

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Product Status	Active
Core Processor	AVR
Core Size	32-Bit Single-Core
Speed	66MHz
Connectivity	CANbus, Ethernet, I ² C, IrDA, LINbus, SPI, UART/USART, USB
Peripherals	Brown-out Detect/Reset, DMA, I ² S, POR, PWM, WDT
Number of I/O	45
Program Memory Size	256KB (256K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	64K x 8
Voltage - Supply (Vcc/Vdd)	3V ~ 5.5V
Data Converters	A/D 11x12b; D/A 2x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	64-TQFP
Supplier Device Package	64-TQFP (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/at32uc3c2256c-a2zt

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

AT32UC3C

- One 4-Channel 20-bit Pulse Width Modulation Controller (PWM)
 - Complementary outputs, with Dead Time Insertion
 - Output Override and Fault Protection
- Two Quadrature Decoders
- One 16-channel 12-bit Pipelined Analog-To-Digital Converter (ADC)
 - Dual Sample and Hold Capability Allowing 2 Synchronous Conversions
 - Single-Ended and Differential Channels, Window Function
- Two 12-bit Digital-To-Analog Converters (DAC), with Dual Output Sample System
- Four Analog Comparators
- Six 16-bit Timer/Counter (TC) Channels
 - External Clock Inputs, PWM, Capture and Various Counting Capabilities
- One Peripheral Event Controller
 - Trigger Actions in Peripherals Depending on Events Generated from Peripherals or from Input Pins
 - Deterministic Trigger
 - 34 Events and 22 Event Actions
- Five Universal Synchronous/Asynchronous Receiver/Transmitters (USART)
 - Independent Baudrate Generator, Support for SPI, LIN, IrDA and ISO7816 interfaces
 - Support for Hardware Handshaking, RS485 Interfaces and Modem Line
- Two Master/Slave Serial Peripheral Interfaces (SPI) with Chip Select Signals
- One Inter-IC Sound (I2S) Controller
 - Compliant with I2S Bus Specification
 - Time Division Multiplexed mode
- Three Master and Three Slave Two-Wire Interfaces (TWI), 400kbit/s I²C-compatible
- QTouch[®] Library Support
 - Capacitive Touch Buttons, Sliders, and Wheels
 - QTouch[®] and QMatrix[®] Acquisition
- On-Chip Non-intrusive Debug System
 - Nexus Class 2+, Runtime Control, Non-Intrusive Data and Program Trace
 - aWire[™] single-pin programming trace and debug interface muxed with reset pin
 - NanoTrace[™] provides trace capabilities through JTAG or aWire interface
- 3 package options
 - 64-pin QFN/TQFP (45 GPIO pins)
 - 100-pin TQFP (81 GPIO pins)
 - 144-pin LQFP (123 GPIO pins)
- Two operating voltage ranges:
 - Single 5V Power Supply
 - Single 3.3V Power Supply

The Full-Speed USB 2.0 Device interface supports several USB Classes at the same time thanks to the rich End-Point configuration. The On-The-GO (OTG) Host interface allows device like a USB Flash disk or a USB printer to be directly connected to the processor.

The media-independent interface (MII) and reduced MII (RMII) 10/100 Ethernet MAC module provides on-chip solutions for network-connected devices.

The Peripheral Event Controller (PEVC) allows to redirect events from one peripheral or from input pins to another peripheral. It can then trigger, in a deterministic time, an action inside a peripheral without the need of CPU. For instance a PWM waveform can directly trigger an ADC capture, hence avoiding delays due to software interrupt processing.

The AT32UC3C features analog functions like ADC, DAC, Analog comparators. The ADC interface is built around a 12-bit pipelined ADC core and is able to control two independent 8-channel or one 16-channel. The ADC block is able to measure two different voltages sampled at the same time. The analog comparators can be paired to detect when the sensing voltage is within or outside the defined reference window.

Atmel offers the QTouch library for embedding capacitive touch buttons, sliders, and wheels functionality into AVR microcontrollers. The patented charge-transfer signal acquisition offers robust sensing and included fully debounced reporting of touch keys and includes Adjacent Key Suppression[®] (AKS[®]) technology for unambiguous detection of key events. The easy-to-use QTouch Suite toolchain allows you to explore, develop, and debug your own touch applications.

AT32UC3C integrates a class 2+ Nexus 2.0 On-Chip Debug (OCD) System, with non-intrusive real-time trace, full-speed read/write memory access in addition to basic runtime control. The Nanotrace interface enables trace feature for aWire- or JTAG-based debuggers. The single-pin aWire interface allows all features available through the JTAG interface to be accessed through the RESET pin, allowing the JTAG pins to be used for GPIO or peripherals.

1.1 Disclaimer

Typical values contained in this data sheet are based on simulations and characterization of other 32-bit AVR Microcontrollers manufactured on the same process technology. Min and Max values will be available after the device is characterized.

