
Microchip Technology - AT32UC3C2256C-Z2ZT Datasheet

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated
circuits designed to perform specific tasks within larger
systems. These microcontrollers are essentially compact
computers on a single chip, containing a processor core,
memory, and programmable input/output peripherals.
They are called "embedded" because they are embedded
within electronic devices to control various functions,
rather than serving as standalone computers.
Microcontrollers are crucial in modern electronics,
providing the intelligence and control needed for a wide
range of applications.

Applications of "Embedded -
Microcontrollers"

Embedded microcontrollers are used in virtually every
sector of electronics, providing the necessary control and
processing power for a multitude of applications. In
consumer electronics, they manage the operations of
smartphones, home appliances, and wearable devices. In
automotive systems, microcontrollers control engine
functions, safety features, and infotainment systems.
Industrial applications rely on microcontrollers for
automation, robotics, and process control. Additionally,
microcontrollers are integral in medical devices, handling
functions such as monitoring, diagnostics, and control of
therapeutic equipment. Their versatility and
programmability make them essential components in
creating efficient, responsive, and intelligent electronic
systems.

Common Subcategories of "Embedded -
Microcontrollers"

Embedded microcontrollers can be categorized based on
their architecture, performance, and application focus.
Common subcategories include 8-bit, 16-bit, and 32-bit
microcontrollers, differentiated by their processing power
and memory capacity. 8-bit microcontrollers are typically
used in simple applications like basic control systems and
small devices. 16-bit microcontrollers offer a balance
between performance and complexity, suitable for
medium-scale applications like industrial automation. 32-
bit microcontrollers provide high performance and are
used in complex applications requiring advanced
processing, such as automotive systems and sophisticated
consumer electronics. Each subcategory serves a specific
range of applications, providing tailored solutions for
different performance and complexity needs.

Types of "Embedded - Microcontrollers"

There are various types of embedded microcontrollers,
each designed to meet specific application requirements.
General-purpose microcontrollers are versatile and used in
a wide range of applications, offering a balance of
performance, memory, and peripheral options. Special-
purpose microcontrollers are tailored for specific tasks,
such as automotive controllers, which include features like
built-in motor control peripherals and automotive-grade

Details

Product Status Active

Core Processor AVR

Core Size 32-Bit Single-Core

Speed 66MHz

Connectivity CANbus, Ethernet, I²C, IrDA, LINbus, SPI, UART/USART, USB

Peripherals Brown-out Detect/Reset, DMA, I²S, POR, PWM, WDT

Number of I/O 45

Program Memory Size 256KB (256K x 8)

Program Memory Type FLASH

EEPROM Size -

RAM Size 64K x 8

Voltage - Supply (Vcc/Vdd) 3V ~ 5.5V

Data Converters A/D 11x12b; D/A 2x12b

Oscillator Type Internal

Operating Temperature -40°C ~ 125°C (TA)

Mounting Type Surface Mount

Package / Case 64-VFQFN Exposed Pad

Supplier Device Package 64-QFN (9x9)

Purchase URL https://www.e-xfl.com/product-detail/microchip-technology/at32uc3c2256c-z2zt

Email: info@E-XFL.COM Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

https://www.e-xfl.com/product/pdf/at32uc3c2256c-z2zt-4435879
https://www.e-xfl.com
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers

14
9166DS–AVR-01/12

AT32UC3C

33 51 73 PC02 66 VDDIO2 x1
TWIMS0 -

TWD
SPI0 -

NPCS[3]
USART2 -

RXD
TC1 -
CLK1

MACB -
MDC

34 52 74 PC03 67 VDDIO2 x1
TWIMS0 -

TWCK
EIC -

EXTINT[1]
USART2 -

TXD TC1 - B1
MACB -
MDIO

37 55 77 PC04 68 VDDIO2 x1
TWIMS1 -

TWD
EIC -

EXTINT[3]
USART2 -

TXD TC0 - B1

38 56 78 PC05 69 VDDIO2 x1
TWIMS1 -

TWCK
EIC -

EXTINT[4]
USART2 -

RXD TC0 - A2

57 79 PC06 70 VDDIO2 x1

PEVC -
PAD_EVT

[15]
USART2 -

CLK
USART2 -

CTS
TC0 -
CLK2

TWIMS2 -
TWD

TWIMS0 -
TWALM

58 80 PC07 71 VDDIO2 x1

PEVC -
PAD_EVT

[2]
EBI -

NCS[3]
USART2 -

RTS TC0 - B2
TWIMS2 -

TWCK
TWIMS1 -
TWALM

81 PC08 72 VDDIO2 x1/x2

PEVC -
PAD_EVT

[13]
SPI1 -

NPCS[1]
EBI -

NCS[0]
USART4 -

TXD

82 PC09 73 VDDIO2 x1/x2

PEVC -
PAD_EVT

[14]
SPI1 -

NPCS[2]
EBI -

ADDR[23]
USART4 -

RXD

83 PC10 74 VDDIO2 x1/x2

PEVC -
PAD_EVT

[15]
SPI1 -

NPCS[3]
EBI -

ADDR[22]

59 84 PC11 75 VDDIO2 x1/x2
PWM -

PWMH[3]
CANIF -

RXLINE[1]
EBI -

ADDR[21]
TC0 -
CLK0

60 85 PC12 76 VDDIO2 x1/x2
PWM -

PWML[3]
CANIF -

TXLINE[1]
EBI -

ADDR[20]
USART2 -

CLK

61 86 PC13 77 VDDIO2 x1/x2
PWM -

PWMH[2]
EIC -

EXTINT[7]
USART0 -

RTS

62 87 PC14 78 VDDIO2 x1/x2
PWM -

PWML[2]
USART0 -

CLK
EBI -

SDCKE
USART0 -

CTS

39 63 88 PC15 79 VDDIO2 x1/x2
PWM -

PWMH[1]
SPI0 -

NPCS[0]
EBI -

SDWE
USART0 -

RXD
CANIF -

RXLINE[1]

