

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Details	
Product Status	Active
Core Processor	AVR
Core Size	32-Bit Single-Core
Speed	66MHz
Connectivity	CANbus, Ethernet, I ² C, IrDA, LINbus, SPI, UART/USART, USB
Peripherals	Brown-out Detect/Reset, DMA, I ² S, POR, PWM, WDT
Number of I/O	45
Program Memory Size	256KB (256K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	64K x 8
Voltage - Supply (Vcc/Vdd)	3V ~ 5.5V
Data Converters	A/D 11x12b; D/A 2x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	64-TQFP
Supplier Device Package	64-TQFP (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/at32uc3c2256c-a2zr

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

1. Description

The AT32UC3C is a complete System-On-Chip microcontroller based on the AVR32UC RISC processor running at frequencies up to 50 MHz. AVR32UC is a high-performance 32-bit RISC microprocessor core, designed for cost-sensitive embedded applications, with particular emphasis on low power consumption, high code density and high performance.

The processor implements a Memory Protection Unit (MPU) and a fast and flexible interrupt controller for supporting modern operating systems and real-time operating systems. Using the Secure Access Unit (SAU) together with the MPU provides the required security and integrity.

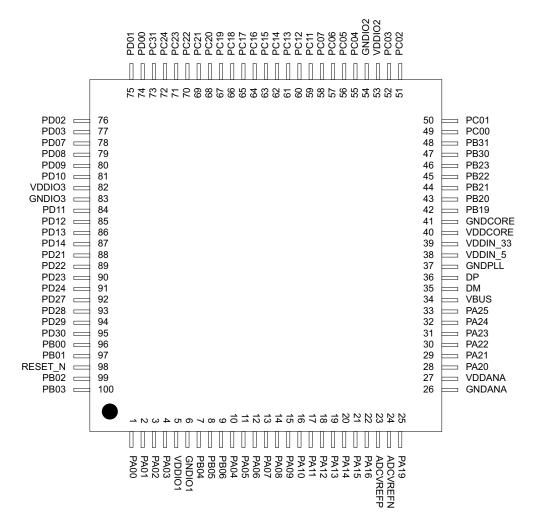
Higher computation capabilities are achievable either using a rich set of DSP instructions or using the floating-point instructions.

The AT32UC3C incorporates on-chip Flash and SRAM memories for secure and fast access. For applications requiring additional memory, an external memory interface is provided on AT32UC3C0 derivatives.

The Memory Direct Memory Access controller (MDMA) enables transfers of block of data from memories to memories without processor involvement.

The Peripheral Direct Memory Access (PDCA) controller enables data transfers between peripherals and memories without processor involvement. The PDCA drastically reduces processing overhead when transferring continuous and large data streams.

The AT32UC3C incorporates on-chip Flash and SRAM memories for secure and fast access. The FlashVault technology allows secure libraries to be programmed into the device. The secure libraries can be executed while the CPU is in Secure State, but not read by non-secure software in the device. The device can thus be shipped to end custumers, who are able to program their own code into the device, accessing the secure libraries, without any risk of compromising the proprietary secure code.


The Power Manager improves design flexibility and security. Power monitoring is supported by on-chip Power-On Reset (POR), Brown-Out Detectors (BOD18, BOD33, BOD50). The CPU runs from the on-chip RC oscillators, the PLLs, or the Multipurpose Oscillators. The Asynchronous Timer (AST) combined with the 32 KHz oscillator keeps track of the time. The AST can operate in counter or calendar mode.

The device includes six identical 16-bit Timer/Counter (TC) channels. Each channel can be inde-