1.2 Automotive Quality Grade

The AT32UC3C have been developed and manufactured according to the most stringent requirements of the international standard ISO-TS 16949. This data sheet contains limit values extracted from the results of extensive characterization (Temperature and Voltage). The quality and reliability of the AT32UC3C have been verified during regular product qualification as per AEC-Q100 grade 1.

As indicated in the ordering information paragraph, the product is available in only one temperature grade, Table 1-1.

Temperature(°C) Temperature Identifier		Comments		
-40;+125	Z	Full Automotive Temperature Range		

 Table 1-1.
 Temperature Grade Identification for Automotive Products

3. Package and Pinout

3.1 Package

The device pins are multiplexed with peripheral functions as described in Table 3-1 on page 11.

Note: on QFN packages, the exposed pad is unconnected.

Table 3-1.	GPIO Controller Function Multiplexing
------------	---------------------------------------

TQFP				G			GPIO function					
/ QFN 64	TQFP 100	LQFP 144	PIN	P I O	Supply	Pin Type (1)	А	в	с	D	E	F
	72	97	PC24	88	VDDIO3	x1/x2	QDEC1 - QEPA	CANIF - TXLINE[1]	EBI - DATA[5]	PEVC - PAD_EVT [4]		
		98	PC25	89	VDDIO3	x1/x2		TC1 - CLK2	EBI - DATA[6]	SCIF - GCLK[0]	USART4 - TXD	
		99	PC26	90	VDDIO3	x1/x2	QDEC1 - QEPI	TC1 - B2	EBI - DATA[7]	SCIF - GCLK[1]	USART4 - RXD	
		100	PC27	91	VDDIO3	x1/x2		TC1 - A2	EBI - DATA[8]	EIC - EXTINT[0]	USART4 - CTS	
		101	PC28	92	VDDIO3	x1/x2	SPI1 - NPCS[3]	TC1 - CLK1	EBI - DATA[9]		USART4 - RTS	
		102	PC29	93	VDDIO3	x1/x2	SPI0 - NPCS[1]	TC1 - B1	EBI - DATA[10]			
		105	PC30	94	VDDIO3	x1/x2	SPI0 - NPCS[2]	TC1 - A1	EBI - DATA[11]			
	73	106	PC31	95	VDDIO3	x1/x2	SPI0 - NPCS[3]	TC1 - B0	EBI - DATA[12]	PEVC - PAD_EVT [5]	USART4 - CLK	
47	74	107	PD00	96	VDDIO3	x1/x2	SPI0 - MOSI	TC1 - CLK0	EBI - DATA[13]	QDEC0 - QEPI	USART0 - TXD	
48	75	108	PD01	97	VDDIO3	x1/x2	SPI0 - MISO	TC1 - A0	EBI - DATA[14]	TC0 - CLK1	USART0 - RXD	
49	76	109	PD02	98	VDDIO3	x2/x4	SPI0 - SCK	TC0 - CLK2	EBI - DATA[15]	QDEC0 - QEPA		
50	77	110	PD03	99	VDDIO3	x1/x2	SPI0 - NPCS[0]	TC0 - B2	EBI - ADDR[0]	QDEC0 - QEPB		
		111	PD04	100	VDDIO3	x1/x2	SPI0 - MOSI		EBI - ADDR[1]			
		112	PD05	101	VDDIO3	x1/x2	SPI0 - MISO		EBI - ADDR[2]			
		113	PD06	102	VDDIO3	x2/x4	SPI0 - SCK		EBI - ADDR[3]			
	78	114	PD07	103	VDDIO3	x1/x2	USART1 - DTR	EIC - EXTINT[5]	EBI - ADDR[4]	QDEC0 - QEPI	USART4 - TXD	
	79	115	PD08	104	VDDIO3	x1/x2	USART1 - DSR	EIC - EXTINT[6]	EBI - ADDR[5]	TC1 - CLK2	USART4 - RXD	
	80	116	PD09	105	VDDIO3	x1/x2	USART1 - DCD	CANIF - RXLINE[0]	EBI - ADDR[6]	QDEC0 - QEPA	USART4 - CTS	
	81	117	PD10	106	VDDIO3	x1/x2	USART1 - RI	CANIF - TXLINE[0]	EBI - ADDR[7]	QDEC0 - QEPB	USART4 - RTS	
53	84	120	PD11	107	VDDIO3	x1/x2	USART1 - TXD	USBC - ID	EBI - ADDR[8]	PEVC - PAD_EVT [6]	MACB - TXD[0]	
54	85	121	PD12	108	VDDIO3	x1/x2	USART1 - RXD	USBC - VBOF	EBI - ADDR[9]	PEVC - PAD_EVT [7]	MACB - TXD[1]	
55	86	122	PD13	109	VDDIO3	x2/x4	USART1 - CTS	USART1 - CLK	EBI - SDCK	PEVC - PAD_EVT [8]	MACB - RXD[0]	
56	87	123	PD14	110	VDDIO3	x1/x2	USART1 - RTS	EIC - EXTINT[7]	EBI - ADDR[10]	PEVC - PAD_EVT [9]	MACB - RXD[1]	

