
Microchip Technology - AT32UC3C2128C-Z2ZT Datasheet

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated
circuits designed to perform specific tasks within larger
systems. These microcontrollers are essentially compact
computers on a single chip, containing a processor core,
memory, and programmable input/output peripherals.
They are called "embedded" because they are embedded
within electronic devices to control various functions,
rather than serving as standalone computers.
Microcontrollers are crucial in modern electronics,
providing the intelligence and control needed for a wide
range of applications.

Applications of "Embedded -
Microcontrollers"

Embedded microcontrollers are used in virtually every
sector of electronics, providing the necessary control and
processing power for a multitude of applications. In
consumer electronics, they manage the operations of
smartphones, home appliances, and wearable devices. In
automotive systems, microcontrollers control engine
functions, safety features, and infotainment systems.
Industrial applications rely on microcontrollers for
automation, robotics, and process control. Additionally,
microcontrollers are integral in medical devices, handling
functions such as monitoring, diagnostics, and control of
therapeutic equipment. Their versatility and
programmability make them essential components in
creating efficient, responsive, and intelligent electronic
systems.

Common Subcategories of "Embedded -
Microcontrollers"

Embedded microcontrollers can be categorized based on
their architecture, performance, and application focus.
Common subcategories include 8-bit, 16-bit, and 32-bit
microcontrollers, differentiated by their processing power
and memory capacity. 8-bit microcontrollers are typically
used in simple applications like basic control systems and
small devices. 16-bit microcontrollers offer a balance
between performance and complexity, suitable for
medium-scale applications like industrial automation. 32-
bit microcontrollers provide high performance and are
used in complex applications requiring advanced
processing, such as automotive systems and sophisticated
consumer electronics. Each subcategory serves a specific
range of applications, providing tailored solutions for
different performance and complexity needs.

Types of "Embedded - Microcontrollers"

There are various types of embedded microcontrollers,
each designed to meet specific application requirements.
General-purpose microcontrollers are versatile and used in
a wide range of applications, offering a balance of
performance, memory, and peripheral options. Special-
purpose microcontrollers are tailored for specific tasks,
such as automotive controllers, which include features like
built-in motor control peripherals and automotive-grade

Details

Product Status Active

Core Processor AVR

Core Size 32-Bit Single-Core

Speed 66MHz

Connectivity CANbus, Ethernet, I²C, IrDA, LINbus, SPI, UART/USART, USB

Peripherals Brown-out Detect/Reset, DMA, I²S, POR, PWM, WDT

Number of I/O 45

Program Memory Size 128KB (128K x 8)

Program Memory Type FLASH

EEPROM Size -

RAM Size 32K x 8

Voltage - Supply (Vcc/Vdd) 3V ~ 5.5V

Data Converters A/D 11x12b; D/A 2x12b

Oscillator Type Internal

Operating Temperature -40°C ~ 125°C (TA)

Mounting Type Surface Mount

Package / Case 64-VFQFN Exposed Pad

Supplier Device Package 64-QFN (9x9)

Purchase URL https://www.e-xfl.com/product-detail/microchip-technology/at32uc3c2128c-z2zt

Email: info@E-XFL.COM Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

https://www.e-xfl.com/product/pdf/at32uc3c2128c-z2zt-4435877
https://www.e-xfl.com
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers

14
9166DS–AVR-01/12

AT32UC3C

33 51 73 PC02 66 VDDIO2 x1
TWIMS0 -

TWD
SPI0 -

NPCS[3]
USART2 -

RXD
TC1 -
CLK1

MACB -
MDC

34 52 74 PC03 67 VDDIO2 x1
TWIMS0 -

TWCK
EIC -

EXTINT[1]
USART2 -

TXD TC1 - B1
MACB -
MDIO

37 55 77 PC04 68 VDDIO2 x1
TWIMS1 -

TWD
EIC -

EXTINT[3]
USART2 -

TXD TC0 - B1

38 56 78 PC05 69 VDDIO2 x1
TWIMS1 -

TWCK
EIC -

EXTINT[4]
USART2 -

RXD TC0 - A2

57 79 PC06 70 VDDIO2 x1

PEVC -
PAD_EVT

[15]
USART2 -

CLK
USART2 -

CTS
TC0 -
CLK2

TWIMS2 -
TWD

TWIMS0 -
TWALM

58 80 PC07 71 VDDIO2 x1

PEVC -
PAD_EVT

[2]
EBI -

NCS[3]
USART2 -

RTS TC0 - B2
TWIMS2 -

TWCK
TWIMS1 -
TWALM

81 PC08 72 VDDIO2 x1/x2

PEVC -
PAD_EVT

[13]
SPI1 -

NPCS[1]
EBI -

NCS[0]
USART4 -

TXD

82 PC09 73 VDDIO2 x1/x2

PEVC -
PAD_EVT

[14]
SPI1 -

NPCS[2]
EBI -

ADDR[23]
USART4 -

RXD

83 PC10 74 VDDIO2 x1/x2

PEVC -
PAD_EVT

[15]
SPI1 -

NPCS[3]
EBI -

ADDR[22]