AT32UC3C

Figure 3-2. TQFP100 Pinout

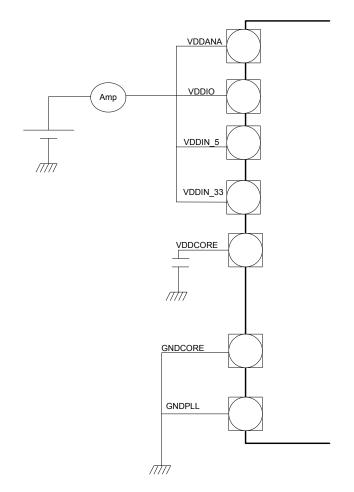
5. Memories

5.1 Embedded Memories

- Internal High-Speed Flash (See Table 5-1 on page 40)
 - 512 Kbytes
 - 256 Kbytes
 - 128 Kbytes
 - O Wait State Access at up to 25 MHz in Worst Case Conditions
 - 1 Wait State Access at up to 50 MHz in Worst Case Conditions
 - Pipelined Flash Architecture, allowing burst reads from sequential Flash locations, hiding penalty of 1 wait state access
 - Pipelined Flash Architecture typically reduces the cycle penalty of 1 wait state operation to only 15% compared to 0 wait state operation
 - 10 000 Write Cycles, 15-year Data Retention Capability
 - Sector Lock Capabilities, Bootloader Protection, Security Bit
 - 32 Fuses, Erased During Chip Erase
 - User Page For Data To Be Preserved During Chip Erase
- Internal High-Speed SRAM, Single-cycle access at full speed (See Table 5-1 on page 40)
 - 64 Kbytes
 - 32 Kbytes
- Supplementary Internal High-Speed System SRAM (HSB RAM), Single-cycle access at full speed
 - Memory space available on System Bus for peripherals data.
 - 4 Kbytes

Table 5-3.Peripheral Address Mapping

prierai Audres	siviapping	
0xFFFF0C00	AST	Asynchronous Timer - AST
0xFFFF1000	WDT	Watchdog Timer - WDT
0xFFFF1400	EIC	External Interrupt Controller - EIC
0xFFFF1800	FREQM	Frequency Meter - FREQM
0xFFFF2000	GPIO	General Purpose Input/Output Controller - GPIO
0xFFFF2800	USART0	Universal Synchronous/Asynchronous Receiver/Transmitter - USART0
0xFFFF2C00	USART2	Universal Synchronous/Asynchronous Receiver/Transmitter - USART2
0xFFFF3000	USART3	Universal Synchronous/Asynchronous Receiver/Transmitter - USART3
0xFFFF3400	SPI1	Serial Peripheral Interface - SPI1
0xFFFF3800	TWIMO	Two-wire Master Interface - TWIM0
0xFFFF3C00	TWIM1	Two-wire Master Interface - TWIM1
0xFFFF4000	TWIS0	Two-wire Slave Interface - TWIS0
0xFFFF4400	TWIS1	Two-wire Slave Interface - TWIS1
0xFFFF4800	IISC	Inter-IC Sound (I2S) Controller - IISC
0xFFFF4C00	PWM	Pulse Width Modulation Controller - PWM
0xFFFF5000	QDEC0	Quadrature Decoder - QDEC0
0xFFFF5400	QDEC1	Quadrature Decoder - QDEC1
0xFFFF5800	TC1	Timer/Counter - TC1
0xFFFF5C00	PEVC	Peripheral Event Controller - PEVC



Port	Register	Mode	Local Bus Address	Access
В	Output Driver Enable Register (ODER)	WRITE	0x40000140	Write-only
		SET	0x40000144	Write-only
		CLEAR	0x40000148	Write-only
		TOGGLE	0x4000014C	Write-only
	Output Value Register (OVR)	WRITE	0x40000150	Write-only
		SET	0x40000154	Write-only
		CLEAR	0x40000158	Write-only
		TOGGLE	0x4000015C	Write-only
	Pin Value Register (PVR)	-	0x40000160	Read-only
C (Output Driver Enable Register (ODER)	WRITE	0x40000240	Write-only
		SET	0x40000244	Write-only
		CLEAR	0x40000248	Write-only
		TOGGLE	0x4000024C	Write-only
	Output Value Register (OVR)	WRITE	0x40000250	Write-only
		SET	0x40000254	Write-only
		CLEAR	0x40000258	Write-only
		TOGGLE	0x4000025C	Write-only
	Pin Value Register (PVR)	-	0x40000260	Read-only
D	Output Driver Enable Register (ODER)	WRITE	0x40000340	Write-only
		SET	0x40000344	Write-only
		CLEAR	0x40000348	Write-only
		TOGGLE	0x4000034C	Write-only
	Output Value Register (OVR)	WRITE	0x40000350	Write-only
		SET	0x40000354	Write-only
		CLEAR	0x40000358	Write-only
		TOGGLE	0x4000035C	Write-only
	Pin Value Register (PVR)	-	0x40000360	Read-only

 Table 5-4.
 Local bus mapped GPIO registers

Figure 7-1. Measurement Schematic

7.4.1 Peripheral Power Consumption

The values in Table 7-5 are measured values of power consumption under the following conditions.