40 64 89 PC16 80 VDDIO2 x1/x2
PWM -

PWML[1]
SPI0 -

NPCS[1] EBI - CAS
USART0 -

TXD
CANIF -

TXLINE[1]

41 65 90 PC17 81 VDDIO2 x1/x2
PWM -

PWMH[0]
SPI0 -

NPCS[2] EBI - RAS
IISC -
ISDO

USART3 -
TXD

42 66 91 PC18 82 VDDIO2 x1/x2
PWM -

PWML[0]
EIC -

EXTINT[5]
EBI -

SDA10
IISC -
ISDI

USART3 -
RXD

43 67 92 PC19 83 VDDIO3 x1/x2
PWM -

PWML[2]
SCIF -

GCLK[0]
EBI -

DATA[0]
IISC -
IMCK

USART3 -
CTS

44 68 93 PC20 84 VDDIO3 x1/x2
PWM -

PWMH[2]
SCIF -

GCLK[1]
EBI -

DATA[1]
IISC -
ISCK

USART3 -
RTS

45 69 94 PC21 85 VDDIO3 x1/x2

PWM -
EXT_

FAULTS[0]
CANIF -

RXLINE[0]
EBI -

DATA[2] IISC - IWS

46 70 95 PC22 86 VDDIO3 x1/x2

PWM -
EXT_

FAULTS[1]
CANIF -

TXLINE[0]
EBI -

DATA[3]
USART3 -

CLK

71 96 PC23 87 VDDIO3 x1/x2
QDEC1 -

QEPB
CANIF -

RXLINE[1]
EBI -

DATA[4]

PEVC -
PAD_EVT

[3]

Table 3-1. GPIO Controller Function Multiplexing

TQFP

/

QFN

64

TQFP

100

LQFP

144 PIN

G

P

I
O Supply

Pin
Type

(1)

GPIO function

A B C D E F

15
9166DS–AVR-01/12

AT32UC3C

72 97 PC24 88 VDDIO3 x1/x2
QDEC1 -

QEPA
CANIF -

TXLINE[1]
EBI -

DATA[5]

PEVC -
PAD_EVT

[4]

98 PC25 89 VDDIO3 x1/x2
TC1 -
CLK2

EBI -
DATA[6]

SCIF -
GCLK[0]

USART4 -
TXD

99 PC26 90 VDDIO3 x1/x2
QDEC1 -

QEPI TC1 - B2
EBI -

DATA[7]
SCIF -

GCLK[1]
USART4 -

RXD

100 PC27 91 VDDIO3 x1/x2 TC1 - A2
EBI -

DATA[8]
EIC -

EXTINT[0]
USART4 -

CTS

101 PC28 92 VDDIO3 x1/x2
SPI1 -

NPCS[3]
TC1 -
CLK1

EBI -
DATA[9]

USART4 -
RTS

102 PC29 93 VDDIO3 x1/x2
SPI0 -

NPCS[1] TC1 - B1
EBI -

DATA[10]

105 PC30 94 VDDIO3 x1/x2
SPI0 -

NPCS[2] TC1 - A1
EBI -

DATA[11]

73 106 PC31 95 VDDIO3 x1/x2
SPI0 -

NPCS[3] TC1 - B0
EBI -

DATA[12]

PEVC -
PAD_EVT

[5]
USART4 -

CLK

47 74 107 PD00 96 VDDIO3 x1/x2
SPI0 -
MOSI

TC1 -
CLK0

EBI -
DATA[13]

QDEC0 -
QEPI

USART0 -
TXD

48 75 108 PD01 97 VDDIO3 x1/x2
SPI0 -
MISO TC1 - A0

EBI -
DATA[14]

TC0 -
CLK1

USART0 -
RXD

49 76 109 PD02 98 VDDIO3 x2/x4
SPI0 -
SCK

TC0 -
CLK2

EBI -
DATA[15]

QDEC0 -
QEPA

50 77 110 PD03 99 VDDIO3 x1/x2
SPI0 -

NPCS[0] TC0 - B2
EBI -

ADDR[0]
QDEC0 -

QEPB

111 PD04 100 VDDIO3 x1/x2
SPI0 -
MOSI

EBI -
ADDR[1]

112 PD05 101 VDDIO3 x1/x2
SPI0 -
MISO

EBI -
ADDR[2]

113 PD06 102 VDDIO3 x2/x4
SPI0 -
SCK

EBI -
ADDR[3]

78 114 PD07 103 VDDIO3 x1/x2
USART1 -

DTR
EIC -

EXTINT[5]
EBI -

ADDR[4]
QDEC0 -

QEPI
USART4 -

TXD

79 115 PD08 104 VDDIO3 x1/x2
USART1 -

DSR
EIC -

EXTINT[6]
EBI -

ADDR[5]
TC1 -
CLK2

USART4 -
RXD

80 116 PD09 105 VDDIO3 x1/x2
USART1 -

DCD
CANIF -

RXLINE[0]
EBI -

ADDR[6]
QDEC0 -

QEPA
USART4 -

CTS

81 117 PD10 106 VDDIO3 x1/x2
USART1 -

RI
CANIF -

TXLINE[0]
EBI -

ADDR[7]
QDEC0 -

QEPB
USART4 -

RTS

53 84 120 PD11 107 VDDIO3 x1/x2
USART1 -

TXD USBC - ID
EBI -

ADDR[8]

PEVC -
PAD_EVT

[6]
MACB -
TXD[0]

54 85 121 PD12 108 VDDIO3 x1/x2
USART1 -

RXD
USBC -
VBOF

EBI -
ADDR[9]