Table 3-7.Signal Description List

Signal Name	Function	Туре	Active Level	Comments			
SDCK	SDRAM Clock	Output					
SDCKE	SDRAM Clock Enable	Output					
SDWE	SDRAM Write Enable	Output	Low				
	External Interrupt Con	troller - EIC					
EXTINT[8:1]	External Interrupt Pins	Input					
NMI_N = EXTINT[0]	Non-Maskable Interrupt Pin	Input	Low				
	General Purpose Input/Output - GPIC	A, GPIOB, C	GPIOC, GPI	D			
PA[29:19] - PA[16:0]	Parallel I/O Controller GPIOA	I/O					
PB[31:0]	Parallel I/O Controller GPIOB	I/O					
PC[31:0]	Parallel I/O Controller GPIOC	I/O					
PD[30:0]	Parallel I/O Controller GPIOD	I/O					
	Inter-IC Sound (I2S) Cor	ntroller - IISC)				
IMCK	I2S Master Clock	Output					
ISCK	I2S Serial Clock	I/O					
ISDI	I2S Serial Data In	Input					
ISDO	I2S Serial Data Out	Output					
IWS	I2S Word Select	I/O					
	JTAG						
тск	Test Clock	Input					
TDI	Test Data In	Input					
TDO	Test Data Out	Output					
TMS	Test Mode Select	Input					
Ethernet MAC - MACB							
COL	Collision Detect	Input					
CRS	Carrier Sense and Data Valid	Input					
MDC	Management Data Clock	Output					
MDIO	Management Data Input/Output	I/O					
RXD[3:0]	Receive Data	Input					

4.3.2.5 Unaligned Reference Handling

AVR32UC does not support unaligned accesses, except for doubleword accesses. AVR32UC is able to perform word-aligned *st.d* and *ld.d*. Any other unaligned memory access will cause an address exception. Doubleword-sized accesses with word-aligned pointers will automatically be performed as two word-sized accesses.

The following table shows the instructions with support for unaligned addresses. All other instructions require aligned addresses.

Instruction	Supported Alignment
ld.d	Word
st.d	Word

Table 4-1.Instructions with	Unaligned	Reference	Support
-----------------------------	-----------	-----------	---------

4.3.2.6 Unimplemented Instructions

The following instructions are unimplemented in AVR32UC, and will cause an Unimplemented Instruction Exception if executed:

- All SIMD instructions
- All coprocessor instructions if no coprocessors are present
- retj, incjosp, popjc, pushjc
- tlbr, tlbs, tlbw
- cache

4.3.2.7 CPU and Architecture Revision

Three major revisions of the AVR32UC CPU currently exist. The device described in this datasheet uses CPU revision 3.

The Architecture Revision field in the CONFIG0 system register identifies which architecture revision is implemented in a specific device.

AVR32UC CPU revision 3 is fully backward-compatible with revisions 1 and 2, ie. code compiled for revision 1 or 2 is binary-compatible with revision 3 CPUs.

Figure 4-5. The Status Register Low Halfword

4.4.3 Processor States

4.4.3.1 Normal RISC State

The AVR32 processor supports several different execution contexts as shown in Table 4-2.

Priority	Mode	Security	Description
1	Non Maskable Interrupt	Privileged	Non Maskable high priority interrupt mode
2	Exception	Privileged	Execute exceptions
3	Interrupt 3	Privileged	General purpose interrupt mode
4	Interrupt 2	Privileged	General purpose interrupt mode
5	Interrupt 1	Privileged	General purpose interrupt mode
6	Interrupt 0	Privileged	General purpose interrupt mode
N/A	Supervisor	Privileged	Runs supervisor calls
N/A	Application	Unprivileged	Normal program execution mode

 Table 4-2.
 Overview of Execution Modes, their Priorities and Privilege Levels.

Mode changes can be made under software control, or can be caused by external interrupts or exception processing. A mode can be interrupted by a higher priority mode, but never by one with lower priority. Nested exceptions can be supported with a minimal software overhead.

When running an operating system on the AVR32, user processes will typically execute in the application mode. The programs executed in this mode are restricted from executing certain instructions. Furthermore, most system registers together with the upper halfword of the status register cannot be accessed. Protected memory areas are also not available. All other operating modes are privileged and are collectively called System Modes. They have full access to all privileged and unprivileged resources. After a reset, the processor will be in supervisor mode.

