

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

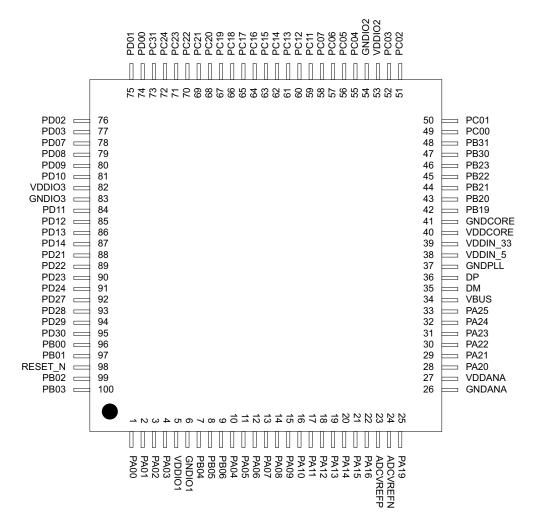
Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Details	
Product Status	Active
Core Processor	AVR
Core Size	32-Bit Single-Core
Speed	66MHz
Connectivity	CANbus, Ethernet, I ² C, IrDA, LINbus, SPI, UART/USART, USB
Peripherals	Brown-out Detect/Reset, DMA, I ² S, POR, PWM, WDT
Number of I/O	45
Program Memory Size	512KB (512K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	64K x 8
Voltage - Supply (Vcc/Vdd)	3V ~ 5.5V
Data Converters	A/D 11x12b; D/A 2x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	64-TQFP
Supplier Device Package	64-TQFP (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/at32uc3c2512c-a2zt

Email: info@E-XFL.COM


Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

AT32UC3C

- One 4-Channel 20-bit Pulse Width Modulation Controller (PWM)
 - Complementary outputs, with Dead Time Insertion
 - Output Override and Fault Protection
- Two Quadrature Decoders
- One 16-channel 12-bit Pipelined Analog-To-Digital Converter (ADC)
 - Dual Sample and Hold Capability Allowing 2 Synchronous Conversions
 - Single-Ended and Differential Channels, Window Function
- Two 12-bit Digital-To-Analog Converters (DAC), with Dual Output Sample System
- Four Analog Comparators
- Six 16-bit Timer/Counter (TC) Channels
 - External Clock Inputs, PWM, Capture and Various Counting Capabilities
- One Peripheral Event Controller
 - Trigger Actions in Peripherals Depending on Events Generated from Peripherals or from Input Pins
 - Deterministic Trigger
 - 34 Events and 22 Event Actions
- Five Universal Synchronous/Asynchronous Receiver/Transmitters (USART)
 - Independent Baudrate Generator, Support for SPI, LIN, IrDA and ISO7816 interfaces
 - Support for Hardware Handshaking, RS485 Interfaces and Modem Line
- Two Master/Slave Serial Peripheral Interfaces (SPI) with Chip Select Signals
- One Inter-IC Sound (I2S) Controller
 - Compliant with I2S Bus Specification
 - Time Division Multiplexed mode
- Three Master and Three Slave Two-Wire Interfaces (TWI), 400 kbit/s I²C-compatible
- QTouch[®] Library Support
 - Capacitive Touch Buttons, Sliders, and Wheels
 - QTouch[®] and QMatrix[®] Acquisition
- On-Chip Non-intrusive Debug System
 - Nexus Class 2+, Runtime Control, Non-Intrusive Data and Program Trace
 - aWire[™] single-pin programming trace and debug interface muxed with reset pin
 - NanoTrace[™] provides trace capabilities through JTAG or aWire interface
- 3 package options
 - 64-pin QFN/TQFP (45 GPIO pins)
 - 100-pin TQFP (81 GPIO pins)
 - 144-pin LQFP (123 GPIO pins)
- Two operating voltage ranges:
 - Single 5V Power Supply
 - Single 3.3V Power Supply

AT32UC3C

Figure 3-2. TQFP100 Pinout

Table 3-1.	GPIO Controller Function Multiplexing
------------	---------------------------------------