59 84 PC11 75 VDDIO2 x1/x2
PWM -

PWMH[3]
CANIF -

RXLINE[1]
EBI -

ADDR[21]
TC0 -
CLK0

60 85 PC12 76 VDDIO2 x1/x2
PWM -

PWML[3]
CANIF -

TXLINE[1]
EBI -

ADDR[20]
USART2 -

CLK

61 86 PC13 77 VDDIO2 x1/x2
PWM -

PWMH[2]
EIC -

EXTINT[7]
USART0 -

RTS

62 87 PC14 78 VDDIO2 x1/x2
PWM -

PWML[2]
USART0 -

CLK
EBI -

SDCKE
USART0 -

CTS

39 63 88 PC15 79 VDDIO2 x1/x2
PWM -

PWMH[1]
SPI0 -

NPCS[0]
EBI -

SDWE
USART0 -

RXD
CANIF -

RXLINE[1]

40 64 89 PC16 80 VDDIO2 x1/x2
PWM -

PWML[1]
SPI0 -

NPCS[1] EBI - CAS
USART0 -

TXD
CANIF -

TXLINE[1]

41 65 90 PC17 81 VDDIO2 x1/x2
PWM -

PWMH[0]
SPI0 -

NPCS[2] EBI - RAS
IISC -
ISDO

USART3 -
TXD

42 66 91 PC18 82 VDDIO2 x1/x2
PWM -

PWML[0]
EIC -

EXTINT[5]
EBI -

SDA10
IISC -
ISDI

USART3 -
RXD

43 67 92 PC19 83 VDDIO3 x1/x2
PWM -

PWML[2]
SCIF -

GCLK[0]
EBI -

DATA[0]
IISC -
IMCK

USART3 -
CTS

44 68 93 PC20 84 VDDIO3 x1/x2
PWM -

PWMH[2]
SCIF -

GCLK[1]
EBI -

DATA[1]
IISC -
ISCK

USART3 -
RTS

45 69 94 PC21 85 VDDIO3 x1/x2

PWM -
EXT_

FAULTS[0]
CANIF -

RXLINE[0]
EBI -

DATA[2] IISC - IWS

46 70 95 PC22 86 VDDIO3 x1/x2

PWM -
EXT_

FAULTS[1]
CANIF -

TXLINE[0]
EBI -

DATA[3]
USART3 -

CLK

71 96 PC23 87 VDDIO3 x1/x2
QDEC1 -

QEPB
CANIF -

RXLINE[1]
EBI -

DATA[4]

PEVC -
PAD_EVT

[3]

Table 3-1. GPIO Controller Function Multiplexing

TQFP

/

QFN

64

TQFP

100

LQFP

144 PIN

G

P

I
O Supply

Pin
Type

(1)

GPIO function

A B C D E F

17
9166DS–AVR-01/12

AT32UC3C

3.2.2 Peripheral Functions
Each GPIO line can be assigned to one of several peripheral functions. The following table
describes how the various peripheral functions are selected. The last listed function has priority
in case multiple functions are enabled on the same pin.

3.2.3 Oscillator Pinout
The oscillators are not mapped to the normal GPIO functions and their muxings are controlled
by registers in the System Control Interface (SCIF). Please refer to the SCIF chapter for more
information about this.

3.2.4 JTAG port connections
If the JTAG is enabled, the JTAG will take control over a number of pins, irrespectively of the I/O
Controller configuration.

3.2.5 Nexus OCD AUX port connections
If the OCD trace system is enabled, the trace system will take control over a number of pins, irre-
spectively of the GPIO configuration. Three different OCD trace pin mappings are possible,

Table 3-2. Peripheral Functions

Function Description

GPIO Controller Function multiplexing GPIO and GPIO peripheral selection A to F

Nexus OCD AUX port connections OCD trace system

aWire DATAOUT aWire output in two-pin mode

JTAG port connections JTAG debug port

Oscillators OSC0, OSC32

Table 3-3. Oscillator pinout

QFN64/
TQFP64 pin TQFP100 pin LQFP144 pin Pad Oscillator pin

31 47 69 PB30 xin0

99 143 PB02 xin1

62 96 140 PB00 xin32

32 48 70 PB31 xout0

100 144 PB03 xout1

63 97 141 PB01 xout32

Table 3-4. JTAG pinout

QFN64/
TQFP64 pin TQFP100 pin LQFP144 pin Pin name JTAG pin

2 2 2 PA01 TDI

3 3 3 PA02 TDO

4 4 4 PA03 TMS

1 1 1 PA00 TCK

24
9166DS–AVR-01/12

AT32UC3C

3.4 I/O Line Considerations

3.4.1 JTAG pins
The JTAG is enabled if TCK is low while the RESET_N pin is released. The TCK, TMS, and TDI
pins have pull-up resistors when JTAG is enabled. The TCK pin always have pull-up enabled
during reset. The TDO pin is an output, driven at VDDIO1, and has no pull-up resistor. The
JTAG pins can be used as GPIO pins and muxed with peripherals when the JTAG is disabled.
Please refer to Section 3.2.4 for the JTAG port connections.

3.4.2 RESET_N pin
The RESET_N pin integrates a pull-up resistor to VDDIO1. As the product integrates a power-on
reset cell, the RESET_N pin can be left unconnected in case no reset from the system needs to
be applied to the product.

The RESET_N pin is also used for the aWire debug protocol. When the pin is used for debug-
ging, it must not be driven by external circuitry.

3.4.3 TWI pins
When these pins are used for TWI, the pins are open-drain outputs with slew-rate limitation and
inputs with inputs with spike-filtering. When used as GPIO-pins or used for other peripherals, the
pins have the same characteristics as GPIO pins.

