	Main clock mode register (MCM)
	Oscillation stabilization time counter status register (OSTC)
	Oscillation stabilization time select register (OSTS)
Oscillators	X1 oscillator
	XT1 oscillator ^{Note}
	Internal high-speed oscillator
	Internal low-speed oscillator

Note 78K0/KC2-L only

6.4.3 External event counter operation

When bits 1 and 0 (PRM001 and PRM000) of the prescaler mode register 00 (PRM00) are set to 11 (for counting up with the valid edge of the TI000 pin) and bits 3 and 2 (TMC003 and TMC002) of 16-bit timer mode control register 00 (TMC00) are set to 11, the valid edge of an external event input is counted, and a match interrupt signal indicating matching between TM00 and CR000 (INTTM000) is generated.

To input the external event, the TI000 pin is used. Therefore, the timer/event counter cannot be used as an external event counter in the clear & start mode entered by the TI000 pin valid edge input (when TMC003 and TMC002 = 10).

The INTTM000 signal is generated with the following timing.

- Timing of generation of INTTM000 signal (second time or later)
- = Number of times of detection of valid edge of external event × (Set value of CR000 + 1)

However, the first match interrupt immediately after the timer/event counter has started operating is generated with the following timing.

- Timing of generation of INTTM000 signal (first time only)
 - = Number of times of detection of valid edge of external event input × (Set value of CR000 + 2)

To detect the valid edge, the signal input to the TI000 pin is sampled during the clock cycle of fPRs. The valid edge is not detected until it is detected two times in a row. Therefore, a noise with a short pulse width can be eliminated.

Remarks 1. For the setting of I/O pins, refer to 6.3 (6) Port mode register 0 (PM0).

2. For how to enable the INTTM000 signal interrupt, refer to CHAPTER 17 INTERRUPT FUNCTIONS.

(1) 8-bit timer H compare register 0n (CMP0n)

This register can be read or written by an 8-bit memory manipulation instruction. This register is used in all of the timer operation modes.

This register constantly compares the value set to CMP0n with the count value of the 8-bit timer counter Hn and, when the two values match, generates an interrupt request signal (INTTMHn) and inverts the output level of TOHn. Rewrite the value of CMP0n while the timer is stopped (TMHEn = 0).

A reset signal generation clears this register to 00H.

Figure 8-3. Format of 8-Bit Timer H Compare Register 0n (CMP0n)

Address: FF18H (CMP00), FF1AH (CMP01) After reset: 00H R/W

Symbol	7	6	5	4	3	2	1	0
CMP0n								

Caution CMP0n cannot be rewritten during timer count operation. CMP0n can be refreshed (the same value is written) during timer count operation.

(2) 8-bit timer H compare register 1n (CMP1n)

This register can be read or written by an 8-bit memory manipulation instruction. This register is used in the PWM output mode and carrier generator mode.

In the PWM output mode, this register constantly compares the value set to CMP1n with the count value of the 8-bit timer counter Hn and, when the two values match, inverts the output level of TOHn. No interrupt request signal is generated.

In the carrier generator mode, the CMP1n register always compares the value set to CMP1n with the count value of the 8-bit timer counter Hn and, when the two values match, generates an interrupt request signal (INTTMHn). At the same time, the count value is cleared.

CMP1n can be refreshed (the same value is written) and rewritten during timer count operation.

If the value of CMP1n is rewritten while the timer is operating, the new value is latched and transferred to CMP1n when the count value of the timer matches the old value of CMP1n, and then the value of CMP1n is changed to the new value. If matching of the count value and the CMP1n value and writing a value to CMP1n conflict, the value of CMP1n is not changed.

A reset signal generation clears this register to 00H.

Figure 8-4. Format of 8-Bit Timer H Compare Register 1n (CMP1n)

Symbol	7	6	5	4	3	2	1	0
CMP1n								

- Caution In the PWM output mode and carrier generator mode, be sure to set CMP1n when starting the timer count operation (TMHEn = 1) after the timer count operation was stopped (TMHEn = 0) (be sure to set again even if setting the same value to CMP1n).
- Remark 78K0/KY2-L, 78K0/KA2-L: n = 1 78K0/KB2-L, 78K0/KC2-L: n = 0, 1

10.4.2 Shifting to STOP mode after starting operation

Perform one of the following processing when shifting to STOP mode immediately after setting RTCE to 1.

