
E. Renesas Electronics America Inc - UPD78F0582GB-GAF-AX Datasheet

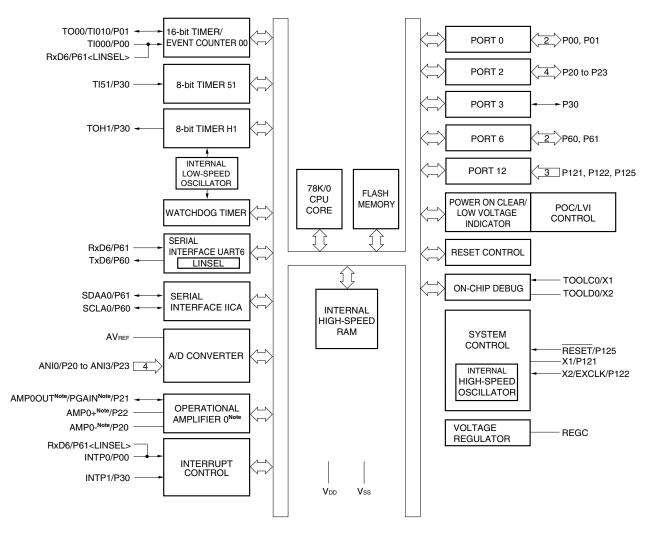
Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details


Detalls	
Product Status	Active
Core Processor	78K/0
Core Size	8-Bit
Speed	10MHz
Connectivity	3-Wire SIO, I ² C, LINbus, UART/USART
Peripherals	LVD, POR, PWM, WDT
Number of I/O	33
Program Memory Size	16KB (16K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	768 x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 5.5V
Data Converters	A/D 11x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	44-LQFP
Supplier Device Package	-
Purchase URL	https://www.e-xfl.com/product-detail/renesas-electronics-america/upd78f0582gb-gaf-ax

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

1.4 Block Diagram

1.4.1 78K0/KY2-L

Note µPD78F0555, 78F0556, 78F0557 (products with operational amplifier) only

- Cautions 1. Vss functions alternately as the ground potential of the A/D converter. Be sure to connect Vss to a stabilized GND (= 0 V).
 - 2. Connect the REGC pin to Vss via a capacitor (0.47 to 1 μ F).
 - 3. ANI0/P20/AMP0-, ANI1/P21/AMP0OUT/PGAIN, ANI2/P22/AMP0+, and ANI3/P23 are set in the analog input mode after release of reset.
 - 4. RESET/P125 immediately after release of reset is set in the external reset input.

(1) Port mode

P20 to P27 function as an I/O port. P20 to P27 can be set to input or output port in 1-bit units using port mode register 2 (PM2).

(2) Control mode

P20 to P27 function as A/D converter analog input, operational amplifier I/O, and PGA input.

(a) ANI0 to ANI7

These are A/D converter analog input pins. When using these pins as analog input pins, refer to (5) ANI0/P20 to ANI7/P27 and ANI8/P10 to ANI10/P12 in 12.6 Cautions for A/D Converter.

(b) AMP0+, AMP0-

These are operational amplifier 0 input pins.

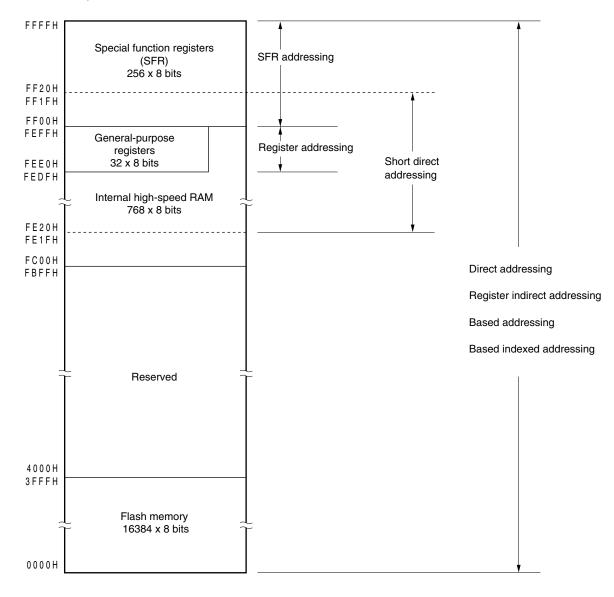
(c) AMPOOUT

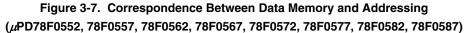
This is an operational amplifier 0 output pin.

(d) PGAIN

This is a PGA (Programmable gain amplifier) input pin.