3.4.4 GPIO pins
All I/O lines integrate programmable pull-up and pull-down resistors. Most I/O lines integrate
drive strength control, see Table 3-1. Programming of this pull-up and pull-down resistor or this
drive strength is performed independently for each I/O line through the GPIO Controllers.

After reset, I/O lines default as inputs with pull-up/pull-down resistors disabled. After reset, out-
put drive strength is configured to the lowest value to reduce global EMI of the device.

When the I/O line is configured as analog function (ADC I/O, AC inputs, DAC I/O), the pull-up
and pull-down resistors are automatically disabled.

DP USB Device Port Data + Analog

VBUS USB VBUS Monitor and OTG Negociation
Analog
Input

ID ID Pin of the USB Bus Input

VBOF USB VBUS On/off: bus power control port output

Table 3-7. Signal Description List

Signal Name Function Type
Active
Level Comments

26
9166DS–AVR-01/12

AT32UC3C

single cycle. Load and store instructions have several different formats in order to reduce code
size and speed up execution.

The register file is organized as sixteen 32-bit registers and includes the Program Counter, the
Link Register, and the Stack Pointer. In addition, register R12 is designed to hold return values
from function calls and is used implicitly by some instructions.

4.3 The AVR32UC CPU
The AVR32UC CPU targets low- and medium-performance applications, and provides an
advanced On-Chip Debug (OCD) system, no caches, and a Memory Protection Unit (MPU). A
hardware Floating Point Unit (FPU) is also provided through the coprocessor instruction space.
Java acceleration hardware is not implemented.

AVR32UC provides three memory interfaces, one High Speed Bus master for instruction fetch,
one High Speed Bus master for data access, and one High Speed Bus slave interface allowing
other bus masters to access data RAMs internal to the CPU. Keeping data RAMs internal to the
CPU allows fast access to the RAMs, reduces latency, and guarantees deterministic timing.
Also, power consumption is reduced by not needing a full High Speed Bus access for memory
accesses. A dedicated data RAM interface is provided for communicating with the internal data
RAMs.

A local bus interface is provided for connecting the CPU to device-specific high-speed systems,
such as floating-point units and I/O controller ports. This local bus has to be enabled by writing a
one to the LOCEN bit in the CPUCR system register. The local bus is able to transfer data
between the CPU and the local bus slave in a single clock cycle. The local bus has a dedicated
memory range allocated to it, and data transfers are performed using regular load and store
instructions. Details on which devices that are mapped into the local bus space is given in the
CPU Local Bus section in the Memories chapter.

Figure 4-1 on page 27 displays the contents of AVR32UC.

30
9166DS–AVR-01/12

AT32UC3C

4.4 Programming Model

4.4.1 Register File Configuration
The AVR32UC register file is shown below.

Figure 4-3. The AVR32UC Register File

4.4.2 Status Register Configuration
The Status Register (SR) is split into two halfwords, one upper and one lower, see Figure 4-4
and Figure 4-5. The lower word contains the C, Z, N, V, and Q condition code flags and the R, T,
and L bits, while the upper halfword contains information about the mode and state the proces-
sor executes in. Refer to the AVR32 Architecture Manual for details.