PEVC -
PAD_EVT

[7]
MACB -
TXD[1]

55 86 122 PD13 109 VDDIO3 x2/x4
USART1 -

CTS
USART1 -

CLK
EBI -

SDCK

PEVC -
PAD_EVT

[8]
MACB -
RXD[0]

56 87 123 PD14 110 VDDIO3 x1/x2
USART1 -

RTS
EIC -

EXTINT[7]
EBI -

ADDR[10]

PEVC -
PAD_EVT

[9]
MACB -
RXD[1]

Table 3-1. GPIO Controller Function Multiplexing

TQFP

/

QFN

64

TQFP

100

LQFP

144 PIN

G

P

I
O Supply

Pin
Type

(1)

GPIO function

A B C D E F

19
9166DS–AVR-01/12

AT32UC3C

VDDIN_5 1.8V Voltage Regulator Input
Power

Input

Power Supply:

4.5V to 5.5V

or

3.0V to 3.6 V

VDDIN_33 USB I/O power supply

Power

Output/

Input

Capacitor Connection for the 3.3V
voltage regulator

or power supply:
3.0V to 3.6 V

VDDCORE 1.8V Voltage Regulator Output
Power
output

Capacitor Connection for the 1.8V
voltage regulator

GNDIO1
GNDIO2

GNDIO3

I/O Ground Ground

GNDANA Analog Ground Ground

GNDCORE Ground of the core Ground

GNDPLL Ground of the PLLs Ground

Analog Comparator Interface - ACIFA0/1

AC0AN1/AC0AN0 Negative inputs for comparator AC0A Analog

AC0AP1/AC0AP0 Positive inputs for comparator AC0A Analog

AC0BN1/AC0BN0 Negative inputs for comparator AC0B Analog

AC0BP1/AC0BP0 Positive inputs for comparator AC0B Analog

AC1AN1/AC1AN0 Negative inputs for comparator AC1A Analog

AC1AP1/AC1AP0 Positive inputs for comparator AC1A Analog

AC1BN1/AC1BN0 Negative inputs for comparator AC1B Analog

AC1BP1/AC1BP0 Positive inputs for comparator AC1B Analog

ACAOUT/ACBOUT analog comparator outputs output

ADC Interface - ADCIFA

ADCIN[15:0] ADC input pins Analog

ADCREF0 Analog positive reference 0 voltage input Analog

ADCREF1 Analog positive reference 1 voltage input Analog

ADCVREFP
Analog positive reference connected to external
capacitor

Analog

Table 3-7. Signal Description List

Signal Name Function Type
Active
Level Comments

27
9166DS–AVR-01/12

AT32UC3C

Figure 4-1. Overview of the AVR32UC CPU

4.3.1 Pipeline Overview
AVR32UC has three pipeline stages, Instruction Fetch (IF), Instruction Decode (ID), and Instruc-
tion Execute (EX). The EX stage is split into three parallel subsections, one arithmetic/logic
(ALU) section, one multiply (MUL) section, and one load/store (LS) section.

Instructions are issued and complete in order. Certain operations require several clock cycles to
complete, and in this case, the instruction resides in the ID and EX stages for the required num-
ber of clock cycles. Since there is only three pipeline stages, no internal data forwarding is
required, and no data dependencies can arise in the pipeline.

Figure 4-2 on page 28 shows an overview of the AVR32UC pipeline stages.

AVR32UC CPU pipeline

Instruction memory controller

MPU

H
ig

h
Sp

ee
d

Bu
s

H
ig

h
Sp

ee
d

Bu
s

OCD
system

O
C

D
 in

te
rfa

ce

In
te

rru
pt

 c
on

tro
lle

r i
nt

er
fa

ce

High
Speed

Bus slave

H
ig

h
Sp

ee
d

Bu
s

High Speed Bus master

Power/
Reset
control

R
es

et
 in

te
rfa

ce

CPU Local
Bus

master

C
P

U
 L

oc
al

 B
us

Data memory controller

CPU RAMHigh Speed
Bus master

28
9166DS–AVR-01/12

AT32UC3C

Figure 4-2. The AVR32UC Pipeline

4.3.2 AVR32A Microarchitecture Compliance
AVR32UC implements an AVR32A microarchitecture. The AVR32A microarchitecture is tar-
geted at cost-sensitive, lower-end applications l ike smaller microcontrollers. This
microarchitecture does not provide dedicated hardware registers for shadowing of register file
registers in interrupt contexts. Additionally, it does not provide hardware registers for the return
address registers and return status registers. Instead, all this information is stored on the system
stack. This saves chip area at the expense of slower interrupt handling.

4.3.2.1 Interrupt Handling
Upon interrupt initiation, registers R8-R12 are automatically pushed to the system stack. These
registers are pushed regardless of the priority level of the pending interrupt. The return address
and status register are also automatically pushed to stack. The interrupt handler can therefore
use R8-R12 freely. Upon interrupt completion, the old R8-R12 registers and status register are
restored, and execution continues at the return address stored popped from stack.

The stack is also used to store the status register and return address for exceptions and scall.
Executing the rete or rets instruction at the completion of an exception or system call will pop
this status register and continue execution at the popped return address.

4.3.2.2 Java Support
AVR32UC does not provide Java hardware acceleration.

4.3.2.3 Floating Point Support
A fused multiply-accumulate Floating Point Unit (FPU), performaing a multiply and accumulate
as a single operation with no intermediate rounding, therby increasing precision is provided. The
floating point hardware conforms to the requirements of the C standard, which is based on the
IEEE 754 floating point standard.

4.3.2.4 Memory Protection
The MPU allows the user to check all memory accesses for privilege violations. If an access is
attempted to an illegal memory address, the access is aborted and an exception is taken. The
MPU in AVR32UC is specified in the AVR32UC Technical Reference manual.