Caution ANI0/P20 to ANI7/P27 are set in the analog input mode after release of reset.


2.2.4 P30 to P37 (port 3)


P30 to P37 function as an I/O port. These pins also function as pins for external interrupt request input, timer I/O, clock input and data I/O for flash memory programmer/on-chip debugger, and clock I/O and data I/O for serial interface.

The timer I/O can be assigned to P34 of the 78K0/KA2-L (25-pin and 32-pin products) by setting the port alternate switch control register (MUXSEL).

<r></r>	78K0/KY2-L (μPD78F055x)		78K0/KA2-L (μPD78F056x)		78K0/KB2-L (µPD78F057x)		78K0/KC2-L (μPD78F058x)	
	16 Pins	20 Pins	25 Pins	32 Pins	30 Pins	40 Pins	44 Pins	48 Pins
	P30/TOH1/ TI51/INTP1			_	P30/INTP1	P30/INTP1	P30/INTP1	P30/INTP1
	-	P31/INTP2/ TOOLC1	P31/INTP2/ TOOLC1	P31/INTP2/ TOOLC1	P31/INTP2/ TOOLC1	P31/INTP2/ TOOLC1	P31/INTP2/ TOOLC1	P31/INTP2/ TOOLC1
	-	P32/INTP3/ TOOLD1	P32/INTP3/ TOOLD1	P32/INTP3/ TOOLD1	P32/INTP3/ TOOLD1	P32/INTP3/ TOOLD1	P32/INTP3/ TOOLD1	P32/INTP3/ TOOLD1
	_	– – P33 – – P34/INTP4 (/TOH1) (/TI51)		P33	P33/TI51/ TO51/INTP4	P33/TI51/ TO51/INTP4	P33/TI51/ TO51/INTP4	P33/TI51/ TO51/INTP4
	_			P34/INTP4 (/TOH1)	_	_	_	_
	_	_	P35/SCK11	P35/SCK11	-	-	-	_
	_	_	P36/SI11	P36/SI11	-	_	_	_
	_	_	P37/SO11	P37/SO11	=	_	_	_

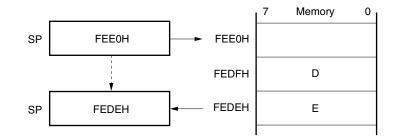
3.4.9 Stack addressing

[Function]

The stack area is indirectly addressed with the stack pointer (SP) contents.

This addressing method is automatically employed when the PUSH, POP, subroutine call and return instructions are executed or the register is saved/reset upon generation of an interrupt request.

With stack addressing, only the internal high-speed RAM area can be accessed.


[Description example]

PUSH DE; when saving DE register

Operation code

1 0 1 1 0 1 0 1

[Illustration]

Function Name	I/O	Function	After Reset	Alternate Function		
P00	I/O	Port 0.	Input port	TI000		
P01		2-bit I/O port. Input/output can be specified in 1-bit units. Use of an on-chip pull-up resistor can be specified by a software setting.		TI010/TO00		
P10	I/O	Port 1.	Input port	ANI8/AMP1- ^{Note} /SCK10		
P11		8-bit I/O port.		ANI9/AMP1OUT ^{Note} /SI10		
P12		Input/output can be specified in 1-bit units. Use of an on-chip pull-up resistor can be specified by a software setting.		ANI10/AMP1+ ^{Note} / SO10		
P13				TxD6		
P14				RxD6		
P15				ТОН0		
P16				TOH1/INTP5		
P17				TI50/TO50		
P20	I/O	Port 2.	Analog input	ANI0/AMP0- ^{Note}		
P21				4-bit I/O port. Input/output can be specified in 1-bit units.		ANI1/AMP0OUT ^{Note} / PGAIN ^{Note}
P22				ANI2/AMP0+ ^{Note}		
P23				ANI3		
P30	I/O	Port 3.	Input port	INTP1		
P31		4-bit I/O port. Input/output can be specified in 1-bit units.		INTP2/TOOLC1		
P32		Use of an on-chip pull-up resistor can be specified by a		INTP3/TOOLD1		
P33		software setting.		TI51/TO51/INTP4		
P60	I/O	Port 6.	Input port	SCLA0/INTP11		
P61		 2-bit I/O port. Input/output can be specified in 1-bit units. Input can be set to SMBus input buffer in 1-bit units. Output can be set to N-ch open-drain output (V_{DD} tolerance). Use of an on-chip pull-up resistor can be specified by a software setting. 		SDAA0/INTP10		
P120	I/O	Port 12.	Input port	EXLVI/INTP0		
P121	Input	1-bit I/O port and 3-bit input port.		X1/TOOLC0		
P122		For only P120 and P125, use of an on-chip pull-up resistor can be specified by a software setting.		X2/EXCLK/TOOLD0		
P125			Reset input	RESET		