4.4.3.2 Debug State

The AVR32 can be set in a debug state, which allows implementation of software monitor routines that can read out and alter system information for use during application development. This implies that all system and application registers, including the status registers and program counters, are accessible in debug state. The privileged instructions are also available.

All interrupt levels are by default disabled when debug state is entered, but they can individually be switched on by the monitor routine by clearing the respective mask bit in the status register.

Debug state can be entered as described in the AVR32UC Technical Reference Manual.

Debug state is exited by the *retd* instruction.

4.4.3.3 Secure State

The AVR32 can be set in a secure state, that allows a part of the code to execute in a state with higher security levels. The rest of the code can not access resources reserved for this secure code. Secure State is used to implement FlashVault technology. Refer to the *AVR32UC Technical Reference Manual* for details.

4.4.4 System Registers

The system registers are placed outside of the virtual memory space, and are only accessible using the privileged *mfsr* and *mtsr* instructions. The table below lists the system registers specified in the AVR32 architecture, some of which are unused in AVR32UC. The programmer is responsible for maintaining correct sequencing of any instructions following a *mtsr* instruction. For detail on the system registers, refer to the *AVR32UC Technical Reference Manual*.

Reg #	Address	Name	Function
0	0	SR	Status Register
1	4	EVBA	Exception Vector Base Address
2	8	ACBA	Application Call Base Address
3	12	CPUCR	CPU Control Register
4	16	ECR	Exception Cause Register
5	20	RSR_SUP	Unused in AVR32UC
6	24	RSR_INT0	Unused in AVR32UC
7	28	RSR_INT1	Unused in AVR32UC
8	32	RSR_INT2	Unused in AVR32UC
9	36	RSR_INT3	Unused in AVR32UC
10	40	RSR_EX	Unused in AVR32UC
11	44	RSR_NMI	Unused in AVR32UC
12	48	RSR_DBG	Return Status Register for Debug mode
13	52	RAR_SUP	Unused in AVR32UC
14	56	RAR_INT0	Unused in AVR32UC
15	60	RAR_INT1	Unused in AVR32UC
16	64	RAR_INT2	Unused in AVR32UC
17	68	RAR_INT3	Unused in AVR32UC
18	72	RAR_EX	Unused in AVR32UC
19	76	RAR_NMI	Unused in AVR32UC
20	80	RAR_DBG	Return Address Register for Debug mode
21	84	JECR	Unused in AVR32UC
22	88	JOSP	Unused in AVR32UC
23	92	JAVA_LV0	Unused in AVR32UC

Table 4-3. System Registers

5.2 Physical Memory Map

The system bus is implemented as a bus matrix. All system bus addresses are fixed, and they are never remapped in any way, not even in boot. Note that AVR32UC CPU uses unsegmented translation, as described in the AVR32 Architecture Manual. The 32-bit physical address space is mapped as follows:

		AT32UC3 Derivatives				
Device	Start Address	C0512C	C1512C C2512C	C1256C C2256C	C2128C	
Embedded SRAM	0x0000_0000	64 KB	64 KB	64 KB	32 KB	
Embedded Flash	0x8000_0000	512 KB	512 KB	256 KB	128 KB	
SAU	0x9000_0000	1 KB	1 KB	1 KB	1 KB	
HSB SRAM	0xA000_0000	4 KB	4 KB	4 KB	4 KB	
EBI SRAM CS0	0xC000_0000	16 MB	-	-	-	
EBI SRAM CS2	0xC800_0000	16 MB	-	-	-	
EBI SRAM CS3	0xCC00_0000	16 MB	-	-	-	
EBI SRAM CS1 /SDRAM CS0	0xD000_0000	128 MB	-	-	-	
HSB-PB Bridge C	0xFFFD_0000	64 KB	64 KB	64 KB	64 KB	
HSB-PB Bridge B	0xFFFE_0000	64 KB	64 KB	64 KB	64 KB	
HSB-PB Bridge A	0xFFFF_0000	64 KB	64 KB	64 KB	64 KB	

Table 5-1.	AT32UC3C Physical Memory	/ Мар
------------	--------------------------	-------

Table 5-2.Flash Memory Parameters

Part Number	Flash Size (FLASH_PW)	Number of pages (FLASH_P)	Page size (FLASH_W)
AT32UC3C0512C AT32UC3C1512C AT32UC3C2512C	512 Kbytes	1024	128 words
AT32UC3C1256C AT32UC3C2256C	256 Kbytes	512	128 words
AT32UC3C2128C	128 Kbytes	256	128 words