Figure 4-4. The Status Register High Halfword

Application

Bit 0

Supervisor

Bit 31

PC

SR

INT0PC

FINTPC
INT1PC

SMPC

R7

R5
R6

R4
R3

R1
R2

R0

Bit 0Bit 31

PC

SR

R12

INT0PC

FINTPC
INT1PC

SMPC

R7

R5
R6

R4

R11

R9
R10

R8

R3

R1
R2

R0

INT0

SP_APP SP_SYS
R12
R11

R9
R10

R8

Exception NMIINT1 INT2 INT3

LRLR

Bit 0Bit 31

PC

SR

R12

INT0PC

FINTPC
INT1PC

SMPC

R7

R5
R6

R4

R11

R9
R10

R8

R3

R1
R2

R0

SP_SYS
LR

Bit 0Bit 31

PC

SR

R12

INT0PC

FINTPC
INT1PC

SMPC

R7

R5
R6

R4

R11

R9
R10

R8

R3

R1
R2

R0

SP_SYS
LR

Bit 0Bit 31

PC

SR

R12

INT0PC

FINTPC
INT1PC

SMPC

R7

R5
R6

R4

R11

R9
R10

R8

R3

R1
R2

R0

SP_SYS
LR

Bit 0Bit 31

PC

SR

R12

INT0PC

FINTPC
INT1PC

SMPC

R7

R5
R6

R4

R11

R9
R10

R8

R3

R1
R2

R0

SP_SYS
LR

Bit 0Bit 31

PC

SR

R12

INT0PC

FINTPC
INT1PC

SMPC

R7

R5
R6

R4

R11

R9
R10

R8

R3

R1
R2

R0

SP_SYS
LR

Bit 0Bit 31

PC

SR

R12

INT0PC

FINTPC
INT1PC

SMPC

R7

R5
R6

R4

R11

R9
R10

R8

R3

R1
R2

R0

SP_SYS
LR

Secure

Bit 0Bit 31

PC

SR

R12

INT0PC

FINTPC
INT1PC

SMPC

R7

R5
R6

R4

R11

R9
R10

R8

R3

R1
R2

R0

SP_SEC
LR

SS_STATUS
SS_ADRF
SS_ADRR
SS_ADR0
SS_ADR1

SS_SP_SYS
SS_SP_APP

SS_RAR
SS_RSR

Bit 31

0 0 0

Bit 16

Interrupt Level 0 Mask
Interrupt Level 1 Mask

Interrupt Level 3 Mask
Interrupt Level 2 Mask

10 0 0 0 1 1 0 0 0 00 0

FE I0M GMM1- D M0 EM I2MDM - M2LC
1SS

Initial value

Bit nameI1M

Mode Bit 0
Mode Bit 1

-

Mode Bit 2
Reserved
Debug State

- I3M

Reserved

Exception Mask

Global Interrupt Mask

Debug State Mask

Secure State

35
9166DS–AVR-01/12

AT32UC3C

relative to EVBA. The autovector offset has 14 address bits, giving an offset of maximum 16384
bytes. The target address of the event handler is calculated as (EVBA | event_handler_offset),
not (EVBA + event_handler_offset), so EVBA and exception code segments must be set up
appropriately. The same mechanisms are used to service all different types of events, including
interrupt requests, yielding a uniform event handling scheme.

An interrupt controller does the priority handling of the interrupts and provides the autovector off-
set to the CPU.

4.5.1 System Stack Issues
Event handling in AVR32UC uses the system stack pointed to by the system stack pointer,
SP_SYS, for pushing and popping R8-R12, LR, status register, and return address. Since event
code may be timing-critical, SP_SYS should point to memory addresses in the IRAM section,
since the timing of accesses to this memory section is both fast and deterministic.

The user must also make sure that the system stack is large enough so that any event is able to
push the required registers to stack. If the system stack is full, and an event occurs, the system
will enter an UNDEFINED state.

4.5.2 Exceptions and Interrupt Requests
When an event other than scall or debug request is received by the core, the following actions
are performed atomically:

1. The pending event will not be accepted if it is masked. The I3M, I2M, I1M, I0M, EM, and
GM bits in the Status Register are used to mask different events. Not all events can be
masked. A few critical events (NMI, Unrecoverable Exception, TLB Multiple Hit, and
Bus Error) can not be masked. When an event is accepted, hardware automatically
sets the mask bits corresponding to all sources with equal or lower priority. This inhibits
acceptance of other events of the same or lower priority, except for the critical events
listed above. Software may choose to clear some or all of these bits after saving the
necessary state if other priority schemes are desired. It is the event source’s respons-
ability to ensure that their events are left pending until accepted by the CPU.

2. When a request is accepted, the Status Register and Program Counter of the current
context is stored to the system stack. If the event is an INT0, INT1, INT2, or INT3, reg-
isters R8-R12 and LR are also automatically stored to stack. Storing the Status
Register ensures that the core is returned to the previous execution mode when the
current event handling is completed. When exceptions occur, both the EM and GM bits
are set, and the application may manually enable nested exceptions if desired by clear-
ing the appropriate bit. Each exception handler has a dedicated handler address, and
this address uniquely identifies the exception source.

3. The Mode bits are set to reflect the priority of the accepted event, and the correct regis-
ter file bank is selected. The address of the event handler, as shown in Table 4-4 on
page 38, is loaded into the Program Counter.

The execution of the event handler routine then continues from the effective address calculated.

The rete instruction signals the end of the event. When encountered, the Return Status Register
and Return Address Register are popped from the system stack and restored to the Status Reg-
ister and Program Counter. If the rete instruction returns from INT0, INT1, INT2, or INT3,
registers R8-R12 and LR are also popped from the system stack. The restored Status Register
contains information allowing the core to resume operation in the previous execution mode. This
concludes the event handling.

41
9166DS–AVR-01/12

AT32UC3C

0xFFFD1000
MDMA Memory DMA - MDMA

0xFFFD1400
USART1

Universal Synchronous/Asynchronous
Receiver/Transmitter - USART1

0xFFFD1800
SPI0 Serial Peripheral Interface - SPI0

0xFFFD1C00
CANIF Control Area Network interface - CANIF

0xFFFD2000
TC0 Timer/Counter - TC0

0xFFFD2400
ADCIFA

ADC controller interface with Touch Screen functionality
- ADCIFA

0xFFFD2800
USART4

Universal Synchronous/Asynchronous
Receiver/Transmitter - USART4

0xFFFD2C00
TWIM2 Two-wire Master Interface - TWIM2

0xFFFD3000
TWIS2 Two-wire Slave Interface - TWIS2

0xFFFE0000
HFLASHC Flash Controller - HFLASHC

0xFFFE1000
USBC USB 2.0 OTG Interface - USBC

0xFFFE2000
HMATRIX HSB Matrix - HMATRIX

0xFFFE2400
SAU Secure Access Unit - SAU

0xFFFE2800
SMC Static Memory Controller - SMC

0xFFFE2C00
SDRAMC SDRAM Controller - SDRAMC

0xFFFE3000
MACB Ethernet MAC - MACB

0xFFFF0000
INTC Interrupt controller - INTC

0xFFFF0400
PM Power Manager - PM

0xFFFF0800
SCIF System Control Interface - SCIF

Table 5-3. Peripheral Address Mapping

51
9166DS–AVR-01/12

AT32UC3C

– Internal 3.3V regulator is off

• TA = 25°C

• I/Os are configured as inputs, with internal pull-up enabled.