Table 4-5. Port	Functions	(78K0/KB2-L)
-----------------	-----------	--------------

Note μ PD78F0576, 78F0577, and 78F0578 (products with operational amplifier) only

Table 5-6. CPU Clock Transition and SFR Register Setting Examples (4/4)

(9) CPU clock changing from subsystem clock (D) to high-speed system clock (C)^{Note}

Note 78K0/KC2-L only

(Setting sequence of SFR registers)							
Setting Flag of SFR Register	EXCLK	OSCSEL	MSTOP	OSTC	XSEL ^{Note}	MCM0	CSS
Status Transition				Register			
$(D) \rightarrow (C) (X1 \text{ clock})$	0	1	0	Must be checked	1	1	0
(D) \rightarrow (C) (external main system clock)	1	1	0	Must not be checked	1	1	0
	\sum		$ \int $	\sim		\longrightarrow	
	Unnecessary if these		Unnecessary if the			sary if this	

registers are already set

CPU is operating with

the high-speed system clock

register is already set

Note The value of this flag can be changed only once after a reset release. This setting is not necessary if it has already been set.

Caution Set the clock after the supply voltage has reached the operable voltage of the clock to be set (refer to CHAPTER 28 ELECTRICAL SPECIFICATIONS).

(10) • HALT mode (E) set while CPU is operating with internal high-speed oscillation clock (B)

- HALT mode (F) set while CPU is operating with high-speed system clock (C)
- HALT mode (G) set while CPU is operating with subsystem clock (D)^{Note}

Status Transition	Setting
$ \begin{array}{l} (B) \to (E) \\ (C) \to (F) \\ (D) \to (G)^{Note} \end{array} $	Executing HALT instruction

Note 78K0/KC2-L only

(11) • STOP mode (H) set while CPU is operating with internal high-speed oscillation clock (B) • STOP mode (I) set while CPU is operating with high-speed system clock (C)

_	(Setting sequence)		►		
	Status Transition	Setting			
	$\begin{array}{l} (B) \to (H) \\ (C) \to (I) \end{array}$	Stopping peripheral functions that cannot operate in STOP mode	Executing STOP instruction		

<R>

Note When transitioning to the STOP mode, it is possible to achieve low power consumption by setting RMC = 56H first.

Remarks 1. (A) to (I) in Table 5-6 correspond to (A) to (I) in Figures 5-18 and 5-19.

2. EXCLK, OSCSEL:	Bits 7 and 6 of the clock operation mode select register (OSCCTL)
MSTOP:	Bit 7 of the main OSC control register (MOC)
XSEL, MCM0:	Bits 2 and 0 of the main clock mode register (MCM)
CSS:	Bit 4 of the processor clock control register (PCC)

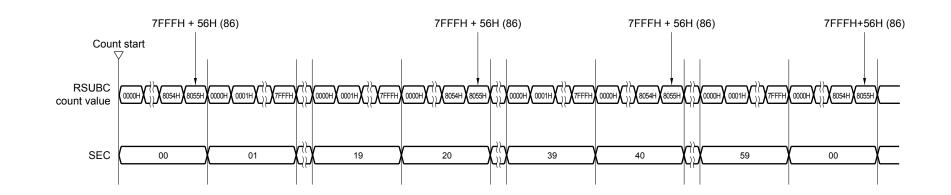
6.3 Registers Controlling 16-Bit Timer/Event Counter 00

Registers used to control 16-bit timer/event counter 00 are shown below.

- 16-bit timer mode control register 00 (TMC00)
- Capture/compare control register 00 (CRC00)
- 16-bit timer output control register 00 (TOC00)
- Prescaler mode register 00 (PRM00)
- Port alternate switch control register (MUXSEL)
- Port mode register 0 (PM0)
- Port register 0 (P0)

(1) 16-bit timer mode control register 00 (TMC00)

TMC00 is an 8-bit register that sets the 16-bit timer/event counter 00 operation mode, TM00 clear mode, and output timing, and detects an overflow.


Rewriting TMC00 is prohibited during operation (when TMC003 and TMC002 = other than 00). However, it can be changed when TMC003 and TMC002 are cleared to 00 (stopping operation) and when OVF00 is cleared to 0.

TMC00 can be set by a 1-bit or 8-bit memory manipulation instruction.