However, after setting RTCE to 1, this processing is not required when shifting to STOP mode after the first INTRTC interrupt has occurred.

- Shifting to STOP mode when at least two subsystem clocks (fsuB) (about 62 μ s) have elapsed after setting RTCE to 1 (see Figure 10-20, Example 1).
- Checking by polling RWST to become 1, after setting RTCE to 1 and then setting RWAIT to 1. Afterward, setting RWAIT to 0 and shifting to STOP mode after checking again by polling that RWST has become 0 (see **Figure 10-20**, **Example 2**).

Figure 10-20. Procedure for Shifting to STOP Mode After Setting RTCE to 1

Figure 15-4. Format of Slave Address Register 0 (SVA0)

Address:	FFA6H	After reset:	00H R/V	V				
Symbol	7	6	5	4	3	2	1	0
SVA0								0 ^{Note}

Note Bit 0 is fixed to 0.

(3) SO latch

The SO latch is used to retain the SDAA0 pin's output level.

(4) Wakeup controller

This circuit generates an interrupt request (INTIICA0) when the address received by this register matches the address value set to the slave address register 0 (SVA0) or when an extension code is received.

(5) Serial clock counter

This counter counts the serial clocks that are output or input during transmit/receive operations and is used to verify that 8-bit data was transmitted or received.

(6) Interrupt request signal generator

This circuit controls the generation of interrupt request signals (INTIICA0).

An I²C interrupt request is generated by the following two triggers.

- Falling edge of eighth or ninth clock of the serial clock (set by WTIM0 bit)
- Interrupt request generated when a stop condition is detected (set by SPIE0 bit)

Remark WTIM0 bit: Bit 3 of IICA control register 0 (IICACTL0) SPIE0 bit: Bit 4 of IICA control register 0 (IICACTL0)

(7) Serial clock controller

In master mode, this circuit generates the clock output via the SCLA0 pin from a sampling clock.

(8) Serial clock wait controller

This circuit controls the wait timing.

(9) ACK generator, stop condition detector, start condition detector, and ACK detector These circuits generate and detect each status.

(10) Data hold time correction circuit

This circuit generates the hold time for data corresponding to the falling edge of the serial clock.

(11) Start condition generator

This circuit generates a start condition when the STT0 bit is set to 1. However, in the communication reservation disabled status (IICRSV bit = 1), when the bus is not released (IICBSY bit = 1), start condition requests are ignored and the STCF bit is set to 1.

(12) Stop condition generator

This circuit generates a stop condition when the SPT0 bit is set to 1.

(4) IICA control register 1 (IICACTL1)

This register is used to set the operation mode of I^2C and detect the statuses of the SCLA0 and SDAA0 pins. This register can be set by a 1-bit or 8-bit memory manipulation instruction. However, the CLD0 and DAD0 bits are read-only.

Set the IICACTL1 register, except the WUP bit, while operation of I^2C is disabled (bit 7 (IICE0) of IICA control register 0 (IICACTL0) is 0).

Reset signal generation clears this register to 00H.

Figure 15-8. Format of IICA Control Register 1 (IICACTL1) (1/2)

Address: FF	A8H A	After reset: 00	DH R/W	Note 1				
Symbol	7	6	<5>	<4>	<3>	<2>	1	0
IICACTL1	WUP	0	CLD0	DAD0	SMC0	DFC0	0	0

WUP	Control of address match wakeup									
0	Stops operation of address match wakeup function in STOP mode.									
1	Enables operation of address match wakeup function in STOP mode.									
To shift to s bit (see Fig Clear (0) th communica be written a The interru = 1, is iden occur.) Fu	To shift to STOP mode when $WUP = 1$, execute the STOP instruction at least three clocks after setting (1) WUP bit (see Figure 15-23 Flow When Setting WUP = 1). Clear (0) the WUP bit after the address has matched or an extension code has been received. The subsequent communication can be entered by clearing (0) the WUP bit (The wait must be released and transmit data must be written after the WUP bit has been cleared (0).). The interrupt timing when the address has matched or when an extension code has been received, while WUP = 1, is identical to the interrupt timing when WUP = 0. (A delay of the difference of sampling by the clock will									
Condition for	or clearing (WUP = 0)	Condition for setting (WUP = 1)								
Cleared b extension	y instruction (after address match or code reception)	• Set by instruction (when MSTS0, EXC0, and COI0 are "0", and STD0 also "0" (communication not entered)) ^{Note 2}								

Notes 1. Bits 4 and 5 are read-only.