Peripheral Name

5.3 Peripheral Address Map

Table 5-3.Peripheral Address Mapping

Address

0xFFFD0000

PDCA

Peripheral DMA Controller - PDCA

Port	Register	Mode	Local Bus Address	Access
В	Output Driver Enable Register (ODER)	WRITE	0x40000140	Write-only
		SET	0x40000144	Write-only
		CLEAR	0x40000148	Write-only
		TOGGLE	0x4000014C	Write-only
	Output Value Register (OVR)	WRITE	0x40000150	Write-only
		SET	0x40000154	Write-only
		CLEAR	0x40000158	Write-only
		TOGGLE	0x4000015C	Write-only
	Pin Value Register (PVR)	-	0x40000160	Read-only
С	Output Driver Enable Register (ODER)	WRITE	0x40000240	Write-only
		SET	0x40000244	Write-only
		CLEAR	0x40000248	Write-only
		TOGGLE	0x4000024C	Write-only
	Output Value Register (OVR)	WRITE	0x40000250	Write-only
		SET	0x40000254	Write-only
		CLEAR	0x40000258	Write-only
		TOGGLE	0x4000025C	Write-only
	Pin Value Register (PVR)	-	0x40000260	Read-only
D	Output Driver Enable Register (ODER)	WRITE	0x40000340	Write-only
		SET	0x40000344	Write-only
		CLEAR	0x40000348	Write-only
		TOGGLE	0x4000034C	Write-only
	Output Value Register (OVR)	WRITE	0x40000350	Write-only
		SET	0x40000354	Write-only
		CLEAR	0x40000358	Write-only
		TOGGLE	0x4000035C	Write-only
	Pin Value Register (PVR)	-	0x40000360	Read-only

 Table 5-4.
 Local bus mapped GPIO registers

Table 7-6. Normal I/O Pin Characteristics⁽¹⁾

Symbol	Parameter	Condition		Min	Тур	Мах	Units
			load = 10pF, pin drive $x1^{(2)}$			8.4	
			load = 10pF, pin drive $x2^{(2)}$			3.8	
			load = 10pF, pin drive $x4^{(2)}$			2.1	
		$V_{VDD} = 3.0 V$	load = 30 pF , pin drive $x1^{(2)}$			17.5	
			load = 30 pF , pin drive $x2^{(2)}$			8.2	
			load = 30 pF , pin drive $x4^{(2)}$			4.2	
t _{RISE}	Rise time ⁽³⁾		load = 10pF, pin drive $x1^{(2)}$			5.9	ns
			load = 10pF, pin drive $x2^{(2)}$			2.6	
			load = 10pF, pin drive $x4^{(2)}$			1.5	
		$V_{VDD} = 4.5 V$	load = 30 pF , pin drive $x1^{(2)}$			12.2	
			load = 30 pF , pin drive $x2^{(2)}$			5.7	
			load = 30 pF , pin drive $x4^{(2)}$			3.0	
		V _{VDD} = 3.0V	load = 10pF, pin drive $x1^{(2)}$			8.5	-
			load = 10pF, pin drive $x2^{(2)}$			3.9	
			load = 10pF, pin drive $x4^{(2)}$			2.1	
	F =11 (int - (3)		load = 30pF, pin drive x1 ⁽²⁾			17.6	
			load = 30 pF , pin drive $x2^{(2)}$			8.1	
			load = 30 pF , pin drive $x4^{(2)}$			4.3	
t _{FALL}	Fall time ⁽⁰⁾		load = 10pF, pin drive $x1^{(2)}$			5.9	ns
			load = 10pF, pin drive $x2^{(2)}$			2.7	-
			load = 10pF, pin drive $x4^{(2)}$			1.5	
		$V_{VDD} = 4.5 V$	load = 30 pF , pin drive $x1^{(2)}$			12.2	
			load = 30 pF , pin drive $x2^{(2)}$			5.7	
			load = 30 pF , pin drive $x4^{(2)}$			3.0	
I _{LEAK}	Input leakage current	Pull-up resiste	ors disabled			2.0	μA
CIN	Input capacitance	PA00-PA29, F PC08-PC31,	PB00-PB31, PC00-PC01, PD00-PD30		7.5		pF
UIN	input capacitance	PC02, PC03,	PC04, PC05, PC06, PC07		2		ΡГ

Note: 1. V_{VDD} corresponds to either V_{VDDIO1}, V_{VDDIO2}, V_{VDDIO3}, or V_{VDDANA}, depending on the supply for the pin. Refer to Section 3-1 on page 11 for details.

drive x1 capability pins are: PB00, PB01, PB02, PB03, PB30, PB31, PC02, PC03, PC04, PC05, PC06, PC07 - drive x2 /x4 capability pins are: PB06, PB21, PB26, PD02, PD06, PD13 - drive x1/x2 capability pins are the remaining PA, PB, PC, PD pins. The drive strength is programmable through ODCR0, ODCR0S, ODCR0C, ODCR0T registers of GPIO.

3. These values are based on simulation and characterization of other AVR microcontrollers manufactured in the same process technology. These values are not covered by test limits in production.

AT32UC3C

7.8.4 3.3V Brown Out Detector (BOD33) Characteristics

The values in Table 7-23 describe the values of the BOD33.LEVEL field in the SCIF module.