IF ID ALU

MUL

Regfile
write

Prefetch unit Decode unit

ALU unit

Multiply unit

Load-store
unitLS

Regfile
Read

35
9166DS–AVR-01/12

AT32UC3C

relative to EVBA. The autovector offset has 14 address bits, giving an offset of maximum 16384
bytes. The target address of the event handler is calculated as (EVBA | event_handler_offset),
not (EVBA + event_handler_offset), so EVBA and exception code segments must be set up
appropriately. The same mechanisms are used to service all different types of events, including
interrupt requests, yielding a uniform event handling scheme.

An interrupt controller does the priority handling of the interrupts and provides the autovector off-
set to the CPU.

4.5.1 System Stack Issues
Event handling in AVR32UC uses the system stack pointed to by the system stack pointer,
SP_SYS, for pushing and popping R8-R12, LR, status register, and return address. Since event
code may be timing-critical, SP_SYS should point to memory addresses in the IRAM section,
since the timing of accesses to this memory section is both fast and deterministic.

The user must also make sure that the system stack is large enough so that any event is able to
push the required registers to stack. If the system stack is full, and an event occurs, the system
will enter an UNDEFINED state.

4.5.2 Exceptions and Interrupt Requests
When an event other than scall or debug request is received by the core, the following actions
are performed atomically:

1. The pending event will not be accepted if it is masked. The I3M, I2M, I1M, I0M, EM, and
GM bits in the Status Register are used to mask different events. Not all events can be
masked. A few critical events (NMI, Unrecoverable Exception, TLB Multiple Hit, and
Bus Error) can not be masked. When an event is accepted, hardware automatically
sets the mask bits corresponding to all sources with equal or lower priority. This inhibits
acceptance of other events of the same or lower priority, except for the critical events
listed above. Software may choose to clear some or all of these bits after saving the
necessary state if other priority schemes are desired. It is the event source’s respons-
ability to ensure that their events are left pending until accepted by the CPU.

2. When a request is accepted, the Status Register and Program Counter of the current
context is stored to the system stack. If the event is an INT0, INT1, INT2, or INT3, reg-
isters R8-R12 and LR are also automatically stored to stack. Storing the Status
Register ensures that the core is returned to the previous execution mode when the
current event handling is completed. When exceptions occur, both the EM and GM bits
are set, and the application may manually enable nested exceptions if desired by clear-
ing the appropriate bit. Each exception handler has a dedicated handler address, and
this address uniquely identifies the exception source.

3. The Mode bits are set to reflect the priority of the accepted event, and the correct regis-
ter file bank is selected. The address of the event handler, as shown in Table 4-4 on
page 38, is loaded into the Program Counter.

The execution of the event handler routine then continues from the effective address calculated.

The rete instruction signals the end of the event. When encountered, the Return Status Register
and Return Address Register are popped from the system stack and restored to the Status Reg-
ister and Program Counter. If the rete instruction returns from INT0, INT1, INT2, or INT3,
registers R8-R12 and LR are also popped from the system stack. The restored Status Register
contains information allowing the core to resume operation in the previous execution mode. This
concludes the event handling.

40
9166DS–AVR-01/12

AT32UC3C

5.2 Physical Memory Map
The system bus is implemented as a bus matrix. All system bus addresses are fixed, and they
are never remapped in any way, not even in boot. Note that AVR32UC CPU uses unsegmented
translation, as described in the AVR32 Architecture Manual. The 32-bit physical address space
is mapped as follows:

5.3 Peripheral Address Map

Table 5-1. AT32UC3C Physical Memory Map

Device Start Address

AT32UC3 Derivatives

C0512C
C1512C
C2512C

C1256C
C2256C

C2128C

Embedded SRAM 0x0000_0000 64 KB 64 KB 64 KB 32 KB

Embedded Flash 0x8000_0000 512 KB 512 KB 256 KB 128 KB

SAU 0x9000_0000 1 KB 1 KB 1 KB 1 KB

HSB SRAM 0xA000_0000 4 KB 4 KB 4 KB 4 KB

EBI SRAM CS0 0xC000_0000 16 MB - - -

EBI SRAM CS2 0xC800_0000 16 MB - - -

EBI SRAM CS3 0xCC00_0000 16 MB - - -

EBI SRAM CS1
/SDRAM CS0

0xD000_0000 128 MB - - -

HSB-PB Bridge C 0xFFFD_0000 64 KB 64 KB 64 KB 64 KB

HSB-PB Bridge B 0xFFFE_0000 64 KB 64 KB 64 KB 64 KB

HSB-PB Bridge A 0xFFFF_0000 64 KB 64 KB 64 KB 64 KB

Table 5-2. Flash Memory Parameters

Part Number
Flash Size

(FLASH_PW)

Number of
pages

(FLASH_P)

Page size

(FLASH_W)