• Oscillators

– OSC0/1 (crystal oscillator) stopped

– OSC32K (32KHz crystal oscillator) stopped

– PLL0 running

– PLL1 stopped

• Clocks

– External clock on XIN0 as main clock source (10MHz)

– CPU, HSB, and PBB clocks undivided

– PBA, PBC clock divided by 4

– All peripheral clocks running

Note: 1. These numbers are valid for the measured condition only and must not be extrapolated to other frequencies.

Table 7-4. Power Consumption for Different Operating Modes

Mode Conditions Measured on Consumption Typ Unit

Active(1) CPU running a recursive Fibonacci algorithm

Amp

512

µA/MHz
Idle(1) 258

Frozen(1) 106

Standby(1) 48

Stop 73

µA
DeepStop 43

Static
OSC32K and AST running 32

AST and OSC32K stopped 31

54
9166DS–AVR-01/12

AT32UC3C

7.5 I/O Pin Characteristics

Table 7-6. Normal I/O Pin Characteristics(1)

Symbol Parameter Condition Min Typ Max Units

RPULLUP Pull-up resistance
VVDD = 3V 5 26 kOhm

VVDD = 5V 5 16 kOhm

RPULLDOWN Pull-down resistance 2 16 kOhm

VIL
Input low-level
voltage

VVDD = 3V 0.3*VVDDIO
V

VVDD = 4.5V 0.3*VVDDIO

VIH
Input high-level
voltage

VVDD = 3.6V 0.7*VVDDIO
V

VVDD = 5.5V 0.7*VVDDIO

VOL
Output low-level
voltage

IOL = -3.5mA, pin drive x1(2)

0.5 VIOL = -7mA, pin drive x2(2)

IOL = -14mA, pin drive x4(2)

VOH
Output high-level
voltage

IOH = 3.5mA, pin drive x1(2)

VVDD - 0.8 VIOH = 7mA, pin drive x2(2)

IOH = 14mA, pin drive x4(2)

fMAX Output frequency(3)

VVDD = 3.0V

load = 10pF, pin drive x1(2) 30

MHz

load = 10pF, pin drive x2(2) 50

load = 10pF, pin drive x4(2) 60

load = 30pF, pin drive x1(2) 15

load = 30pF, pin drive x2(2) 25

load = 30pF, pin drive x4(2) 40

VVDD =4.5V

 load = 10pF, pin drive x1(2) 45

load = 10pF, pin drive x2(2) 65

load = 10pF, pin drive x4(2) 85

load = 30pF, pin drive x1(2) 20

load = 30pF, pin drive x2(2) 40

load = 30pF, pin drive x4(2) 60

59
9166DS–AVR-01/12

AT32UC3C

7.7 Flash Characteristics

Table 7-15 gives the device maximum operating frequency depending on the number of flash
wait states. The FSW bit in the FLASHC FSR register controls the number of wait states used
when accessing the flash memory.

Table 7-15. Maximum Operating Frequency

Flash Wait States Read Mode Maximum Operating Frequency

0 1 cycle 25MHz

1 2 cycles 50MHz

Table 7-16. Flash Characteristics

Symbol Parameter Conditions Min Typ Max Unit

tFPP Page programming time

fCLK_HSB = 50MHz

17

ms

tFPE Page erase time 17

tFFP Fuse programming time 1.3

tFEA Full chip erase time (EA) 18.3

tFCE JTAG chip erase time (CHIP_ERASE) fCLK_HSB = 115kHz 640

Table 7-17. Flash Endurance and Data Retention

Symbol Parameter Conditions Min Typ Max Unit

NFARRAY Array endurance (write/page) 10k cycles

NFFUSE General Purpose fuses endurance (write/bit) 500 cycles

tRET Data retention 15 years

63
9166DS–AVR-01/12

AT32UC3C

Figure 7-3. ADC input

Table 7-29. ADC Decoupling requirements

Symbol Parameter Conditions Min Typ Max Units

CADCREFPN ADCREFP/ADCREFN capacitance
No voltage reference appplied on
ADCREFP/ADCREFN

100 nF

Table 7-30. ADC Inputs

Symbol Parameter Conditions Min Typ Max Units

VADCINn ADC input voltage range 0 VVDDANA V

CONCHIP Internal Capacitance
ADC used without S/H 5

pF
ADC used with S/H 4

RONCHIP Switch resistance
ADC used without S/H 5.1

kΩ
ADC used with S/H 4.6

CSOURCEVIN

RSOURCE ADCIN RONCHIP

UC3C

CONCHIP

Table 7-31. ADC Transfer Characteristics 12-bit Resolution Mode(1)

Symbol Parameter Conditions Min Typ Max Units

RES Resolution Differential mode,

VVDDANA = 3V,

VADCREF0 = 1V,

ADCFIA.SEQCFGn.SRES = 0
(Fadc = 1.2MHz)

12 Bit

INL Integral Non-Linearity 6 LSB

DNL Differential Non-Linearity 5 LSB

Offset error -10 10 mV

Gain error -30 30 mV

65
9166DS–AVR-01/12

AT32UC3C

Note: 1. The measures are done without any I/O activity on VDDANA/GNDANA power domain.