2. The status of IICAS0 must be checked and WUP must be set during the period shown below.

WUP during this period.

(c) Start ~ Code ~ Data ~ Data ~ Stop (extension code transmission)

(i) When WTIM0 = 0

(ii) When WTIM0 = 1

٦

(ii) Extension code

▲1 ▲2 1: IICAS0 = 1000×110B	∆3
1: IICAS0 = 1000×110B	
11: IICAS0 = 1000×110B	
v2: IICAS0 = 01100010B	
sets LREL0 = 1 by software	
∆3: IICAS0 = 00000001B	
lemark ▲: Always generated	
\triangle : Generated only when SPIE0 = 1	
×: Don't care	
n = 6 to 0	

(e) When loss occurs due to stop condition during data transfer

16.4 Operation of Serial Interfaces CSI10 and CSI11

Serial interfaces CSI10 and CSI11 can be used in the following two modes.

- Operation stop mode
- 3-wire serial I/O mode

16.4.1 Operation stop mode

Serial communication is not executed in this mode. Therefore, the power consumption can be reduced. In addition, the SCK1n, SI1n, SO1n, and SSI11 pins can be used as ordinary I/O port pins in this mode.

(1) Register used

The operation stop mode is set by serial operation mode register 1n (CSIM1n). To set the operation stop mode, clear bit 7 (CSIE1n) of CSIM1n to 0.

(a) Serial operation mode register 1n (CSIM1n)

CSIM1n can be set by a 1-bit or 8-bit memory manipulation instruction. Reset signal generation clears CSIM1n to 00H.

Remarks 1. 78K0/KA2-L (25, 32-pin products):n = 1 78K0/KB2-L: n = 0

- 78K0/KC2-L: n = 0, 1
- The SSI11 pin is available only in 78K0/KA2-L (25, 32-pin products) and 78K0/KC2-L (48-pin products).
- Serial operation mode register 10 (CSIM10)

Address: FF80H After reset: 00H R/W

Symbol	<7>	6	5	4	3	2	1	0					
CSIM10	CSIE10	TRMD10	0	DIR10	0	0	0	CSOT10					
	CSIE10		Operation control in 3-wire serial I/O mode										
	0	Disables oper	Disables operation ^{Note 1} and asynchronously resets the internal circuit ^{Note 2} .										

Notes 1. To use P10/SCK10 and P12/SO10 as general-purpose ports, set CSIM10 in the default status (00H).
2. Bit 0 (CSOT10) of CSIM10 and serial I/O shift register 10 (SIO10) are reset.

Table 16-2. Relationship Between Register Settings and Pins (4/4)

CSIE11	TRMD11	SSE11	PM36	P36	PM	P37	PM35	P35	PM02	P02	CSI11		Pin Fu	Inction	
					37						Operation	SI11/P36	SO11/	SCK11/	SSI11/
													P37	P35	P02/
															INTP5
0	0	×	$\times^{\rm Note \; 1}$	Stop	P36	P37	P35 ^{Note 2}	P02/							
															INTP5
1	0	0	1	×	$\times^{\rm Note \; 1}$	$\times^{\rm Note 1}$	1	×	$\times^{\rm Note \; 1}$	$\times^{\rm Note \; 1}$	Slave	SI11	P37	SCK11	P02/
											reception ^{Note 3}			(input)	INTP5
		1							1	×				Note 3	SSI11
1	1	0	$\times^{\rm Note \; 1}$	$\times^{\rm Note \; 1}$	0	0	1	×	$\times^{\rm Note \; 1}$	$\times^{\rm Note \; 1}$	Slave	P36	SO11	SCK11	P02/
											transmission			(input)	INTP5
		1							1	×	Note 3			Note 3	SSI11
1	1	0	1	×	0	0	1	×	$\times^{\rm Note \; 1}$	$\times^{\rm Note \; 1}$	Slave	SI11	SO11	SCK11	P02/
											transmission/			(input)	INTP5
		1							1	×	reception ^{Note 3}			Note 3	SSI11
1	0	0	1	×	$\times^{\rm Note 1}$	$\times^{\rm Note 1}$	0	1	$\times^{\rm Note \; 1}$	$\times^{\rm Note \; 1}$	Master	SI11	P37	SCK11	P02/
											reception			(output)	INTP5
1	1	0	$\times^{\rm Note \; 1}$	$\times^{\rm Note \; 1}$	0	0	0	1	$\times^{\rm Note \; 1}$	$\times^{\rm Note \; 1}$	Master	P36	SO11	SCK11	P02/
											transmission			(output)	INTP5
1	1	0	1	×	0	0	0	1	$\times^{\rm Note \; 1}$	$\times^{\rm Note \; 1}$	Master	SI11	SO11	SCK11	P02/
											transmission/			(output)	INTP5
											reception				