AT32UC3C0512C

AT32UC3C1512C
AT32UC3C2512C

512 Kbytes 1024 128 words

AT32UC3C1256C
AT32UC3C2256C

256 Kbytes 512 128 words

AT32UC3C2128C 128 Kbytes 256 128 words

Table 5-3. Peripheral Address Mapping

Address Peripheral Name

0xFFFD0000
PDCA Peripheral DMA Controller - PDCA

44
9166DS–AVR-01/12

AT32UC3C

B Output Driver Enable Register (ODER) WRITE 0x40000140 Write-only

SET 0x40000144 Write-only

CLEAR 0x40000148 Write-only

TOGGLE 0x4000014C Write-only

Output Value Register (OVR) WRITE 0x40000150 Write-only

SET 0x40000154 Write-only

CLEAR 0x40000158 Write-only

TOGGLE 0x4000015C Write-only

Pin Value Register (PVR) - 0x40000160 Read-only

C Output Driver Enable Register (ODER) WRITE 0x40000240 Write-only

SET 0x40000244 Write-only

CLEAR 0x40000248 Write-only

TOGGLE 0x4000024C Write-only

Output Value Register (OVR) WRITE 0x40000250 Write-only

SET 0x40000254 Write-only

CLEAR 0x40000258 Write-only

TOGGLE 0x4000025C Write-only

Pin Value Register (PVR) - 0x40000260 Read-only

D Output Driver Enable Register (ODER) WRITE 0x40000340 Write-only

SET 0x40000344 Write-only

CLEAR 0x40000348 Write-only

TOGGLE 0x4000034C Write-only

Output Value Register (OVR) WRITE 0x40000350 Write-only

SET 0x40000354 Write-only

CLEAR 0x40000358 Write-only

TOGGLE 0x4000035C Write-only

Pin Value Register (PVR) - 0x40000360 Read-only

Table 5-4. Local bus mapped GPIO registers

Port Register Mode
Local Bus
Address Access

49
9166DS–AVR-01/12

AT32UC3C

7. Electrical Characteristics

7.1 Absolute Maximum Ratings*

Notes: 1. VVDD corresponds to either VVDDIO1, VVDDIO2, VVDDIO3, or VVDDANA, depending on the supply for the pin. Refer to Section 3-1
on page 11 for details.

7.2 Supply Characteristics

The following characteristics are applicable to the operating temperature range: TA = -40°C to 125°C, unless otherwise
specified and are valid for a junction temperature up to TJ = 145°C. Please refer to Section 6. ”Supply and Startup Consid-
erations” on page 45.

Operating temperature................................... -40°C to +125°C *NOTICE: Stresses beyond those listed under “Absolute
Maximum Ratings” may cause permanent dam-
age to the device. This is a stress rating only and
functional operation of the device at these or
other conditions beyond those indicated in the
operational sections of this specification is not
implied. Exposure to absolute maximum rating
conditions for extended periods may affect
device reliability.

Storage temperature...................................... -60°C to +150°C

Voltage on any pin except DM/DP/VBUS
with respect to ground -0.3V to VVDD

(1)+0.3V

Voltage on DM/DP with respect to ground.........-0.3V to +3.6V

Voltage on VBUS with respect to ground...........-0.3V to +5.5V

Maximum operating voltage (VDDIN_5) 5.5V

Maximum operating voltage (VDDIO1, VDDIO2, VDDIO3,
VDDANA).. 5.5V

Maximum operating voltage (VDDIN_33) 3.6V

Total DC output current on all I/O pins- VDDIO1 40 mA

Total DC output current on all I/O pins- VDDIO2 40 mA

Total DC output current on all I/O pins- VDDIO3 40 mA

Total DC output current on all I/O pins- VDDANA.......... 40 mA

Table 7-1. Supply Characteristics

Symbol Parameter Condition

Voltage

Min Max Unit

VVDDIN_5 DC supply internal regulators
3V range 3.0 3.6

V
5V range 4.5 5.5

VVDDIN_33 DC supply USB I/O only in 3V range 3.0 3.6 V

VVDDANA
DC supply peripheral I/O and
analog part

3V range 3.0 3.6
V

5V range 4.5 5.5

VVDDIO1

VVDDIO2

VVDDIO2

DC supply peripheral I/O

3V range 3.0 3.6

V
5V range 4.5 5.5

50
9166DS–AVR-01/12

AT32UC3C

7.3 Maximum Clock Frequencies

These parameters are given in the following conditions:

• VVDDCORE > 1.85V

• Temperature = -40°C to 125°C

Note: 1. These values are based on simulation and characterization of other AVR microcontrollers manufactured in the same pro-
cess technology. These values are not covered by test limits in production.

7.4 Power Consumption

The values in Table 7-4 are measured values of power consumption under the following condi-
tions, except where noted:

• Operating conditions core supply (Figure 7-1)

– VVDDIN_5 = VVDDIN_33 = 3.3V

– VVDDCORE = 1.85V, supplied by the internal regulator

– VVDDIO1 = VVDDIO2 = VVDDIO3 = 3.3V

– VVDDANA = 3.3V

Table 7-2. Supply Rise Rates and Order

Symbol Parameter

Rise Rate

Min Max Comment

VVDDIN_5 DC supply internal 3.3V regulator 0.01 V/ms 1.25 V/us

VVDDIN_33 DC supply internal 1.8V regulator 0.01 V/ms 1.25 V/us

VVDDIO1

VVDDIO2

VVDDIO3

DC supply peripheral I/O 0.01 V/ms 1.25 V/us
Rise after or at the same time as
VDDIN_5, VDDIN_33

VVDDANA
DC supply peripheral I/O and
analog part

0.01 V/ms 1.25 V/us
Rise after or at the same time as
VDDIN_5, VDDIN_33

Table 7-3. Clock Frequencies

Symbol Parameter Conditions Min Max Units

fCPU CPU clock frequency 50 MHz

fPBA PBA clock frequency 50 MHz

fPBB PBB clock frequency 50 MHz

fPBC PBC clock frequency 50 MHz

fGCLK0 GCLK0 clock frequency Generic clock for USBC 50(1) MHz

fGCLK1 GCLK1 clock frequency Generic clock for CANIF 66(1) MHz

fGCLK2 GCLK2 clock frequency Generic clock for AST 80(1) MHz

fGCLK4 GCLK4 clock frequency Generic clock for PWM 120(1) MHz

fGCLK11 GCLK11 clock frequency Generic clock for IISC 50(1) MHz

51
9166DS–AVR-01/12

AT32UC3C

– Internal 3.3V regulator is off

• TA = 25°C

• I/Os are configured as inputs, with internal pull-up enabled.