Note: 1. The measures are done without any I/O activity on VDDANA/GNDANA power domain

Table 7-34. ADC and S/H Transfer Characteristics 12-bit Resolution Mode and S/H gain = 1(1)

Symbol Parameter Conditions Min Typ Max Units

RES Resolution Differential mode,

VVDDANA = 3V,

VADCREF0 = 1V,
ADCFIA.SEQCFGn.SRES = 0,

S/H gain = 1

(Fadc = 1.2MHz)

12 Bit

INL Integral Non-Linearity 6 LSB

DNL Differential Non-Linearity 5 LSB

Offset error -10 10 mV

Gain error -30 30 mV

RES Resolution Differential mode,
VVDDANA = 5V,

VADCREF0 = 3V,

ADCFIA.SEQCFGn.SRES = 0,
S/H gain = 1

(Fadc = 1.5MHz)

12 Bit

INL Integral Non-Linearity 6 LSB

DNL Differential Non-Linearity 4 LSB

Offset error -15 15 mV

Gain error -30 30 mV

Table 7-35. ADC and S/H Transfer Characteristics 12-bit Resolution Mode and S/H gain from 1 to 8(1)

Symbol Parameter Conditions Min Typ Max Units

RES Resolution Differential mode,

VVDDANA = 3V,

VADCREF0 = 1V,
ADCFIA.SEQCFGn.SRES = 0,

S/H gain from 1 to 8

(Fadc = 1.2MHz)

12 Bit

INL Integral Non-Linearity 30 LSB

DNL Differential Non-Linearity 30 LSB

Offset error -10 10 mV

Gain error -25 25 mV

RES Resolution Differential mode,
VVDDANA = 5V,

VADCREF0 = 3V,

ADCFIA.SEQCFGn.SRES = 0,
S/H gain from 1 to 8

(Fadc = 1.5MHz)

12 Bit

INL Integral Non-Linearity 10 LSB

DNL Differential Non-Linearity 15 LSB

Offset error -20 20 mV

Gain error -30 30 mV

Table 7-36. ADC and S/H Transfer Characteristics 10-bit Resolution Mode and S/H gain from 1 to 16(1)

Symbol Parameter Conditions Min Typ Max Units

RES Resolution Differential mode,

VVDDANA = 3V,
VADCREF0 = 1V,

ADCFIA.SEQCFGn.SRES = 1,

S/H gain from 1 to 16

(Fadc = 1.5MHz)

10 Bit

INL Integral Non-Linearity 4 LSB

DNL Differential Non-Linearity 4 LSB

Offset error -15 15 mV

Gain error -25 25 mV

76
9166DS–AVR-01/12

AT32UC3C

7.9.4.2 Slave mode

Figure 7-13. SPI Slave Mode With (CPOL= 0 and NCPHA= 1) or (CPOL= 1 and NCPHA= 0)

Figure 7-14. SPI Slave Mode With (CPOL= NCPHA= 0) or (CPOL= NCPHA= 1)

Figure 7-15. SPI Slave Mode NPCS Timing

SPI7 SPI8

MISO

SPCK

MOSI

SPI6

SPI10 SPI11

MISO

SPCK

MOSI

SPI9

SPI14

SPI12

SPI15

SPI13

NPCS

SPCK, CPOL=0

SPCK, CPOL=1

82
9166DS–AVR-01/12

AT32UC3C

Note: 1. These values are based on simulation and characterization of other AVR microcontrollers manufactured in the same pro-
cess technology. These values are not covered by test limits in production.

Figure 7-17. SMC Signals for NCS Controlled Accesses

Table 7-56. SMC Write Signals with No Hold Settings (NWE Controlled only)(1)

Symbol Parameter Conditions Min Units

SMC37 NWE rising to A2-A25 valid

VVDD = 3.0V,
drive strength of the pads

set to the lowest,
external capacitor = 40pF

9.1

ns

SMC38 NWE rising to NBS0/A0 valid 7.9

SMC40 NWE rising to A1/NBS2 change 9.1

SMC42 NWE rising to NCS rising 8.7

SMC43 Data Out valid before NWE rising (nwe pulse length - 1) * tCPSMC - 1.5

SMC44 Data Out valid after NWE rising 8.7

SMC45 NWE pulse width nwe pulse length * tCPSMC - 0.1

NRD

NCS

D0 - D15

NWE

A2-A25

A0/A1/NBS[3:0]

SMC34 SMC35SMC10 SMC11

SMC16

SMC15

SMC22SMC21

SMC17

SMC18

SMC14
SMC13
SMC12

SMC18

SMC17

SMC16

SMC15
SMC14
SMC13
SMC12

SMC18

SMC36

SMC16

SMC15
SMC14
SMC13
SMC12

85
9166DS–AVR-01/12

AT32UC3C

Figure 7-19. SDRAMC Signals relative to SDCK.