Reset signal generation clears TMC00 to 00H.

Caution 16-bit timer/event counter 00 starts operation at the moment TMC003 and TMC002 are set to values other than 00 (operation stop mode), respectively. Set TMC003 and TMC002 to 00 to stop the operation.

Figure 10-27. Operation when (DEV, F6, F5, F4, F3, F2, F1, F0) = (0, 0, 1, 0, 1, 1, 0, 0)

78K0/Kx2-L

						78K0/KC2-L μPD78F058×			
<r></r>		16 Pins	20 Pins	25 Pins	32 Pins	30 Pins	40 Pins	44 Pins	48 Pins
	10-bit A/D converter	4 ch	6 ch	7 ch	11 ch	7 ch	10 ch	11 ch	11 ch

CHAPTER 12 A/D CONVERTER

12.1 Function of A/D Converter

The A/D converter converts an analog input signal into a digital value, and consists of up to 11 channels (ANI0 to ANI10) with a resolution of 10 bits.

In products with operational amplifier, ANI1 function alternately as operational amplifier 0 output (AMP0OUT) and ANI9 function alternately as operational amplifier 1 output (AMP1OUT). This enables using operational amplifiers 0 and 1 output or PGA output as an analog input source.

The A/D converter has the following function.

• 10-bit resolution A/D conversion

10-bit resolution A/D conversion is carried out repeatedly for one analog input channel selected from ANI0 to ANI10, operational amplifiers 0 and 1 output, and PGA output. Each time an A/D conversion operation ends, an interrupt request (INTAD) is generated.

(13) Bus status detector

This circuit detects whether or not the bus is released by detecting start conditions and stop conditions. However, as the bus status cannot be detected immediately following operation, the initial status is set by the STCEN bit.

 Remark
 STT0 bit:
 Bit 1 of IICA control register 0 (IICACTL0)

 SPT0 bit:
 Bit 0 of IICA control register 0 (IICACTL0)

 IICRSV bit:
 Bit 0 of IICA flag register 0 (IICAF0)

 IICBSY bit:
 Bit 6 of IICA flag register 0 (IICAF0)

 STCF bit:
 Bit 7 of IICA flag register 0 (IICAF0)

 STCEN bit:
 Bit 1 of IICA flag register 0 (IICAF0)

15.3 Registers Controlling Serial Interface IICA

Serial interface IICA is controlled by the following ten registers.

- IICA control register 0 (IICACTL0)
- IICA status register 0 (IICAS0)
- IICA flag register (IICAF0)
- IICA control register 1 (IICACTL1)
- IICA low-level width setting register (IICWL)
- IICA high-level width setting register (IICWH)
- Port input mode register 6 (PIM6)
- Port output mode register 6 (POM6)
- Port mode register 6 (PM6)
- Port register 6 (P6)

(1) IICA control register 0 (IICACTL0)

This register is used to enable/stop I²C operations, set wait timing, and set other I²C operations.

This register can be set by a 1-bit or 8-bit memory manipulation instruction. However, set the SPIE0, WTIM0, and ACKE0 bits while IICE0 = 0 or during the wait period. These bits can be set at the same time when the IICE0 bit is set from "0" to "1".

Reset signal generation clears this register to 00H.

15.4 I²C Bus Mode Functions

15.4.1 Pin configuration

The serial clock pin (SCLA0) and serial data bus pin (SDAA0) are configured as follows.

- (1) SCLA0 This pin is used for serial clock input and output.
- This pin is an N-ch open-drain output for both master and slave devices. Input is Schmitt input. (2) SDAA0 This pin is used for serial data input and output.

This pin is an N-ch open-drain output for both master and slave devices. Input is Schmitt input.

Since outputs from the serial clock line and the serial data bus line are N-ch open-drain outputs, an external pull-up resistor is required.

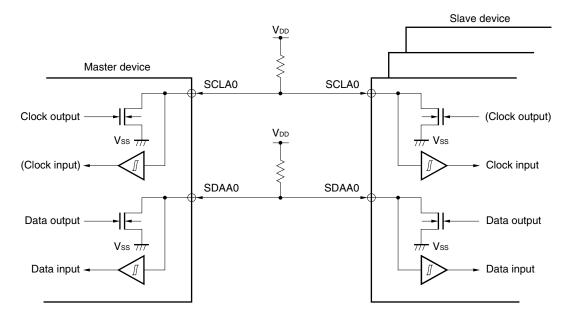


Figure 15-14. Pin Configuration Diagram

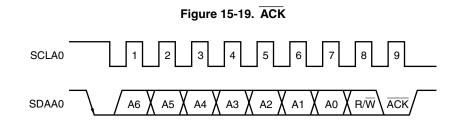
15.5.4 Acknowledge (ACK)

ACK is used to check the status of serial data at the transmission and reception sides.