TQFP				G					GPIO fu	Inction		
/ QFN 64	TQFP 100	LQFP 144	PIN	P I O	Supply	Pin Type (1)	А	в	с	D	E	F
16	25	36	PA19	19	VDDANA	x1/x2	ADCIN8	EIC - EXTINT[1]				
19	28	39	PA20	20	VDDANA	x1/x2	ADCIN9	AC0AP0	AC0AP0 or DAC0A			
20	29	40	PA21	21	VDDANA	x1/x2	ADCIN10	AC0BN0	AC0BN0 or DAC0B			
21	30	41	PA22	22	VDDANA	x1/x2	ADCIN11	AC0AN0	PEVC - PAD_EVT [4]		MACB - SPEED	
22	31	42	PA23	23	VDDANA	x1/x2	ADCIN12	AC0BP0	PEVC - PAD_EVT [5]		MACB - WOL	
	32	43	PA24	24	VDDANA	x1/x2	ADCIN13	SPI1 - NPCS[2]				
	33	44	PA25	25	VDDANA	x1/x2	ADCIN14	SPI1 - NPCS[3]	EIC - EXTINT[0]			
		45	PA26	26	VDDANA	x1/x2	AC0AP1	EIC - EXTINT[1]				
		46	PA27	27	VDDANA	x1/x2	AC0AN1	EIC - EXTINT[2]				
		47	PA28	28	VDDANA	x1/x2	AC0BP1	EIC - EXTINT[3]				
		48	PA29	29	VDDANA	x1/x2	AC0BN1	EIC - EXTINT[0]				
62	96	140	PB00	32	VDDIO1	x1	USART0 - CLK	CANIF - RXLINE[1]	EIC - EXTINT[8]	PEVC - PAD_EVT [10]		
63	97	141	PB01	33	VDDIO1	x1		CANIF - TXLINE[1]		PEVC - PAD_EVT [11]		
	99	143	PB02	34	VDDIO1	x1		USBC - ID	PEVC - PAD_EVT [6]	TC1 - A1		
	100	144	PB03	35	VDDIO1	x1		USBC - VBOF	PEVC - PAD_EVT [7]			
	7	7	PB04	36	VDDIO1	x1/x2	SPI1 - MOSI	CANIF - RXLINE[0]	QDEC1 - QEPI		MACB - TXD[2]	
	8	8	PB05	37	VDDIO1	x1/x2	SPI1 - MISO	CANIF - TXLINE[0]	PEVC - PAD_EVT [12]	USART3- CLK	MACB - TXD[3]	
	9	9	PB06	38	VDDIO1	x2/x4	SPI1 - SCK		QDEC1 - QEPA	USART1- CLK	MACB - TX_ER	
		10	PB07	39	VDDIO1	x1/x2	SPI1 - NPCS[0]	EIC - EXTINT[2]	QDEC1 - QEPB		MACB - RX_DV	
		11	PB08	40	VDDIO1	x1/x2	SPI1 - NPCS[1]	PEVC - PAD_EVT [1]	PWM - PWML[0]		MACB - RXD[0]	
		12	PB09	41	VDDIO1	x1/x2	SPI1 - NPCS[2]		PWM - PWMH[0]		MACB - RXD[1]	
		13	PB10	42	VDDIO1	x1/x2	USART1 - DTR	SPI0 - MOSI	PWM - PWML[1]			