• Operating conditions core supply (Figure 7-1)

 $-V_{VDDIN_5} = V_{DDIN_{33}} = 3.3V$

- $V_{VDDCORE} = 1.85V$, supplied by the internal regulator
- V_{VDDIO1} = V_{VDDIO2} = V_{VDDIO3} = 3.3V
- $-V_{VDDANA} = 3.3V$
- Internal 3.3V regulator is off.
- TA = 25°C
- I/Os are configured as inputs, with internal pull-up enabled.
- Oscillators
 - OSC0/1 (crystal oscillator) stopped
 - OSC32K (32KHz crystal oscillator) stopped
 - PLL0 running

- PLL1 stopped
- Clocks
 - External clock on XIN0 as main clock source.
 - CPU, HSB, and PB clocks undivided

Consumption active is the added current consumption when the module clock is turned on and when the module is doing a typical set of operations.

Peripheral	Typ Consumption Active	Unit
ACIFA ⁽¹⁾	3	
ADCIFA ⁽¹⁾	7	
AST	3	-
CANIF	25	-
DACIFB ⁽¹⁾	3	-
EBI	23	-
EIC	0.5	
FREQM	0.5	_
GPIO	37	-
INTC	3	-
MDMA	4	-
PDCA	24	-
PEVC	15	-
PWM	40	-
QDEC	3	µA/MHz
SAU	3	
SDRAMC	2	
SMC	9	
SPI	5	
тс	8	
ТШМ	2	
TWIS	2	
USART	10	
USBC	5	
WDT	2	

 Table 7-5.
 Typical Current Consumption by Peripheral⁽²⁾

Notes: 1. Includes the current consumption on VDDANA.

2. These numbers are valid for the measured condition only and must not be extrapolated to other frequencies.

7.6.3 Phase Lock Loop (PLL0 and PLL1) Characteristics

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
f _{VCO}	Output frequency		80		240	MHz
f _{IN}	Input frequency		4		16	MHz
1	Current consumption	Active mode, $f_{VCO} = 80 MHz$		250		μA
IPLL		Active mode, $f_{VCO} = 240 MHz$		600		
	Startup time, from enabling	Wide Bandwidth mode disabled		15		
t _{STARTUP}	the PLL until the PLL is locked	Wide Bandwidth mode enabled		45		μs

Table 7-11.PLL Characteristics

7.6.4 120 MHz RC Oscillator (RC120M) Characteristics

Table 7-12. Internal 120MHz RC Oscillator Characteristics

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
f _{OUT}	Output frequency ⁽¹⁾		88	120	152	MHz
I _{RC120M}	Current consumption			1.85		mA
t _{STARTUP}	Startup time			3		μs

Note: 1. These values are based on simulation and characterization of other AVR microcontrollers manufactured in the same process technology. These values are not covered by test limits in production.

7.6.5 System RC Oscillator (RCSYS) Characteristics

Table 7-13. System RC Oscillator Characteristics

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
		Calibrated at $T_A = 125^{\circ}C$	110	115.2	120	
f _{OUT}	Output frequency	$T_A = 25^{\circ}C$	105	109	115	kHz
		$T_A = -40^{\circ}C$	100	104	108	

7.6.6 8MHz/1MHz RC Oscillator (RC8M) Characteristics

Table 7-14. 8MHz/1MHz RC Oscillator Characteristics

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
f Output froquency		SCIF.RCCR8.FREQMODE = $0^{(1)}$	7.5	8	8.5	
t _{OUT}	Output frequency	SCIF.RCCR8.FREQMODE = 1 ⁽¹⁾	0.925	1	1.075	MHz
t _{STARTUP}	Startup time				20	μs

Notes: 1. Please refer to the SCIF chapter for details.