• Oscillators

– OSC0/1 (crystal oscillator) stopped

– OSC32K (32KHz crystal oscillator) stopped

– PLL0 running

– PLL1 stopped

• Clocks

– External clock on XIN0 as main clock source (10MHz)

– CPU, HSB, and PBB clocks undivided

– PBA, PBC clock divided by 4

– All peripheral clocks running

Note: 1. These numbers are valid for the measured condition only and must not be extrapolated to other frequencies.

Table 7-4. Power Consumption for Different Operating Modes

Mode Conditions Measured on Consumption Typ Unit

Active(1) CPU running a recursive Fibonacci algorithm

Amp

512

µA/MHz
Idle(1) 258

Frozen(1) 106

Standby(1) 48

Stop 73

µA
DeepStop 43

Static
OSC32K and AST running 32

AST and OSC32K stopped 31

54
9166DS–AVR-01/12

AT32UC3C

7.5 I/O Pin Characteristics

Table 7-6. Normal I/O Pin Characteristics(1)

Symbol Parameter Condition Min Typ Max Units

RPULLUP Pull-up resistance
VVDD = 3V 5 26 kOhm

VVDD = 5V 5 16 kOhm

RPULLDOWN Pull-down resistance 2 16 kOhm

VIL
Input low-level
voltage

VVDD = 3V 0.3*VVDDIO
V

VVDD = 4.5V 0.3*VVDDIO

VIH
Input high-level
voltage

VVDD = 3.6V 0.7*VVDDIO
V

VVDD = 5.5V 0.7*VVDDIO

VOL
Output low-level
voltage

IOL = -3.5mA, pin drive x1(2)

0.5 VIOL = -7mA, pin drive x2(2)

IOL = -14mA, pin drive x4(2)

VOH
Output high-level
voltage

IOH = 3.5mA, pin drive x1(2)

VVDD - 0.8 VIOH = 7mA, pin drive x2(2)

IOH = 14mA, pin drive x4(2)

fMAX Output frequency(3)

VVDD = 3.0V

load = 10pF, pin drive x1(2) 30

MHz

load = 10pF, pin drive x2(2) 50

load = 10pF, pin drive x4(2) 60

load = 30pF, pin drive x1(2) 15

load = 30pF, pin drive x2(2) 25

load = 30pF, pin drive x4(2) 40

VVDD =4.5V

 load = 10pF, pin drive x1(2) 45

load = 10pF, pin drive x2(2) 65

load = 10pF, pin drive x4(2) 85

load = 30pF, pin drive x1(2) 20

load = 30pF, pin drive x2(2) 40

load = 30pF, pin drive x4(2) 60

85
9166DS–AVR-01/12

AT32UC3C

Figure 7-19. SDRAMC Signals relative to SDCK.

RAS

A0 - A9,
A11 - A13

D0 - D15
Read

SDCK

SDA10

D0 - D15
to Write

SDRAMC1

SDCKE

SDRAMC2 SDRAMC3 SDRAMC4

SDCS

SDRAMC5 SDRAMC6 SDRAMC5 SDRAMC6 SDRAMC5 SDRAMC6

SDRAMC7 SDRAMC8

CAS

SDRAMC15 SDRAMC16 SDRAMC15 SDRAMC16

SDWE

SDRAMC23 SDRAMC24

SDRAMC9 SDRAMC10SDRAMC9 SDRAMC10SDRAMC9 SDRAMC10

SDRAMC11 SDRAMC12 SDRAMC11 SDRAMC12SDRAMC11 SDRAMC12

BA0/BA1

SDRAMC13 SDRAMC14 SDRAMC13 SDRAMC14 SDRAMC13 SDRAMC14

SDRAMC17 SDRAMC18SDRAMC17 SDRAMC18

DQM0 -
DQM3

SDRAMC19 SDRAMC20

SDRAMC25 SDRAMC26

88
9166DS–AVR-01/12

AT32UC3C

Note: 1. These values are based on simulation and characterization of other AVR microcontrollers manufactured in the same pro-
cess technology. These values are not covered by test limits in production.

Figure 7-21. Ethernet MAC RMII Mode

Table 7-61. Ethernet MAC RMII Specific Signals(1)

Symbol Parameter Conditions Min. Max. Unit

MAC21 TX_EN toggling from TX_CLK rising

VVDD = 3.0V,
drive strength of the pads set to the

highest,
external capacitor = 10pF on MACB

pins

12.5 13.4 ns

MAC22 TXD toggling from TX_CLK rising 12.5 13.4 ns

MAC23 Setup for RXD from TX_CLK 4.7 ns

MAC24 Hold for RXD from TX_CLK 0 ns

MAC25 Setup for RX_ER from TX_CLK 3.6 ns

MAC26 Hold for RX_ER from TX_CLK 0 ns

MAC27 Setup for RX_DV from TX_CLK 4.6 ns

MAC28 Hold for RX_DV from TX_CLK 0 ns

TX_CLK

TX_EN

MAC22

TXD[1:0]

RXD[3:0]

MAC25 MAC26

MAC27 MAC28

RX_ER

RX_DV

MAC21

MAC23 MAC24

90
9166DS–AVR-01/12

AT32UC3C

8.2 Package Drawings

Figure 8-1. QFN-64 package drawing

Note: The exposed pad is not connected to anything internally, but should be soldered to ground to increase board level reliability.

Table 8-2. Device and Package Maximum Weight

200 mg

Table 8-3. Package Characteristics

Moisture Sensitivity Level Jdec J-STD0-20D - MSL 3

Table 8-4. Package Reference

JEDEC Drawing Reference MS-026

JESD97 Classification E3

99
9166DS–AVR-01/12

AT32UC3C

Fix/Workaround
None.