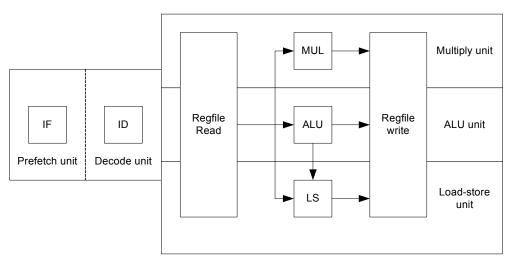


Table 3-7.Signal Description List

Signal Name	Function	Туре	Active Level	Comments				
ADCVREFN	Analog negative reference connected to external capacitor	Analog						
	Auxiliary Por	rt - AUX						
MCKO Trace Data Output Clock Output								
MDO[5:0]	Trace Data Output	Output						
MSEO[1:0]	Trace Frame Control	Output						
EVTI_N	Event In	Output	Low					
EVTO_N	Event Out	Output	Low					
	aWire - /	AW	I					
DATA	aWire data	I/O						
DATAOUT	aWire data output for 2-pin mode	I/O						
	Controller Area Network	<pre>< Interface - CA</pre>	NIF					
RXLINE[1:0]	CAN channel rxline	I/O						
TXLINE[1:0]	CAN channel txline	I/O						
	DAC Interface -	DACIFB0/1	I	1				
DAC0A, DAC0B	DAC0 output pins of S/H A	Analog						
DAC1A, DAC1B	DAC output pins of S/H B	Analog						
DACREF	Analog reference voltage input	Analog						
	External Bus Inte	erface - EBI	I	1				
ADDR[23:0]	Address Bus	Output						
CAS	Column Signal	Output	Low					
DATA[15:0]	Data Bus	I/O						
NCS[3:0]	Chip Select	Output	Low					
NRD	Read Signal	Output	Low					
NWAIT	External Wait Signal	Input	Low					
NWE0	Write Enable 0	Output	Low					
NWE1	Write Enable 1	Output	Low					
RAS	Row Signal	Output	Low					
SDA10	SDRAM Address 10 Line	Output						

Figure 4-2. The AVR32UC Pipeline

4.3.2 AVR32A Microarchitecture Compliance

AVR32UC implements an AVR32A microarchitecture. The AVR32A microarchitecture is targeted at cost-sensitive, lower-end applications like smaller microcontrollers. This microarchitecture does not provide dedicated hardware registers for shadowing of register file registers in interrupt contexts. Additionally, it does not provide hardware registers for the return address registers and return status registers. Instead, all this information is stored on the system stack. This saves chip area at the expense of slower interrupt handling.

4.3.2.1 Interrupt Handling

Upon interrupt initiation, registers R8-R12 are automatically pushed to the system stack. These registers are pushed regardless of the priority level of the pending interrupt. The return address and status register are also automatically pushed to stack. The interrupt handler can therefore use R8-R12 freely. Upon interrupt completion, the old R8-R12 registers and status register are restored, and execution continues at the return address stored popped from stack.

The stack is also used to store the status register and return address for exceptions and *scall*. Executing the *rete* or *rets* instruction at the completion of an exception or system call will pop this status register and continue execution at the popped return address.

4.3.2.2 Java Support

AVR32UC does not provide Java hardware acceleration.

4.3.2.3 Floating Point Support

A fused multiply-accumulate Floating Point Unit (FPU), performing a multiply and accumulate as a single operation with no intermediate rounding, therby increasing precision is provided. The floating point hardware conforms to the requirements of the C standard, which is based on the IEEE 754 floating point standard.

4.3.2.4 Memory Protection

The MPU allows the user to check all memory accesses for privilege violations. If an access is attempted to an illegal memory address, the access is aborted and an exception is taken. The MPU in AVR32UC is specified in the AVR32UC Technical Reference manual.

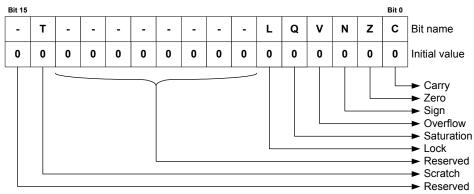


Figure 4-5. The Status Register Low Halfword

4.4.3 Processor States

4.4.3.1 Normal RISC State

The AVR32 processor supports several different execution contexts as shown in Table 4-2.

Priority	ty Mode Security Description		Description
1	Non Maskable Interrupt	Privileged	Non Maskable high priority interrupt mode
2	Exception Privileg		Execute exceptions
3	Interrupt 3	Privileged	General purpose interrupt mode
4	Interrupt 2	Privileged	General purpose interrupt mode
5	Interrupt 1	Privileged	General purpose interrupt mode
6	Interrupt 0	Privileged	General purpose interrupt mode
N/A	Supervisor	Privileged	Runs supervisor calls
N/A	Application	Unprivileged	Normal program execution mode

 Table 4-2.
 Overview of Execution Modes, their Priorities and Privilege Levels.