(d) Serial interface CSI11 (78K0/KA2-L (25-pin and 32-pin products))

Notes 1. Can be set as port function.

2. To use P37/SCK11 as port pins, clear CKP11 to 0.

3. To use the slave mode, set CKS112, CKS111, and CKS110 to 1, 1, 1.

Remark ×: don't care

Bit 7 of serial operation mode register 11 (CSIM11)
Bit 6 of CSIM11
Bit 4 of serial clock selection register 11 (CSIC11)
Bits 2 to 0 of CSIC11
Port mode register
Port output latch

(2) Communication operation

In the 3-wire serial I/O mode, data is transmitted or received in 8-bit units. Each bit of the data is transmitted or received in synchronization with the serial clock.

Data can be transmitted or received if bit 6 (TRMD1n) of serial operation mode register 1n (CSIM1n) is 1. Transmission/reception is started when a value is written to transmit buffer register 1n (SOTB1n). In addition, data can be received when bit 6 (TRMD1n) of serial operation mode register 1n (CSIM1n) is 0.

Reception is started when data is read from serial I/O shift register 1n (SIO1n).

However, communication is performed as follows if bit 5 (SSE11) of CSIM11 is 1 when serial interface CSI11 is in the slave mode.

- <1> Low level input to the SSI11 pin
 - → Transmission/reception is started when SOTB11 is written, or reception is started when SIO11 is read.
- <2> High level input to the $\overline{SSI11}$ pin
 - → Transmission/reception or reception is held, therefore, even if SOTB11 is written or SIO11 is read, transmission/reception or reception will not be started.
- <3> Data is written to SOTB11 or data is read from SIO11 while a high level is input to the SSI11 pin, then a low level is input to the SSI11 pin
 - \rightarrow Transmission/reception or reception is started.
- <4> A high level is input to the SSI11 pin during transmission/reception or reception
 - \rightarrow Transmission/reception or reception is suspended.

After communication has been started, bit 0 (CSOT1n) of CSIM1n is set to 1. When communication of 8-bit data has been completed, a communication completion interrupt request flag (CSIIF1n) is set, and CSOT1n is cleared to 0. Then the next communication is enabled.

- Cautions 1. Do not access the control register and data register when CSOT1n = 1 (during serial communication).
 - 2. When using serial interface CSI11, wait for the duration of at least one clock before the clock operation is started to change the level of the SSI11 pin in the slave mode; otherwise, malfunctioning may occur.
- Remarks 1.
 78K0/KA2-L (25, 32-pin products):
 n = 1

 78K0/KB2-L:
 n = 0

 78K0/KC2-L:
 n = 0, 1
 - 2. The SSI11 pin is available only in 78K0/KA2-L (25, 32-pin products) and 78K0/KC2-L (48-pin products).

		(4/4)					
Page	Description	Classification					
CHAPTER 25	FLASH MEMORY						
p.712	Change of Remark in 25.8 Flash Memory Programming by Self Programming	(e)					
CHAPTER 26 ON-CHIP DEBUG FUNCTION							
p.718	Addition of Caution 2 in 26.1 Connecting QB-MINI2 to 78K0/Kx2-L Microcontrollers	(C)					
p.720	Addition of Figure 26-1. Connection Example of QB-MINI2 and 78K0/Ix2 Microcontrollers (2/3)	(c)					

Remark "Classification" in the above table classifies revisions as follows.

(a): Error correction, (b): Addition/change of specifications, (c): Addition/change of description or note, (d): Addition/change of package, part number, or management division, (e): Addition/change of related documents