The reception side returns \overline{ACK} each time it has received 8-bit data.

The transmission side usually receives \overline{ACK} after transmitting 8-bit data. When \overline{ACK} is returned from the reception side, it is assumed that reception has been correctly performed and processing is continued. Whether \overline{ACK} has been detected can be checked by using bit 2 (ACKD0) of the IICA status register 0 (IICAS0).

When the master receives the last data item, it does not return \overrightarrow{ACK} and instead generates a stop condition. If a slave does not return \overrightarrow{ACK} after receiving data, the master outputs a stop condition or restart condition and stops transmission. If \overrightarrow{ACK} is not returned, the possible causes are as follows.

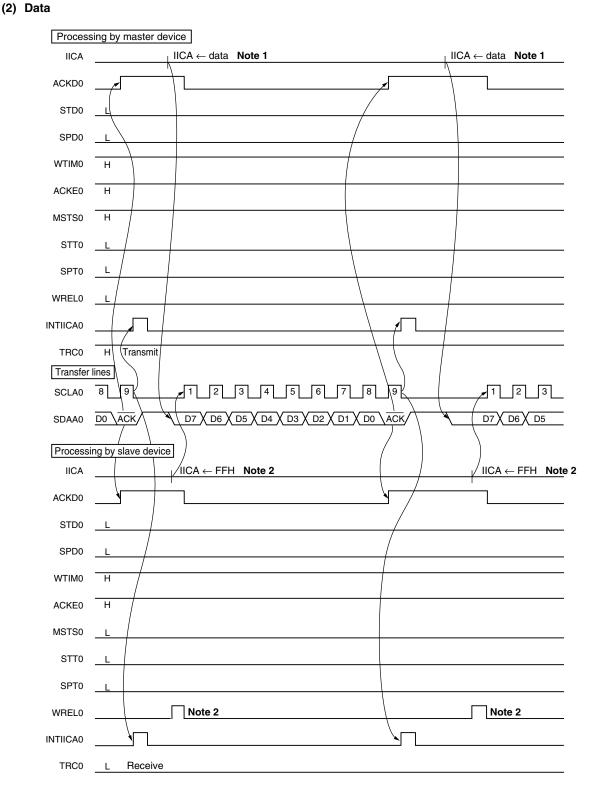

- <1> Reception was not performed normally.
- <2> The final data item was received.
- <3> The reception side specified by the address does not exist.

To generate ACK, the reception side makes the SDAA0 line low at the ninth clock (indicating normal reception).

Automatic generation of \overline{ACK} is enabled by setting bit 2 (ACKE0) of IICA control register 0 (IICACTL0) to 1. Bit 3 (TRC0) of the IICAS0 register is set by the data of the eighth bit that follows 7-bit address information. Usually, set ACKE0 to 1 for reception (TRC0 = 0).

If a slave can receive no more data during reception (TRC0 = 0) or does not require the next data item, then the slave must inform the master, by clearing ACKE0 to 0, that it will not receive any more data.

When the master does not require the next data item during reception (TRC0 = 0), it must clear ACKE0 to 0 so that \overline{ACK} is not generated. In this way, the master informs a slave at the transmission side that it does not require any more data (transmission will be stopped).


When the local address is received, \overline{ACK} is automatically generated, regardless of the value of the ACKE0 bit. When an address other than that of the local address is received, \overline{ACK} is not generated (NACK).

When an extension code is received, ACK is generated if the ACKE0 bit is set to 1 in advance.

How ACK is generated when data is received differs as follows depending on the setting of the wait timing.

- When 8-clock wait state is selected (bit 3 (WTIM0) of IICACTL0 register = 0): By setting the ACKE0 bit to 1 before releasing the wait state, \overline{ACK} is generated at the falling edge of the eighth clock of the SCLA0 pin.
- When 9-clock wait state is selected (bit 3 (WTIM0) of IICACTL0 register = 1): ACK is generated by setting the ACKE0 bit to 1 in advance.

Figure 15-33. Example of Master to Slave Communication (When 9-Clock Wait Is Selected for Both Master and Slave) (2/3)

Notes 1. Write data to IICA, not setting WREL0, in order to cancel a wait state during master transmission.2. To cancel slave wait, write "FFH" to IICA or set WREL0.