3 In host mode, the disconnection during OUT transition is not supported
In USB host mode, a pipe can not work if the previous USB device disconnection has
occurred during a USB transfer.
Fix/Workaround
Reset the USBC (USBCON.USB=0 and =1) after a device disconnection (UHINT.DDISCI).

4 In USB host mode, entering suspend mode can fail
In USB host mode, entering suspend mode can fail when UHCON.SOFE=0 is done just
after a SOF reception (UHINT.HSOFI).
Fix/Workaround
Check that UHNUM.FLENHIGH is below 185 in Full speed and below 21 in Low speed
before clearing UHCON.SOFE.

5 In USB host mode, entering suspend mode for low speed device can fail when the
USB freeze (USBCON.FRZCLK=1) is done just after UHCON.SOFE=0.
Fix/Workaround
When entering suspend mode (UHCON.SOFE is cleared), check that USBFSM.DRDSTATE
is not equal to three before freezing the clock (USBCON.FRZCLK=1).

10.1.11 WDT

1 WDT Control Register does not have synchronization feedback
When writing to the Timeout Prescale Select (PSEL), Time Ban Prescale Select (TBAN),
Enable (EN), or WDT Mode (MODE) fieldss of the WDT Control Register (CTRL), a synchro-
nizer is started to propagate the values to the WDT clcok domain. This synchronization
takes a finite amount of time, but only the status of the synchronization of the EN bit is
reflected back to the user. Writing to the synchronized fields during synchronization can lead
to undefined behavior.
Fix/Workaround
-When writing to the affected fields, the user must ensure a wait corresponding to 2 clock
cycles of both the WDT peripheral bus clock and the selected WDT clock source.
-When doing writes that changes the EN bit, the EN bit can be read back until it reflects the
written value.

100
9166DS–AVR-01/12

AT32UC3C

10.2 rev D

10.2.1 ADCIFA

1 ADCREFP/ADCREFN can not be selected as an external ADC reference by setting the
ADCIFA.CFG.EXREF bit to one
Fix/Workaround
A vo l tage re fe rence can be app l i ed on ADCREFP/ADCREFN p ins i f t he
ADCIFA.CFG.EXREF bit is set to zero, the ADCIFA.CFG.RS bit is set to zero and the volt-
age reference applied on ADCREFP/ADCREFN pins is higher than the internal 1V
reference.

10.2.2 AST

1 AST wake signal is released one AST clock cycle after the BUSY bit is cleared
After writing to the Status Clear Register (SCR) the wake signal is released one AST clock
cycle after the BUSY bit in the Status Register (SR.BUSY) is cleared. If entering sleep mode
directly after the BUSY bit is cleared the part will wake up immediately.
Fix/Workaround
Read the Wake Enable Register (WER) and write this value back to the same register. Wait
for BUSY to clear before entering sleep mode.

10.2.3 aWire

1 aWire MEMORY_SPEED_REQUEST command does not return correct CV
The aWire MEMORY_SPEED_REQUEST command does not return a CV corresponding to
the formula in the aWire Debug Interface chapter.
Fix/Workaround
I ssue a dummy read to add ress 0x100000000 be fo re i ssu ing the
MEMORY_SPEED_REQUEST command and use this formula instead:

10.2.4 GPIO

1 Clearing Interrupt flags can mask other interrupts
When clearing interrupt flags in a GPIO port, interrupts on other pins of that port, happening
in the same clock cycle will not be registered.
Fix/Workaround
Read the PVR register of the port before and after clearing the interrupt to see if any pin
change has happened while clearing the interrupt. If any change occurred in the PVR
between the reads, they must be treated as an interrupt.

10.2.5 Power Manager

1 Clock Failure Detector (CFD) can be issued while turning off the CFD
While turning off the CFD, the CFD bit in the Status Register (SR) can be set. This will
change the main clock source to RCSYS.
Fix/Workaround
Solution 1: Enable CFD interrupt. If CFD interrupt is issues after turning off the CFD, switch
back to original main clock source.
Solution 2: Only turn off the CFD while running the main clock on RCSYS.

fsab
7faw
CV 3–
-----------------=

101
9166DS–AVR-01/12

AT32UC3C

2 Requesting clocks in idle sleep modes will mask all other PB clocks than the
requested
In idle or frozen sleep mode, all the PB clocks will be frozen if the TWIS or the AST need to
wake the cpu up.
Fix/Workaround
Disable the TWIS or the AST before entering idle or frozen sleep mode.

3 TWIS may not wake the device from sleep mode
If the CPU is put to a sleep mode (except Idle and Frozen) directly after a TWI Start condi-
tion, the CPU may not wake upon a TWIS address match. The request is NACKed.
Fix/Workaround
When using the TWI address match to wake the device from sleep, do not switch to sleep
modes deeper than Frozen. Another solution is to enable asynchronous EIC wake on the
TWIS clock (TWCK) or TWIS data (TWD) pins, in order to wake the system up on bus
events.

10.2.6 SCIF

1 PLLCOUNT value larger than zero can cause PLLEN glitch
Initializing the PLLCOUNT with a value greater than zero creates a glitch on the PLLEN sig-
nal during asynchronous wake up.
Fix/Workaround
The lock-masking mechanism for the PLL should not be used.
The PLLCOUNT field of the PLL Control Register should always be written to zero.

2 PLL lock might not clear after disable
Under certain circumstances, the lock signal from the Phase Locked Loop (PLL) oscillator
may not go back to zero after the PLL oscillator has been disabled. This can cause the prop-
agation of clock signals with the wrong frequency to parts of the system that use the PLL
clock.
Fix/Workaround
PLL must be turned off before entering STOP, DEEPSTOP or STATIC sleep modes. If PLL
has been turned off, a delay of 30us must be observed after the PLL has been enabled
again before the SCIF.PLL0LOCK bit can be used as a valid indication that the PLL is
locked.