7.8.6 Analog to Digital Converter (ADC) and sample and hold (S/H) Characteristics

Symbol	Parameter	Conditions	Min	Тур	Max	Units
		12-bit resolution mode, $V_{VDDANA} = 3V$			1.2	
		10-bit resolution mode, $V_{VDDANA} = 3V$			1.6	
£	ADC clock	8-bit resolution mode, $V_{VDDANA} = 3V$			2.2	MHz
f _{ADC}	frequency	12-bit resolution mode, $V_{VDDANA} = 4.5V$			1.5	
		10-bit resolution mode, $V_{VDDANA} = 4.5V$			2	_
		8-bit resolution mode, $V_{VDDANA} = 4.5V$			2.4	
		ADC cold start-up			1	ms
t _{STARTUP} Startup time	ADC hot start-up			24	ADC clock cycles	
	Conversion time	(ADCIFA.SEQCFGn.SRES)/2 + 2, ADCIFA.CFG.SHD = 1	6		8	ADC clock
t _{CONV}	(latency)	(ADCIFA.SEQCFGn.SRES)/2 + 3, ADCIFA.CFG.SHD = 0	7		9	cycles
		12-bit resolution, ADC clock = 1.2 MHz, V _{VDDANA} = 3V			1.2	
		10-bit resolution, ADC clock = 1.6 MHz, V _{VDDANA} = 3V			1.6	MODO
Inrougnput	Throughput rate	12-bit resolution, ADC clock = 1.5 MHz, V _{VDDANA} = 4.5V			1.5	– MSPS
		10-bit resolution, ADC clock = 2 MHz, V _{VDDANA} = 4.5V			2	

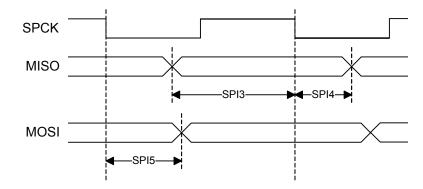
Table 7-27. ADC and S/H characteristics

Table 7-28. ADC Reference Voltage

Symbol	Parameter	Conditions	Min	Тур	Max	Unit s
V		5V Range	1		3.5	V
V _{ADCREF0}	ADCREF0 input voltage range	3V Range	1		V _{VDDANA} -0.7	v
V _{ADCREF1}		5V Range	1		3.5	V
	ADCREF1 input voltage range	3V Range	1		V _{VDDANA} -0.7	- V
		5V Range - Voltage reference applied on ADCREFP	1		3.5	V
V _{ADCREFP}	ADCREFP input voltage	3V Range - Voltage reference applied on ADCREFP	1		V _{VDDANA} -0.7	V
VADCREFN	ADCREFN input voltage	Voltage reference applied on ADCREFN		GNDANA		V
	Internal 1V reference			1.0		V
	Internal 0.6*VDDANA reference			0.6*V _{VDDANA}		V

AT32UC3C

Figure 7-5. Startup and Reset Time



7.9.2 RESET_N characteristics

Symbol	Parameter	Condition	Min.	Тур.	Max.	Units
t _{RESET}	RESET_N minimum pulse length		2 * T _{RCSYS}			clock cycles

Figure 7-12. SPI Master Mode With (CPOL= 0 and NCPHA= 1) or (CPOL= 1 and NCPHA= 0)

Table 7-48. SPI Timing, Master Mode⁽¹⁾

Symbol	Parameter	Conditions	Min	Max	Units
SPI0	MISO setup time before SPCK rises		30.5+ (t _{CLK_SPI})/2		ns
SPI1	MISO hold time after SPCK rises		0		ns
SPI2	SPCK rising to MOSI delay	external		11.5	ns
SPI3	MISO setup time before SPCK falls	capacitor = 40pF	30.5 + (t _{CLK_SPI})/2		ns
SPI4	MISO hold time after SPCK falls		0		ns
SPI5	SPCK falling to MOSI delay			11.5	ns

Note: 1. These values are based on simulation and characterization of other AVR microcontrollers manufactured in the same process technology. These values are not covered by test limits in production.

Maximum SPI Frequency, Master Output

The maximum SPI master output frequency is given by the following formula:

$$f_{SPCKMAX} = MIN(f_{PINMAX}, \frac{1}{SPIn})$$

Where *SPIn* is the MOSI delay, SPI2 or SPI5 depending on CPOL and NCPHA. f_{PINMAX} is the maximum frequency of the SPI pins. Please refer to the I/O Pin Characteristics section for the maximum frequency of the pins.

Maximum SPI Frequency, Master Input

The maximum SPI master input frequency is given by the following formula:

$$f_{SPCKMAX} = \frac{1}{SPIn + t_{VALID}}$$

Where *SPIn* is the MISO setup and hold time, SPI0 + SPI1 or SPI3 + SPI4 depending on CPOL and NCPHA. t_{VALID} is the SPI slave response time. Please refer to the SPI slave datasheet for t_{VALID} .