BOD33.LEVEL Value	Parameter	Min	Max	Units
17		2.27	2.52	
22		2.36	2.61	
27		2.45	2.71	
31	threshold at power-up sequence	2.52	2.79	
33		2.56	2.83	N
39		2.67	2.95	V
44		2.76	3.05	
49		2.85	3.15	
53		2.91	3.23	
60		3.05	3.37	

Table 7-23. BOD33.LEVEL Values

7.8.5 5V Brown Out Detector (BOD50) Characteristics

The values in Table 7-25 describe the values of the BOD50.LEVEL field in the SCIF module.

Table 7-25.	BOD50.LEVEL Values
-------------	--------------------

BOD50.LEVEL Value	Parameter	Min	Max	Units
16		3.28	3.61	
25		3.52	3.87	
35		3.78	4.17	V
44		4.02	4.43	V
53		4.25	4.69	
61		4.47	4.92	

7.8.6 Analog to Digital Converter (ADC) and sample and hold (S/H) Characteristics

Symbol	Parameter	Conditions	Min	Тур	Max	Units
		12-bit resolution mode, $V_{VDDANA} = 3V$			1.2	
		10-bit resolution mode, V _{VDDANA} = 3V			1.6	
4	ADC clock	8-bit resolution mode, V _{VDDANA} = 3V			2.2	
ADC	frequency	12-bit resolution mode, $V_{VDDANA} = 4.5V$			1.5	
		10-bit resolution mode, $V_{VDDANA} = 4.5V$			2	
		8-bit resolution mode, $V_{VDDANA} = 4.5V$			2.4	
		ADC cold start-up			1	ms
t _{STARTUP}	Startup time	ADC hot start-up			24	ADC clock cycles
	Conversion time	(ADCIFA.SEQCFGn.SRES)/2 + 2, ADCIFA.CFG.SHD = 1	6		8	ADC clock
^t CONV (latency)	(latency)	(ADCIFA.SEQCFGn.SRES)/2 + 3, ADCIFA.CFG.SHD = 0	7		9	cycles
		12-bit resolution, ADC clock = 1.2 MHz, V _{VDDANA} = 3V			1.2	
	Throughput rate	10-bit resolution, ADC clock = 1.6 MHz, V _{VDDANA} = 3V			1.6	Mede
		12-bit resolution, ADC clock = 1.5 MHz, $V_{VDDANA} = 4.5V$			1.5	
		10-bit resolution, ADC clock = 2 MHz, V_{VDDANA} = 4.5V			2	

Table 7-27. ADC and S/H characteristics

Table 7-28. ADC Reference Voltage

Symbol	Parameter	Conditions	Min	Тур	Max	Unit s
V		5V Range	1		3.5	V
VADCREF0	ADOILET O INPUT VOILage Tange	3V Range	1		V _{VDDANA} -0.7	v
V		5V Range	1		3.5	V
VADCREF1	ADCREFT input voltage fange	3V Range	1		V _{VDDANA} -0.7	v
N		5V Range - Voltage reference applied on ADCREFP	1		3.5	V
VADCREFP	ADCREFF Input voltage	3V Range - Voltage reference applied on ADCREFP	1		V _{VDDANA} -0.7	
V _{ADCREFN}	ADCREFN input voltage	Voltage reference applied on ADCREFN		GNDANA		V
	Internal 1V reference			1.0		V
	Internal 0.6*VDDANA reference			$0.6*V_{VDDANA}$		V

 Table 7-29.
 ADC Decoupling requirements

Symbol	Parameter	Conditions	Min	Тур	Мах	Units
CADCREFPN	ADCREFP/ADCREFN capacitance	No voltage reference appplied on ADCREFP/ADCREFN		100		nF

Table 7-30. ADC Inputs

Symbol	Parameter	Conditions	Min	Тур	Max	Units
V _{ADCINn}	ADC input voltage range		0		V _{VDDANA}	V
6	Internal Capacitanaa	ADC used without S/H			5	۶E
CONCHIP	Internal Capacitance	ADC used with S/H			4	рг
Р	Switch registeres	ADC used without S/H			5.1	ko
KONCHIP	Switch resistance	ADC used with S/H			4.6	K22

|--|

Symbol	Parameter	Conditions	Min	Тур	Max	Units
RES	Resolution	Differential mode,			12	Bit
INL	Integral Non-Linearity	$V_{VDDANA} = 3V,$			6	LSB
DNL	Differential Non-Linearity	$V_{ADCREF0} = 1V,$			5	LSB
	Offset error	ADCFIA.SEQCFGn.SRES = 0	-10		10	mV
	Gain error	$(F_{adc} = 1.2MHz)$	-30		30	mV

7.9.7 EBI Timings

See EBI I/O lines description for more details.