Mode changes can be made under software control, or can be caused by external interrupts or exception processing. A mode can be interrupted by a higher priority mode, but never by one with lower priority. Nested exceptions can be supported with a minimal software overhead.

When running an operating system on the AVR32, user processes will typically execute in the application mode. The programs executed in this mode are restricted from executing certain instructions. Furthermore, most system registers together with the upper halfword of the status register cannot be accessed. Protected memory areas are also not available. All other operating modes are privileged and are collectively called System Modes. They have full access to all privileged and unprivileged resources. After a reset, the processor will be in supervisor mode.

4.4.3.2 Debug State

The AVR32 can be set in a debug state, which allows implementation of software monitor routines that can read out and alter system information for use during application development. This implies that all system and application registers, including the status registers and program counters, are accessible in debug state. The privileged instructions are also available.

All interrupt levels are by default disabled when debug state is entered, but they can individually be switched on by the monitor routine by clearing the respective mask bit in the status register.

5.2 Physical Memory Map

The system bus is implemented as a bus matrix. All system bus addresses are fixed, and they are never remapped in any way, not even in boot. Note that AVR32UC CPU uses unsegmented translation, as described in the AVR32 Architecture Manual. The 32-bit physical address space is mapped as follows:

			AT3	32UC3 Derivatives	
Device	Start Address	C0512C	C1512C C2512C	C1256C C2256C	C2128C
Embedded SRAM	0x0000_0000	64 KB	64 KB	64 KB	32 KB
Embedded Flash	0x8000_0000	512 KB	512 KB	256 KB	128 KB
SAU	0x9000_0000	1 KB	1 KB	1 KB	1 KB
HSB SRAM	0xA000_0000	4 KB	4 KB	4 KB	4 KB
EBI SRAM CS0	0xC000_0000	16 MB	-	-	-
EBI SRAM CS2	0xC800_0000	16 MB	-	-	-
EBI SRAM CS3	0xCC00_0000	16 MB	-	-	-
EBI SRAM CS1 /SDRAM CS0	0xD000_0000	128 MB	-	-	-
HSB-PB Bridge C	0xFFFD_0000	64 KB	64 KB	64 KB	64 KB
HSB-PB Bridge B	0xFFFE_0000	64 KB	64 KB	64 KB	64 KB
HSB-PB Bridge A	0xFFFF_0000	64 KB	64 KB	64 KB	64 KB

Table 5-1.	AT32UC3C Physical Memory	Мар
------------	--------------------------	-----

Table 5-2.Flash Memory Parameters

Part Number	Flash Size (FLASH_PW)	Number of pages (FLASH_P)	Page size (FLASH_W)
AT32UC3C0512C AT32UC3C1512C AT32UC3C2512C	512 Kbytes	1024	128 words
AT32UC3C1256C AT32UC3C2256C	256 Kbytes	512	128 words
AT32UC3C2128C	128 Kbytes	256	128 words

Peripheral Name

5.3 Peripheral Address Map

Table 5-3.Peripheral Address Mapping

Address

0xFFFD0000

PDCA

Peripheral DMA Controller - PDCA

Table 5-3.Peripheral Address Mapping

iprieral Audres	is mapping	
0xFFFD1000	MDMA	Memory DMA - MDMA
0xFFFD1400	USART1	Universal Synchronous/Asynchronous Receiver/Transmitter - USART1
0xFFFD1800	SPI0	Serial Peripheral Interface - SPI0
0xFFFD1C00	CANIF	Control Area Network interface - CANIF
0xFFFD2000	TC0	Timer/Counter - TC0
0xFFFD2400	ADCIFA	ADC controller interface with Touch Screen functionality - ADCIFA
0xFFFD2800	USART4	Universal Synchronous/Asynchronous Receiver/Transmitter - USART4
0xFFFD2C00	TWIM2	Two-wire Master Interface - TWIM2
0xFFFD3000	TWIS2	Two-wire Slave Interface - TWIS2
0xFFFE0000	HFLASHC	Flash Controller - HFLASHC
0xFFFE1000	USBC	USB 2.0 OTG Interface - USBC
0xFFFE2000	HMATRIX	HSB Matrix - HMATRIX
0xFFFE2400	SAU	Secure Access Unit - SAU
0xFFFE2800	SMC	Static Memory Controller - SMC
0xFFFE2C00	SDRAMC	SDRAM Controller - SDRAMC
0xFFFE3000	MACB	Ethernet MAC - MACB
0xFFFF0000	INTC	Interrupt controller - INTC
0xFFFF0400	PM	Power Manager - PM
0xFFFF0800	SCIF	System Control Interface - SCIF