7.9.4.2 Slave mode

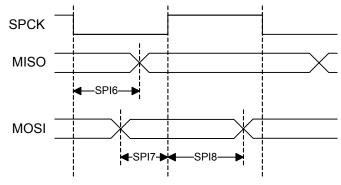


Figure 7-13. SPI Slave Mode With (CPOL= 0 and NCPHA= 1) or (CPOL= 1 and NCPHA= 0)

Figure 7-14. SPI Slave Mode With (CPOL= NCPHA= 0) or (CPOL= NCPHA= 1)

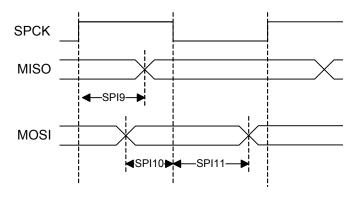
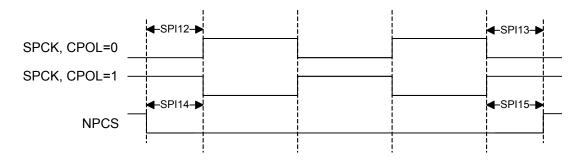



Figure 7-15. SPI Slave Mode NPCS Timing

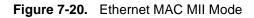
TWIM and TWIS user interface registers. Please refer to the TWIM and TWIS sections for more information.

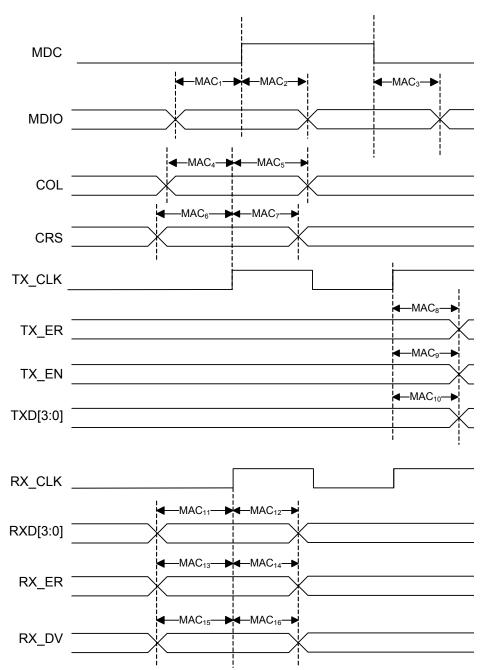
Table 7-50. **TWI-Bus Timing Requirements**

			Minin	num	Maxin	num	
Symbol	Parameter	Mode	Requirement	Device	Requirement	Device	Unit
4		Standard ⁽¹⁾	-		100	00	
t _r	TWCK and TWD rise time	Fast ⁽¹⁾	20 + 0	.1 C _b	30	0	ns
		Standard ⁽¹⁾	-		30	0	
t _f	TWCK and TWD fall time	Fast ⁽¹⁾	20 + 0	.1 C _b	30	0	ns
		Standard ⁽¹⁾	4.0	t _{clkpb}	-		μs
t _{HD-STA}	(Repeated) START hold time	Fast ⁽¹⁾	0.6				
		Standard ⁽¹⁾	4.7				
t _{SU-STA}	(Repeated) START set-up time	Fast ⁽¹⁾	0.6	t _{clkpb}	-		μs
		Standard ⁽¹⁾	4.0	41			
t _{SU-STO}	STOP set-up time	Fast ⁽¹⁾	0.6	4t _{clkpb}	-		μS
		Standard ⁽¹⁾	0.3 ⁽²⁾	01	3.45	00	
t _{HD-DAT}	Data hold time	Fast ⁽¹⁾	0.3	2t _{clkpb}	0.9	??	μS
	Dete est un time	Standard ⁽¹⁾	250	01			
t _{SU-DAT-I2C}	Data set-up time	Fast ⁽¹⁾	100	2t _{clkpb}	-		ns
t _{SU-DAT}		-	-	t _{clkpb}	-		-
	TWOK LOW paried	Standard ⁽¹⁾	4.7	44			_
t _{LOW-I2C}	TWCK LOW period	Fast ⁽¹⁾	1.3	4t _{clkpb}	-		μS
t _{LOW}		-	-	t _{clkpb}	-		-
	TWOKLUCLEstad	Standard ⁽¹⁾	4.0	04			
t _{HIGH}	TWCK HIGH period	Fast ⁽¹⁾	0.6	8t _{clkpb}	-		μS
t.		Standard ⁽¹⁾		1	100	1	
f _{тwcк}	TWCK frequency	Fast ⁽¹⁾	-		400	12t _{clkpb}	kHz