Table 7-52.SMC Clock Signal.

Symbol	Parameter	Max ⁽¹⁾	Units
1/(t _{CPSMC})	SMC Controller clock frequency	f _{cpu}	MHz

Note: 1. The maximum frequency of the SMC interface is the same as the max frequency for the HSB.

Table 7-53. SMC Read Signals with Hold Settings⁽¹⁾

Symbol	Parameter	Conditions	Min	Units		
NRD Controlled (READ_MODE = 1)						
SMC ₁	Data setup before NRD high		34.4	ns		
SMC ₂	Data hold after NRD high		0			
SMC ₃	NRD high to NBS0/A0 change ⁽²⁾	V _{VDD} = 3.0V,	nrd hold length * tcpsmc - 1.5			
SMC ₄	NRD high to NBS1 change ⁽²⁾	drive strength of the	nrd hold length * tсрѕмс - 0			
SMC ₅	NRD high to NBS2/A1 change ⁽²⁾	external capacitor =	nrd hold length * tсрѕмс - 0			
SMC ₇	NRD high to A2 - A25 change ⁽²⁾	40pF	nrd hold length * tcpsmc - 5.9			
SMC ₈	NRD high to NCS inactive ⁽²⁾		(nrd hold length - ncs rd hold length) * tcPSMc - 1.3			
SMC ₉	NRD pulse width		nrd pulse length * tcpsмc - 0.9			
NRD Controlled (READ_MODE = 0)						
SMC ₁₀	Data setup before NCS high		36.1	ns		
SMC ₁₁	Data hold after NCS high		0			
SMC ₁₂	NCS high to NBS0/A0 change ⁽²⁾	V - 3.0V	ncs rd hold length * tcpsмc - 3.2			
SMC ₁₃	NCS high to NBS0/A0 change ⁽²⁾	$v_{VDD} = 3.0 v_{,}$ drive strength of the	ncs rd hold length * tcpsмc - 2.2			
SMC ₁₄	NCS high to NBS2/A1 change ⁽²⁾	pads set to the lowest,	ncs rd hold length * tcpsмc - 1.2			
SMC ₁₆	NCS high to A2 - A25 change ⁽²⁾	external capacitor = 40pF	ncs rd hold length * tcpsmc - 7.6			
SMC ₁₇	NCS high to NRD inactive ⁽²⁾		(ncs rd hold length - nrd hold length) * tcPSMc - 2.4			
SMC ₁₈	NCS pulse width		ncs rd pulse length * tcpsмc - 3.3			

Note: 1. These values are based on simulation and characterization of other AVR microcontrollers manufactured in the same process technology. These values are not covered by test limits in production.

2. hold length = total cycle duration - setup duration - pulse duration. "hold length" is for "ncs rd hold length" or "nrd hold length".

Figure 7-18. SMC Signals for NRD and NRW Controlled Accesses⁽¹⁾

Note: 1. These values are based on simulation and characterization of other AVR microcontrollers manufactured in the same process technology. These values are not covered by test limits in production.

7.9.8 SDRAM Signals

Table 7-57	SDRAM	Clock Signal
		CIUCK Olyriai

Symbol	Parameter	Max ⁽¹⁾	Units
1/(t _{CPSDCK})	SDRAM Controller clock frequency	f _{cpu}	MHz

Note: 1. The maximum frequency of the SDRAMC interface is the same as the max frequency for the HSB.

8. Mechanical Characteristics

8.1 Thermal Considerations

8.1.1 Thermal Data

Table 8-1 summarizes the thermal resistance data depending on the package.

Symbol	Parameter	Condition	Package	Тур	Unit
θ_{JA}	Junction-to-ambient thermal resistance	No air flow	QFN64	20.0	°C ///
θ_{JC}	Junction-to-case thermal resistance		QFN64	0.8	-0/00
θ_{JA}	Junction-to-ambient thermal resistance	No air flow	TQFP64	40.5	°C ///
θ_{JC}	Junction-to-case thermal resistance		TQFP64	8.7	-0/00
θ_{JA}	Junction-to-ambient thermal resistance No air		TQFP100	39.3	00000
θ_{JC}	Junction-to-case thermal resistance		TQFP100	8.5	-0/00
θ_{JA}	Junction-to-ambient thermal resistance	No air flow	LQFP144	38.1	0000
θ_{JC}	Junction-to-case thermal resistance		LQFP144	8.4	°C/W

 Table 8-1.
 Thermal Resistance Data

8.1.2 Junction Temperature

The average chip-junction temperature, T_J, in °C can be obtained from the following:

1.
$$T_J = T_A + (P_D \times \theta_{JA})$$

2. $T_J = T_A + (P_D \times (\theta_{HEATSINK} + \theta_{JC}))$

where:

- θ_{JA} = package thermal resistance, Junction-to-ambient (°C/W), provided in Table 8-1 on page 89.
- θ_{JC} = package thermal resistance, Junction-to-case thermal resistance (°C/W), provided in Table 8-1 on page 89.
- $\theta_{HEAT SINK}$ = cooling device thermal resistance (°C/W), provided in the device datasheet.
- P_D = device power consumption (W) estimated from data provided in the section "Power Consumption" on page 50.
- T_A = ambient temperature (°C).