6.2 Startup Considerations

This chapter summarizes the boot sequence of the AT32UC3C. The behavior after power-up is controlled by the Power Manager. For specific details, refer to the Power Manager chapter.

6.2.1 Starting of clocks

At power-up, the BOD33 and the BOD18 are enabled. The device will be held in a reset state by the power-up circuitry, until the VDDIN_33 (resp. VDDCORE) has reached the reset threshold of the BOD33 (resp BOD18). Refer to the Electrical Characteristics for the BOD thresholds. Once the power has stabilized, the device will use the System RC Oscillator (RCSYS, 115KHz typical frequency) as clock source. The BOD18 and BOD33 are kept enabled or are disabled according to the fuse settings (See the Fuse Setting section in the Flash Controller chapter).

On system start-up, the PLLs are disabled. All clocks to all modules are running. No clocks have a divided frequency, all parts of the system receive a clock with the same frequency as the internal RC Oscillator.

6.2.2 Fetching of initial instructions

After reset has been released, the AVR32UC CPU starts fetching instructions from the reset address, which is 0x8000_0000. This address points to the first address in the internal Flash.

The internal Flash uses VDDIO voltage during read and write operations. It is recommended to use the BOD33 to monitor this voltage and make sure the VDDIO is above the minimum level (3.0V).

The code read from the internal Flash is free to configure the system to use for example the PLLs, to divide the frequency of the clock routed to some of the peripherals, and to gate the clocks to unused peripherals.

Table 7-2. Supply Rise Rates and Order

			Rise Rate				
Symbol	Parameter	Min	Мах	Comment			
V_{VDDIN_5}	DC supply internal 3.3V regulator	0.01 V/ms	1.25 V/us				
V _{VDDIN_33}	DC supply internal 1.8V regulator	0.01 V/ms	1.25 V/us				
V _{VDDIO1} V _{VDDIO2} V _{VDDIO3}	DC supply peripheral I/O	0.01 V/ms	1.25 V/us	Rise after or at the same time as VDDIN_5, VDDIN_33			
V _{VDDANA}	DC supply peripheral I/O and analog part	0.01 V/ms	1.25 V/us	Rise after or at the same time as VDDIN_5, VDDIN_33			

7.3 Maximum Clock Frequencies

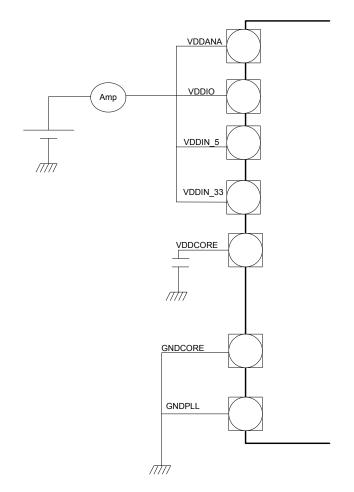
These parameters are given in the following conditions:

- V_{VDDCORE} > 1.85V
- Temperature = -40°C to 125°C

Table 7-3.	Clock Frequencies
------------	-------------------

Symbol	Parameter	Conditions	Min	Max	Units
f _{CPU}	CPU clock frequency			50	MHz
f _{PBA}	PBA clock frequency			50	MHz
f _{PBB}	PBB clock frequency			50	MHz
f _{PBC}	PBC clock frequency			50	MHz
f _{GCLK0}	GCLK0 clock frequency	Generic clock for USBC		50 ⁽¹⁾	MHz
f _{GCLK1}	GCLK1 clock frequency	Generic clock for CANIF		66 ⁽¹⁾	MHz
f _{GCLK2}	GCLK2 clock frequency	Generic clock for AST		80 ⁽¹⁾	MHz
f _{GCLK4}	GCLK4 clock frequency	Generic clock for PWM		120 ⁽¹⁾	MHz
f _{GCLK11}	GCLK11 clock frequency	Generic clock for IISC		50 ⁽¹⁾	MHz

Note: 1. These values are based on simulation and characterization of other AVR microcontrollers manufactured in the same process technology. These values are not covered by test limits in production.