RENESAS

<R>

Figure 17-4. Format of Interrupt Request Flag Registers (IF0L, IF0H, IF1L, IF1H) (78K0/KA2-L (25-pin and 32-pin products))

Address: FFI	E0H After r	eset: 00H R/	W					
Symbol	<7>	<6>	<5>	<4>	<3>	2	<1>	<0>
IFOL	SREIF6	PIF5	PIF4	PIF3	PIF2	0	PIF0	LVIIF
Address: FFI	E1H After r	eset: 00H F	R/W					
Symbol	<7>	<6>	5	4	<3>	<2>	<1>	<0>
IF0H	TMIF010	TMIF000	0	0	TMIFH1	CSIIF11	STIF6	SRIF6
Address: FFI	E2H After r	eset: 00H F	R/W					
Symbol	7	6	5	4	<3>	2	1	<0>
IF1L	0	0	0	0	TMIF51	0	0	ADIF
Address: FFI	E3H After r	eset: 00H F	R/W					
Symbol	7	6	5	4	3	2	1	<0>
IF1H	0	0	0	0	0	0	0	IICAIF0
	XXIFX	X Interrupt request flag						
	0	No interrupt	request signa	l is generated				
	1	Interrupt req	uest is genera	ated, interrupt	request statu	S		

Caution Be sure to clear bit 2 of IF0L, bits 4 and 5 of IF0H, bits 1, 2, 4 to 7 of IF1L, and bits 1 to 7 of IF1H to 0.

Figure 17-10. Format of Interrupt Mask Flag Registers (MK0L, MK0H, MK1L, MK1H) (78K0/KA2-L (20-pin products))

Address: FF	E4H After re	eset: FFH	R/W					
Symbol	<7>	6	5	<4>	<3>	<2>	<1>	<0>
MK0L	SREMK6	1	1	PMK3	PMK2	PMK1	PMK0	LVIMK
Address: FF	E5H After r	eset: FFH	R/W					
Symbol	<7>	<6>	5	4	<3>	2	<1>	<0>
МК0Н	TMMK010	TMMK000	1	1	TMMKH1	1	STMK6	SRMK6
Address: FF	E6H After r	eset: FFH	R/W					
Symbol	7	6	5	4	<3>	2	1	<0>
MK1L	1	1	1	1	TMMK51	1	1	ADMK
Address: FF	Έ7Η After r	eset: FFH	R/W					
Symbol	7	6	5	4	3	2	1	<0>
MK1H	, 1	1	1	1	1	1	1	IICAMK0
	XXMKX			Interr	upt servicing c	ontrol		
	0	Interrupt ser	vicing enabled	k				
	1	Interrupt ser	vicing disable	d				

Caution Be sure to set bits 5 and 6 of MK0L, bits 2, 4 and 5 of MK0H, bits 1, 2, 4 to 7 of MK1L, and bits 1 to 7 of MK1H to 1.