From the first equation, the user can derive the estimated lifetime of the chip and decide if a cooling device is necessary or not. If a cooling device is to be fitted on the chip, the second equation should be used to compute the resulting average chip-junction temperature T_J in °C.

9. Ordering Information

	Table 9-1. Orde	ring Information				
Device	Ordering Code	Carrier Type	Package	Temperature Operating Range		
AT22UC2C0542C	AT32UC3C0512C-ALZT	Tray				
A132003003120	AT32UC3C0512C-ALZR	Tape & Reel				
AT2011C2C4542C	AT32UC3C1512C-AZT	Tray				
A1320C3C1512C	AT32UC3C1512C-AZR	Tape & Reel				
AT2011C2C4256C	AT32UC3C1256C-AZT	Tray	TOED 100			
A1320C3C1230C	AT32UC3C1256C-AZR	Tape & Reel				
AT2011C2C2542C	AT32UC3C2512C-A2ZT	Tray	TQFP 64			
A132003023120	AT32UC3C2512C-A2ZR	Tape & Reel				
AT22UC2C2512C	AT32UC3C2512C-Z2ZT	Tray	QFN 64		Automotive (40° C to 125° C)	
A132003023120	AT32UC3C2512C-Z2ZR	Tape & Reel		Automotive (-40 C to 125 C)		
AT2211C2C2256C	AT32UC3C2256C-A2ZT	Tray				
A132003022300	AT32UC3C2256C-A2ZR	Tape & Reel				
AT2211C2C2256C	AT32UC3C2256C-Z2ZT	Tray	QFN 64			
A132003022300	AT32UC3C2256C-Z2ZR	Tape & Reel				
AT2011C2C2429C	AT32UC3C2128C-A2ZT	Tray				
A132003021280	AT32UC3C2128C-A2ZR	Tape & Reel				
AT2011C2C2129C	AT32UC3C2128C-Z2ZT	Tray				
A132003021200	AT32UC3C2128C-Z2ZR	Tape & Reel				

2 Disabling SPI has no effect on the SR.TDRE bit

Disabling SPI has no effect on the SR.TDRE bit whereas the write data command is filtered when SPI is disabled. Writing to TDR when SPI is disabled will not clear SR.TDRE. If SPI is disabled during a PDCA transfer, the PDCA will continue to write data to TDR until its buffer is empty, and this data will be lost.

Fix/Workaround

Disable the PDCA, add two NOPs, and disable the SPI. To continue the transfer, enable the SPI and PDCA.

3 SPI disable does not work in SLAVE mode

SPI disable does not work in SLAVE mode.

Fix/Workaround

Read the last received data, then perform a software reset by writing a one to the Software Reset bit in the Control Register (CR.SWRST).

4 SPI bad serial clock generation on 2nd chip select when SCBR=1, CPOL=1, and NCPHA=0

When multiple chip selects (CS) are in use, if one of the baudrates equal 1 while one (CSRn.SCBR=1) of the others do not equal 1, and CSRn.CPOL=1 and CSRn.NCPHA=0, then an additional pulse will be generated on SCK.

Fix/Workaround

When multiple CS are in use, if one of the baudrates equals 1, the others must also equal 1 if CSRn.CPOL=1 and CSRn.NCPHA=0.

10.2.8 TC

1 Channel chaining skips first pulse for upper channel

When chaining two channels using the Block Mode Register, the first pulse of the clock between the channels is skipped.

Fix/Workaround

Configure the lower channel with RA = 0x1 and RC = 0x2 to produce a dummy clock cycle for the upper channel. After the dummy cycle has been generated, indicated by the SR.CPCS bit, reconfigure the RA and RC registers for the lower channel with the real values.

10.2.9 TWIM

1 SMBALERT bit may be set after reset

For TWIM0 and TWIM1 modules, the SMBus Alert (SMBALERT) bit in the Status Register (SR) might be erroneously set after system reset. Fix/Workaround

After system reset, clear the SR.SMBALERT bit before commencing any TWI transfer.

For TWIM2 module, the SMBus Alert (SMBALERT) is not implemented but the bit in the Status Register (SR) is erroneously set once TWIM2 is enabled. Fix/Workaround None.

2 TWIM TWALM polarity is wrong

The TWALM signal in the TWIM is active high instead of active low. Fix/Workaround

Use an external inverter to invert the signal going into the TWIM. When using both TWIM and TWIS on the same pins, the TWALM cannot be used.