Notes: 1. Standard mode: $f_{TWCK} \le 100 \text{ kHz}$; fast mode: $f_{TWCK} > 100 \text{ kHz}$. 2. A device must internally provide a hold time of at least 300 ns for TWD with reference to the falling edge of TWCK.

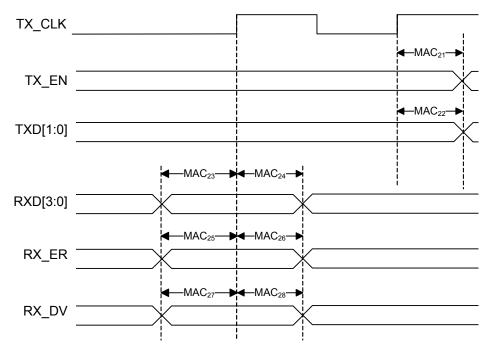
Notations:


C_b = total capacitance of one bus line in pF


 t_{clkpb} = period of TWI peripheral bus clock

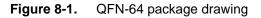
 $t_{prescaled}$ = period of TWI internal prescaled clock (see chapters on TWIM and TWIS)

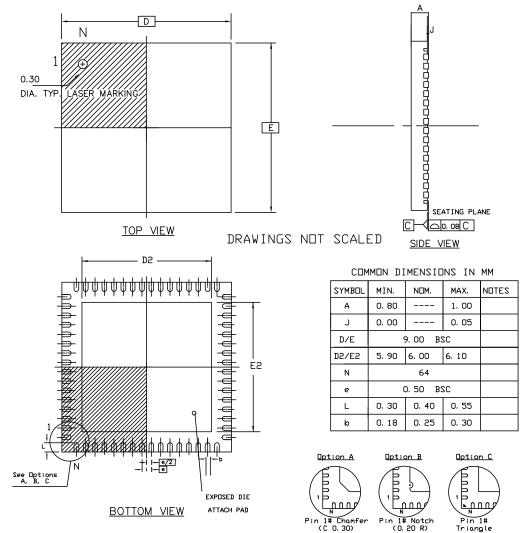
The maximum $t_{HD;DAT}$ has only to be met if the device does not stretch the LOW period ($t_{LOW-I2C}$) of TWCK.



Symbol	Parameter	Conditions	Min.	Max.	Unit
MAC ₂₁	TX_EN toggling from TX_CLK rising		12.5	13.4	ns
MAC ₂₂	TXD toggling from TX_CLK rising	V _{VDD} = 3.0V,	12.5	13.4	ns
MAC ₂₃	Setup for RXD from TX_CLK		4.7		ns
MAC ₂₄	Hold for RXD from TX_CLK	drive strength of the pads set to the	0		ns
MAC ₂₅	Setup for RX_ER from TX_CLK	highest, external capacitor = 10pF on MACB pins	3.6		ns
MAC ₂₆	Hold for RX_ER from TX_CLK		0		ns
MAC ₂₇	Setup for RX_DV from TX_CLK		4.6		ns
MAC ₂₈	Hold for RX_DV from TX_CLK		0		ns

Table 7-61. Ethernet MAC RMII Specific Signals⁽¹⁾


Note: 1. These values are based on simulation and characterization of other AVR microcontrollers manufactured in the same process technology. These values are not covered by test limits in production.



8.2 Package Drawings

Note: The exposed pad is not connected to anything internally, but should be soldered to ground to increase board level reliability.

200		mg	
Table 8-3.	Package Characteristics		
Moisture Ser	nsitivity Level	Jdec J-STD0-20D - MSL 3	
Table 8-4.	Package Reference		
JEDEC Drav	ving Reference	MS-026	
JESD97 Cla	ssification	E3	

Fix/Workaround

2 Disabling SPI has no effect on the SR.TDRE bit

Disabling SPI has no effect on the SR.TDRE bit whereas the write data command is filtered when SPI is disabled. Writing to TDR when SPI is disabled will not clear SR.TDRE. If SPI is disabled during a PDCA transfer, the PDCA will continue to write data to TDR until its buffer is empty, and this data will be lost.