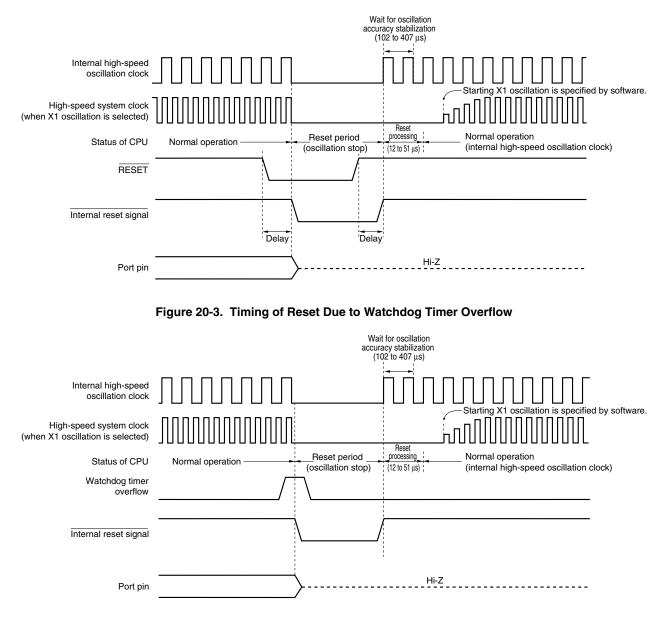
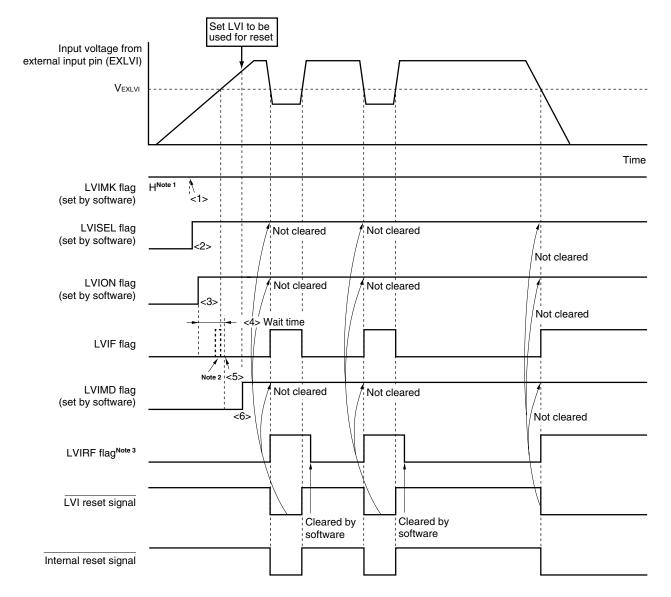
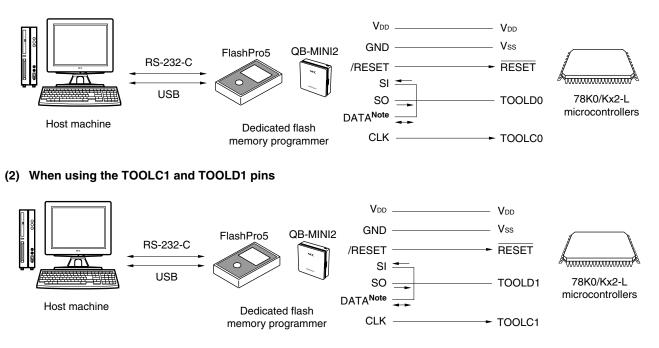



Figure 20-2. Timing of Reset by RESET Input

Caution A watchdog timer internal reset resets the watchdog timer.

Figure 22-7. Timing of Low-Voltage Detector Internal Reset Signal Generation (Bit: LVISEL = 1)

- Notes 1. The LVIMK flag is set to "1" by reset signal generation.
 - 2. The LVIIF flag of the interrupt request flag registers and the LVIF flag may be set (1).
 - 3. LVIRF is bit 0 of the reset control flag register (RESF). For details of RESF, refer to CHAPTER 20 RESET FUNCTION.
- Remark <1> to <6> in Figure 22-7 above correspond to <1> to <6> in the description of "When starting operation" in 22.4.1 (2) When detecting level of input voltage from external input pin (EXLVI).



25.3 Programming Environment

The environment required for writing a program to the flash memory of the 78K0/Kx2-L microcontrollers are illustrated below.

Figure 25-2. Environment for Writing Program to Flash Memory

(1) When using the TOOLC0 and TOOLD0 pins

Note QB-MINI2 only

A host machine that controls the dedicated flash memory programmer is necessary.

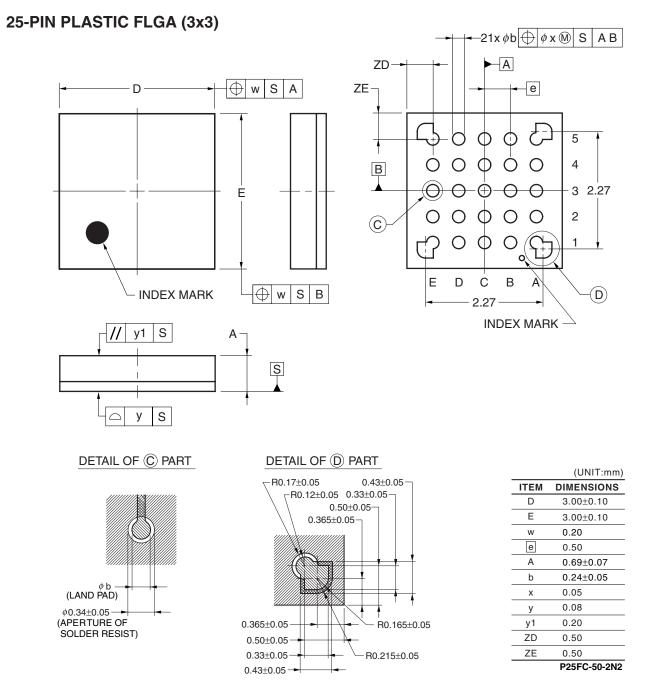
To interface between the dedicated flash memory programmer and the 78K0/Kx2-L microcontrollers, the TOOLD0 or TOOLD1 pins is used for manipulation such as writing and erasing via a dedicated single-line UART. To write the flash memory off-board, a dedicated program adapter (FA series) is necessary.