3 BOD33 reset locks the device
If BOD33 is enabled as a reset source (SCIF.BOD33.CTRL=0x1) and when VDDIN_33
power supply voltage falls below the BOD33 voltage (SCIF.BOD33.LEVEL), the device is
locked permanently under reset even if the power supply goes back above BOD33 reset
level. In order to unlock the device, an external reset event should be applied on RESET_N.
Fix/Workaround
Use an external BOD on VDDIN_33 or an external reset source.

10.2.7 SPI

1 SPI data transfer hangs with CSR0.CSAAT==1 and MR.MODFDIS==0
When CSR0.CSAAT==1 and mode fault detection is enabled (MR.MODFDIS==0), the SPI
module will not start a data transfer.
Fix/Workaround
Disable mode fault detection by writing a one to MR.MODFDIS.

102
9166DS–AVR-01/12

AT32UC3C

2 Disabling SPI has no effect on the SR.TDRE bit
Disabling SPI has no effect on the SR.TDRE bit whereas the write data command is filtered
when SPI is disabled. Writing to TDR when SPI is disabled will not clear SR.TDRE. If SPI is
disabled during a PDCA transfer, the PDCA will continue to write data to TDR until its buffer
is empty, and this data will be lost.
Fix/Workaround
Disable the PDCA, add two NOPs, and disable the SPI. To continue the transfer, enable the
SPI and PDCA.

3 SPI disable does not work in SLAVE mode
SPI disable does not work in SLAVE mode.
Fix/Workaround
Read the last received data, then perform a software reset by writing a one to the Software
Reset bit in the Control Register (CR.SWRST).

4 SPI bad serial clock generation on 2nd chip_select when SCBR=1, CPOL=1, and
NCPHA=0
When multiple chip selects (CS) are in use, if one of the baudrates equal 1 while one
(CSRn.SCBR=1) of the others do not equal 1, and CSRn.CPOL=1 and CSRn.NCPHA=0,
then an additional pulse will be generated on SCK.
Fix/Workaround
When multiple CS are in use, if one of the baudrates equals 1, the others must also equal 1
if CSRn.CPOL=1 and CSRn.NCPHA=0.

10.2.8 TC

1 Channel chaining skips first pulse for upper channel
When chaining two channels using the Block Mode Register, the first pulse of the clock
between the channels is skipped.
Fix/Workaround
Configure the lower channel with RA = 0x1 and RC = 0x2 to produce a dummy clock cycle
for the upper channel. After the dummy cycle has been generated, indicated by the
SR.CPCS bit, reconfigure the RA and RC registers for the lower channel with the real
values.

10.2.9 TWIM

1 SMBALERT bit may be set after reset
For TWIM0 and TWIM1 modules, the SMBus Alert (SMBALERT) bit in the Status Register
(SR) might be erroneously set after system reset.
Fix/Workaround
After system reset, clear the SR.SMBALERT bit before commencing any TWI transfer.

For TWIM2 module, the SMBus Alert (SMBALERT) is not implemented but the bit in the Sta-
tus Register (SR) is erroneously set once TWIM2 is enabled.
Fix/Workaround
None.

2 TWIM TWALM polarity is wrong
The TWALM signal in the TWIM is active high instead of active low.
Fix/Workaround
Use an external inverter to invert the signal going into the TWIM. When using both TWIM
and TWIS on the same pins, the TWALM cannot be used.

103
9166DS–AVR-01/12

AT32UC3C

10.2.10 TWIS

1 Clearing the NAK bit before the BTF bit is set locks up the TWI bus
When the TWIS is in transmit mode, clearing the NAK Received (NAK) bit of the Status Reg-
ister (SR) before the end of the Acknowledge/Not Acknowledge cycle will cause the TWIS to
attempt to continue transmitting data, thus locking up the bus.
Fix/Workaround
Clear SR.NAK only after the Byte Transfer Finished (BTF) bit of the same register has been
set.

2 TWIS stretch on Address match error
When the TWIS stretches TWCK due to a slave address match, it also holds TWD low for
the same duration if it is to be receiving data. When TWIS releases TWCK, it releases TWD
at the same time. This can cause a TWI timing violation.
Fix/Workaround
None.

3 TWALM forced to GND
The TWALM pin is forced to GND when the alternate function is selected and the TWIS
module is enabled.
Fix/Workaround
None.

10.2.11 USBC

1 UPINRQx.INRQ field is limited to 8-bits
In Host mode, when using the UPINRQx.INRQ feature together with the multi-packet mode
to launch a finite number of packet among multi-packet, the multi-packet size (located in the
descriptor table) is limited to the UPINRQx.INRQ value multiply by the pipe size.
Fix/Workaround
UPINRQx.INRQ value shall be less than the number of configured multi-packet.

2 In USB host mode, downstream resume feature does not work (UHCON.RESUME=1).
Fix/Workaround
None.

3 In host mode, the disconnection during OUT transition is not supported
In USB host mode, a pipe can not work if the previous USB device disconnection has
occurred during a USB transfer.
Fix/Workaround
Reset the USBC (USBCON.USB=0 and =1) after a device disconnection (UHINT.DDISCI).

4 In USB host mode, entering suspend mode can fail
In USB host mode, entering suspend mode can fail when UHCON.SOFE=0 is done just
after a SOF reception (UHINT.HSOFI).
Fix/Workaround
Check that UHNUM.FLENHIGH is below 185 in Full speed and below 21 in Low speed
before clearing UHCON.SOFE.

5 In USB host mode, entering suspend mode for low speed device can fail when the
USB freeze (USBCON.FRZCLK=1) is done just after UHCON.SOFE=0.
Fix/Workaround
When entering suspend mode (UHCON.SOFE is cleared), check that USBFSM.DRDSTATE
is not equal to three before freezing the clock (USBCON.FRZCLK=1).