7.4 Power Consumption

The values in Table 7-4 are measured values of power consumption under the following conditions, except where noted:

- Operating conditions core supply (Figure 7-1)
 - V_{VDDIN_5} = V_{VDDIN_33} = 3.3V
 - $V_{VDDCORE} = 1.85V$, supplied by the internal regulator
 - V_{VDDIO1} = V_{VDDIO2} = V_{VDDIO3} = 3.3V
 - $V_{VDDANA} = 3.3V$

Figure 7-1. Measurement Schematic

7.4.1 Peripheral Power Consumption

The values in Table 7-5 are measured values of power consumption under the following conditions.

• Operating conditions core supply (Figure 7-1)

 $-V_{VDDIN_5} = V_{DDIN_{33}} = 3.3V$

- $V_{VDDCORE} = 1.85V$, supplied by the internal regulator
- V_{VDDIO1} = V_{VDDIO2} = V_{VDDIO3} = 3.3V
- $V_{VDDANA} = 3.3V$
- Internal 3.3V regulator is off.
- TA = 25°C
- I/Os are configured as inputs, with internal pull-up enabled.
- Oscillators
 - OSC0/1 (crystal oscillator) stopped
 - OSC32K (32KHz crystal oscillator) stopped
 - PLL0 running

7.8.8 Analog Comparator Characteristics

Symbol	Parameter	Conditions	Min	Тур	Max	Units
	Positive input voltage range		0		V _{VDDANA}	V
	Negative input voltage range		0		V _{VDDANA}	V
M	V _{OFFSET} Offset	No hysteresis, Low Power mode	-36		36	mV
VOFFSET		No hysteresis, High Speed mode	-21		21	mV
		Low hysteresis, Low Power mode	7		49	mV
M		Low hysteresis, High Speed mode	5		39	
V _{HYST}	Hysteresis	High hysteresis, Low Power mode	16		113	mV
		High hysteresis, High Speed mode	12		76	IIIV
	Propagation delay	Low Power mode			3.3	
t _{DELAY}		High Speed mode			0.102	us
t _{STARTUP}	Start-up time				20	μs

 Table 7-41.
 Analog Comparator Characteristics⁽¹⁾

Note: 1. The measures are done without any I/O activity on VDDANA/GNDANA power domain.

Table 7-42. VDDANA scaled reference

Symbol	Parameter	Min	Тур	Max	Units
SCF	ACIFA.SCFi.SCF range	0		32	
V _{VDDANA} scaled			(64 - SCF) * V _{VDDANA} / 65		V
	V _{VDDANA} voltage accuracy			4.1	%

7.8.9 USB Transceiver Characteristics

7.8.9.1 Electrical Characteristics

Table 7-43. Electrical Parameters

Symbol	Parameter	Conditions	Min.	Тур.	Max.	Unit
R _{EXT}	Recommended external USB series resistor	In series with each USB pin with ±5%		39		Ω

The USB on-chip buffers comply with the Universal Serial Bus (USB) v2.0 standard. All AC parameters related to these buffers can be found within the USB 2.0 electrical specifications.