Table 25-2. Pin Connection

	Dedica	78K0/Kx2-L microcontrollers	
Signal Name	I/O	Pin Function	Pin Name
CLK	Output	Clock output to 78K0/Kx2-L microcontrollers	TOOLC0/TOOLC1
SI	Input	Receive signal	TOOLD0/TOOLD1
SO	Output	Transmit signal	
DATA ^{Note}	I/O	Input/output signal for data communication during debugging	
/RESET	Output	Reset signal	RESET
VDD	I/O	VDD voltage generation/power monitoring	Vdd
GND	_	Ground	Vss

Note QB-MINI2 only

Instruction Group	Mnemonic	Operands	Bytes	Clocks			Flag		g
				Note 1	Note 2	Operation		AC	C
16-bit operation	ADDW	AX, #word	3	6	-	AX, CY \leftarrow AX + word	×	×	×
	SUBW	AX, #word	3	6	-	AX, CY \leftarrow AX – word	×	×	×
	CMPW	AX, #word	3	6	-	AX – word	×	×	×
Multiply/ divide	MULU	x	2	16	-	$AX \leftarrow A \times X$			
	DIVUW	С	2	25	-	AX (Quotient), C (Remainder) \leftarrow AX ÷ C			
Increment/ decrement	INC	r	1	2	-	r ← r + 1	×	×	
		saddr	2	4	6	$(saddr) \leftarrow (saddr) + 1$	×	×	
	DEC	r	1	2	_	r ← r – 1	×	×	
		saddr	2	4	6	$(saddr) \leftarrow (saddr) - 1$	×	×	
	INCW	rp	1	4	-	$rp \leftarrow rp + 1$			
	DECW	rp	1	4	-	rp ← rp – 1			
Rotate	ROR	A, 1	1	2	-	$(CY, A_7 \leftarrow A_0, A_{m-1} \leftarrow A_m) \times 1$ time			х
	ROL	A, 1	1	2	-	$(CY, A_0 \leftarrow A_7, A_{m+1} \leftarrow A_m) \times 1$ time			х
	RORC	A, 1	1	2	_	$(CY \leftarrow A_0, A_7 \leftarrow CY, A_{m-1} \leftarrow A_m) \times 1$ time			×
	ROLC	A, 1	1	2	-	$(CY \leftarrow A_7, A_0 \leftarrow CY, A_{m+1} \leftarrow A_m) \times 1$ time			×
	ROR4	[HL]	2	10	12	A ₃₋₀ ← (HL) ₃₋₀ , (HL) ₇₋₄ ← A ₃₋₀ , (HL) ₃₋₀ ← (HL) ₇₋₄			
	ROL4	[HL]	2	10	12	$A_{3-0} \leftarrow (HL)_{7-4}, (HL)_{3-0} \leftarrow A_{3-0}, \\ (HL)_{7-4} \leftarrow (HL)_{3-0}$			
BCD adjustment	ADJBA		2	4	_	Decimal Adjust Accumulator after Addition	×	×	×
	ADJBS		2	4	_	Decimal Adjust Accumulator after Subtract	×	×	×
Bit manipulate	MOV1	CY, saddr.bit	3	6	7	$CY \leftarrow (saddr.bit)$			×
		CY, sfr.bit	3	-	7	CY ← sfr.bit			×
		CY, A.bit	2	4	-	CY ← A.bit			×
		CY, PSW.bit	3	-	7	CY ← PSW.bit			×
		CY, [HL].bit	2	6	7	$CY \leftarrow (HL).bit$			×
		saddr.bit, CY	3	6	8	(saddr.bit) ← CY			
		sfr.bit, CY	3	-	8	sfr.bit ← CY			
		A.bit, CY	2	4	_	A.bit ← CY			
		PSW.bit, CY	3	-	8	PSW.bit ← CY	×	×	
		[HL].bit, CY	2	6	8	(HL).bit ← CY			


Notes 1. When the internal high-speed RAM area is accessed or for an instruction with no data access

2. When an area except the internal high-speed RAM area is accessed

Remarks 1. One instruction clock cycle is one cycle of the CPU clock (fcPu) selected by the processor clock control register (PCC).

2. This clock cycle applies to the internal ROM program.

<R> • μPD78F0560FC-2N2-A, 78F0561FC-2N2-A, 78F0562FC-2N2-A, 78F0565FC-2N2-A, 78F0566FC-2N2-A, 78F0567FC-2N2-A