RAS

A0 - A9,
A11 - A13

D0 - D15
Read

SDCK

SDA10

D0 - D15
to Write

SDRAMC1

SDCKE

SDRAMC2 SDRAMC3 SDRAMC4

SDCS

SDRAMC5 SDRAMC6 SDRAMC5 SDRAMC6 SDRAMC5 SDRAMC6

SDRAMC7 SDRAMC8

CAS

SDRAMC15 SDRAMC16 SDRAMC15 SDRAMC16

SDWE

SDRAMC23 SDRAMC24

SDRAMC9 SDRAMC10SDRAMC9 SDRAMC10SDRAMC9 SDRAMC10

SDRAMC11 SDRAMC12 SDRAMC11 SDRAMC12SDRAMC11 SDRAMC12

BA0/BA1

SDRAMC13 SDRAMC14 SDRAMC13 SDRAMC14 SDRAMC13 SDRAMC14

SDRAMC17 SDRAMC18SDRAMC17 SDRAMC18

DQM0 -
DQM3

SDRAMC19 SDRAMC20

SDRAMC25 SDRAMC26

94
9166DS–AVR-01/12

AT32UC3C

8.3 Soldering Profile
Table 8-14 gives the recommended soldering profile from J-STD-20.

Note: It is recommended to apply a soldering temperature higher than 250°C.

A maximum of three reflow passes is allowed per component.

Table 8-14. Soldering Profile

Profile Feature Green Package

Average Ramp-up Rate (217°C to Peak) 3°C/sec

Preheat Temperature 175°C ±25°C Min. 150 °C, Max. 200 °C

Temperature Maintained Above 217°C 60-150 sec

Time within 5⋅C of Actual Peak Temperature 30 sec

Peak Temperature Range 260 °C

Ramp-down Rate 6 °C/sec

Time 25⋅C to Peak Temperature Max. 8 minutes

96
9166DS–AVR-01/12

AT32UC3C

10. Errata

10.1 rev E

10.1.1 ADCIFA

1 ADCREFP/ADCREFN can not be selected as an external ADC reference by setting the
ADCIFA.CFG.EXREF bit to one
Fix/Workaround
A vo l tage re fe rence can be app l i ed on ADCREFP/ADCREFN p ins i f t he
ADCIFA.CFG.EXREF bit is set to zero, the ADCIFA.CFG.RS bit is set to zero and the volt-
age reference applied on ADCREFP/ADCREFN pins is higher than the internal 1V
reference.

10.1.2 AST

1 AST wake signal is released one AST clock cycle after the BUSY bit is cleared
After writing to the Status Clear Register (SCR) the wake signal is released one AST clock
cycle after the BUSY bit in the Status Register (SR.BUSY) is cleared. If entering sleep mode
directly after the BUSY bit is cleared the part will wake up immediately.
Fix/Workaround
Read the Wake Enable Register (WER) and write this value back to the same register. Wait
for BUSY to clear before entering sleep mode.

10.1.3 aWire

1 aWire MEMORY_SPEED_REQUEST command does not return correct CV
The aWire MEMORY_SPEED_REQUEST command does not return a CV corresponding to
the formula in the aWire Debug Interface chapter.
Fix/Workaround
I ssue a dummy read to add ress 0x100000000 be fo re i ssu ing the
MEMORY_SPEED_REQUEST command and use this formula instead:

10.1.4 Power Manager

1 TWIS may not wake the device from sleep mode
If the CPU is put to a sleep mode (except Idle and Frozen) directly after a TWI Start condi-
tion, the CPU may not wake upon a TWIS address match. The request is NACKed.
Fix/Workaround
When using the TWI address match to wake the device from sleep, do not switch to sleep
modes deeper than Frozen. Another solution is to enable asynchronous EIC wake on the
TWIS clock (TWCK) or TWIS data (TWD) pins, in order to wake the system up on bus
events.

fsab
7faw
CV 3–
-----------------=

100
9166DS–AVR-01/12

AT32UC3C

10.2 rev D

10.2.1 ADCIFA

1 ADCREFP/ADCREFN can not be selected as an external ADC reference by setting the
ADCIFA.CFG.EXREF bit to one
Fix/Workaround
A vo l tage re fe rence can be app l i ed on ADCREFP/ADCREFN p ins i f t he
ADCIFA.CFG.EXREF bit is set to zero, the ADCIFA.CFG.RS bit is set to zero and the volt-
age reference applied on ADCREFP/ADCREFN pins is higher than the internal 1V
reference.

10.2.2 AST

1 AST wake signal is released one AST clock cycle after the BUSY bit is cleared
After writing to the Status Clear Register (SCR) the wake signal is released one AST clock
cycle after the BUSY bit in the Status Register (SR.BUSY) is cleared. If entering sleep mode
directly after the BUSY bit is cleared the part will wake up immediately.
Fix/Workaround
Read the Wake Enable Register (WER) and write this value back to the same register. Wait
for BUSY to clear before entering sleep mode.

10.2.3 aWire

1 aWire MEMORY_SPEED_REQUEST command does not return correct CV
The aWire MEMORY_SPEED_REQUEST command does not return a CV corresponding to
the formula in the aWire Debug Interface chapter.
Fix/Workaround
I ssue a dummy read to add ress 0x100000000 be fo re i ssu ing the
MEMORY_SPEED_REQUEST command and use this formula instead:

10.2.4 GPIO

1 Clearing Interrupt flags can mask other interrupts
When clearing interrupt flags in a GPIO port, interrupts on other pins of that port, happening
in the same clock cycle will not be registered.
Fix/Workaround
Read the PVR register of the port before and after clearing the interrupt to see if any pin
change has happened while clearing the interrupt. If any change occurred in the PVR
between the reads, they must be treated as an interrupt.