Fix/Workaround

Disable the PDCA, add two NOPs, and disable the SPI. To continue the transfer, enable the SPI and PDCA.

3 SPI disable does not work in SLAVE mode

SPI disable does not work in SLAVE mode.

Fix/Workaround

Read the last received data, then perform a software reset by writing a one to the Software Reset bit in the Control Register (CR.SWRST).

4 SPI bad serial clock generation on 2nd chip select when SCBR=1, CPOL=1, and NCPHA=0

When multiple chip selects (CS) are in use, if one of the baudrates equal 1 while one (CSRn.SCBR=1) of the others do not equal 1, and CSRn.CPOL=1 and CSRn.NCPHA=0, then an additional pulse will be generated on SCK.

Fix/Workaround

When multiple CS are in use, if one of the baudrates equals 1, the others must also equal 1 if CSRn.CPOL=1 and CSRn.NCPHA=0.

10.2.8 TC

1 Channel chaining skips first pulse for upper channel

When chaining two channels using the Block Mode Register, the first pulse of the clock between the channels is skipped.

Fix/Workaround

Configure the lower channel with RA = 0x1 and RC = 0x2 to produce a dummy clock cycle for the upper channel. After the dummy cycle has been generated, indicated by the SR.CPCS bit, reconfigure the RA and RC registers for the lower channel with the real values.

10.2.9 TWIM

1 SMBALERT bit may be set after reset

For TWIM0 and TWIM1 modules, the SMBus Alert (SMBALERT) bit in the Status Register (SR) might be erroneously set after system reset. Fix/Workaround

After system reset, clear the SR.SMBALERT bit before commencing any TWI transfer.

For TWIM2 module, the SMBus Alert (SMBALERT) is not implemented but the bit in the Status Register (SR) is erroneously set once TWIM2 is enabled. Fix/Workaround None.

2 TWIM TWALM polarity is wrong

The TWALM signal in the TWIM is active high instead of active low. Fix/Workaround

Use an external inverter to invert the signal going into the TWIM. When using both TWIM and TWIS on the same pins, the TWALM cannot be used.

10.2.12 WDT

1 Clearing the Watchdog Timer (WDT) counter in second half of timeout period will issue a Watchdog reset

If the WDT counter is cleared in the second half of the timeout period, the WDT will immediately issue a Watchdog reset.

Fix/Workaround

Use twice as long timeout period as needed and clear the WDT counter within the first half of the timeout period. If the WDT counter is cleared after the first half of the timeout period, you will get a Watchdog reset immediately. If the WDT counter is not cleared at all, the time before the reset will be twice as long as needed.

2 WDT Control Register does not have synchronization feedback

When writing to the Timeout Prescale Select (PSEL), Time Ban Prescale Select (TBAN), Enable (EN), or WDT Mode (MODE) fieldss of the WDT Control Register (CTRL), a synchronizer is started to propagate the values to the WDT clcok domain. This synchronization takes a finite amount of time, but only the status of the synchronization of the EN bit is reflected back to the user. Writing to the synchronized fields during synchronization can lead to undefined behavior.

Fix/Workaround

-When writing to the affected fields, the user must ensure a wait corresponding to 2 clock cycles of both the WDT peripheral bus clock and the selected WDT clock source.

-When doing writes that changes the EN bit, the EN bit can be read back until it reflects the written value.

AT32UC3C

	7.7	Flash Characteristics	59
	7.8	Analog Characteristics	60
	7.9	Timing Characteristics	69
8	Mecha	nical Characteristics	89
	8.1	Thermal Considerations	89
	8.2	Package Drawings	90
	8.3	Soldering Profile	94
9	Orderi	ng Information	95
10	Errata		
10	<i>Errata</i> 10.1	rev E	
10			96
10 11	10.1 10.2	rev E	96 100
-	10.1 10.2	rev E rev D	96 100 105
-	10.1 10.2 Datash	rev E rev D neet Revision History	96 100 105 105
-	10.1 10.2 Datash 11.1	rev E rev D neet Revision History Rev. D – 01/12	96
-	10.1 10.2 Datash 11.1 11.2	rev E rev D neet Revision History Rev. D – 01/12 Rev. C – 08/11	96