10.2.5 Power Manager

1 Clock Failure Detector (CFD) can be issued while turning off the CFD
While turning off the CFD, the CFD bit in the Status Register (SR) can be set. This will
change the main clock source to RCSYS.
Fix/Workaround
Solution 1: Enable CFD interrupt. If CFD interrupt is issues after turning off the CFD, switch
back to original main clock source.
Solution 2: Only turn off the CFD while running the main clock on RCSYS.

fsab
7faw
CV 3–
-----------------=

101
9166DS–AVR-01/12

AT32UC3C

2 Requesting clocks in idle sleep modes will mask all other PB clocks than the
requested
In idle or frozen sleep mode, all the PB clocks will be frozen if the TWIS or the AST need to
wake the cpu up.
Fix/Workaround
Disable the TWIS or the AST before entering idle or frozen sleep mode.

3 TWIS may not wake the device from sleep mode
If the CPU is put to a sleep mode (except Idle and Frozen) directly after a TWI Start condi-
tion, the CPU may not wake upon a TWIS address match. The request is NACKed.
Fix/Workaround
When using the TWI address match to wake the device from sleep, do not switch to sleep
modes deeper than Frozen. Another solution is to enable asynchronous EIC wake on the
TWIS clock (TWCK) or TWIS data (TWD) pins, in order to wake the system up on bus
events.

10.2.6 SCIF

1 PLLCOUNT value larger than zero can cause PLLEN glitch
Initializing the PLLCOUNT with a value greater than zero creates a glitch on the PLLEN sig-
nal during asynchronous wake up.
Fix/Workaround
The lock-masking mechanism for the PLL should not be used.
The PLLCOUNT field of the PLL Control Register should always be written to zero.

2 PLL lock might not clear after disable
Under certain circumstances, the lock signal from the Phase Locked Loop (PLL) oscillator
may not go back to zero after the PLL oscillator has been disabled. This can cause the prop-
agation of clock signals with the wrong frequency to parts of the system that use the PLL
clock.
Fix/Workaround
PLL must be turned off before entering STOP, DEEPSTOP or STATIC sleep modes. If PLL
has been turned off, a delay of 30us must be observed after the PLL has been enabled
again before the SCIF.PLL0LOCK bit can be used as a valid indication that the PLL is
locked.

3 BOD33 reset locks the device
If BOD33 is enabled as a reset source (SCIF.BOD33.CTRL=0x1) and when VDDIN_33
power supply voltage falls below the BOD33 voltage (SCIF.BOD33.LEVEL), the device is
locked permanently under reset even if the power supply goes back above BOD33 reset
level. In order to unlock the device, an external reset event should be applied on RESET_N.
Fix/Workaround
Use an external BOD on VDDIN_33 or an external reset source.

10.2.7 SPI

1 SPI data transfer hangs with CSR0.CSAAT==1 and MR.MODFDIS==0
When CSR0.CSAAT==1 and mode fault detection is enabled (MR.MODFDIS==0), the SPI
module will not start a data transfer.
Fix/Workaround
Disable mode fault detection by writing a one to MR.MODFDIS.

103
9166DS–AVR-01/12

AT32UC3C

10.2.10 TWIS

1 Clearing the NAK bit before the BTF bit is set locks up the TWI bus
When the TWIS is in transmit mode, clearing the NAK Received (NAK) bit of the Status Reg-
ister (SR) before the end of the Acknowledge/Not Acknowledge cycle will cause the TWIS to
attempt to continue transmitting data, thus locking up the bus.
Fix/Workaround
Clear SR.NAK only after the Byte Transfer Finished (BTF) bit of the same register has been
set.

2 TWIS stretch on Address match error
When the TWIS stretches TWCK due to a slave address match, it also holds TWD low for
the same duration if it is to be receiving data. When TWIS releases TWCK, it releases TWD
at the same time. This can cause a TWI timing violation.
Fix/Workaround
None.

3 TWALM forced to GND
The TWALM pin is forced to GND when the alternate function is selected and the TWIS
module is enabled.
Fix/Workaround
None.

10.2.11 USBC

1 UPINRQx.INRQ field is limited to 8-bits
In Host mode, when using the UPINRQx.INRQ feature together with the multi-packet mode
to launch a finite number of packet among multi-packet, the multi-packet size (located in the
descriptor table) is limited to the UPINRQx.INRQ value multiply by the pipe size.
Fix/Workaround
UPINRQx.INRQ value shall be less than the number of configured multi-packet.

2 In USB host mode, downstream resume feature does not work (UHCON.RESUME=1).
Fix/Workaround
None.

3 In host mode, the disconnection during OUT transition is not supported
In USB host mode, a pipe can not work if the previous USB device disconnection has
occurred during a USB transfer.
Fix/Workaround
Reset the USBC (USBCON.USB=0 and =1) after a device disconnection (UHINT.DDISCI).

4 In USB host mode, entering suspend mode can fail
In USB host mode, entering suspend mode can fail when UHCON.SOFE=0 is done just
after a SOF reception (UHINT.HSOFI).
Fix/Workaround
Check that UHNUM.FLENHIGH is below 185 in Full speed and below 21 in Low speed
before clearing UHCON.SOFE.

5 In USB host mode, entering suspend mode for low speed device can fail when the
USB freeze (USBCON.FRZCLK=1) is done just after UHCON.SOFE=0.
Fix/Workaround
When entering suspend mode (UHCON.SOFE is cleared), check that USBFSM.DRDSTATE
is not equal to three before freezing the clock (USBCON.FRZCLK=1).