7.9.6 JTAG Timing

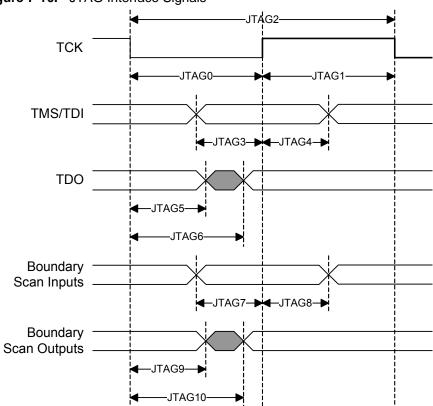


Figure 7-16. JTAG Interface Signals

Table 7-51.	JTAG	Timings ⁽¹⁾
-------------	------	------------------------

Symbol	Parameter	Conditions	Min	Max	Units
JTAG0	TCK Low Half-period		23		ns
JTAG1	TCK High Half-period		9		ns
JTAG2	TCK Period		31		ns
JTAG3	TDI, TMS Setup before TCK High		7		ns
JTAG4	TDI, TMS Hold after TCK High	external	0		ns
JTAG5	TDO Hold Time	capacitor =	13.5		ns
JTAG6	TCK Low to TDO Valid	40pF		23	ns
JTAG7	Boundary Scan Inputs Setup Time		0		ns
JTAG8	Boundary Scan Inputs Hold Time		4.5		ns
JTAG9	Boundary Scan Outputs Hold Time		12		ns
JTAG10	TCK to Boundary Scan Outputs Valid			19	ns

Note: 1. These values are based on simulation and characterization of other AVR microcontrollers manufactured in the same process technology. These values are not covered by test limits in production.

Symbol	Parameter	Conditions	Min	Units
SMC ₃₇	NWE rising to A2-A25 valid		9.1	
SMC ₃₈	NWE rising to NBS0/A0 valid	_	7.9	
SMC ₄₀	NWE rising to A1/NBS2 change	V _{VDD} = 3.0V, drive strength of the pads set to the lowest,	9.1	
SMC ₄₂	NWE rising to NCS rising		8.7	ns
SMC ₄₃	Data Out valid before NWE rising	external capacitor = 40pF	(nwe pulse length - 1) * tcpsмc - 1.5	
SMC ₄₄	Data Out valid after NWE rising		8.7	
SMC ₄₅	NWE pulse width		nwe pulse length * tcpsмc - 0.1	1

 Table 7-56.
 SMC Write Signals with No Hold Settings (NWE Controlled only)⁽¹⁾

Note: 1. These values are based on simulation and characterization of other AVR microcontrollers manufactured in the same process technology. These values are not covered by test limits in production.

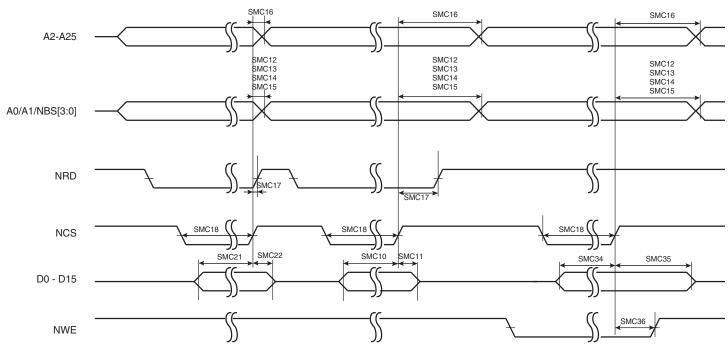


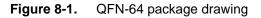
Figure 7-17. SMC Signals for NCS Controlled Accesses

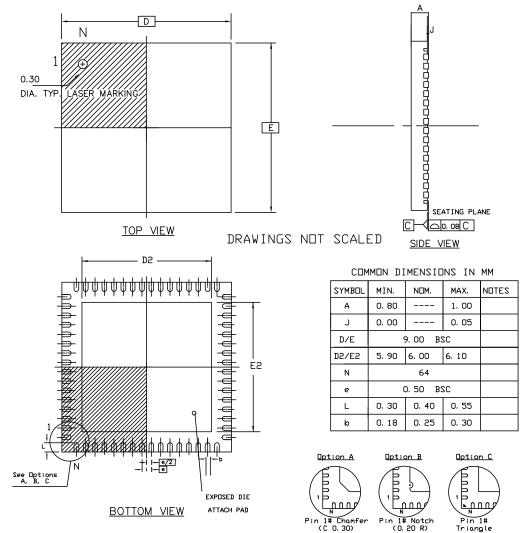
7.9.9 MACB Characteristics

 Table 7-59.
 Ethernet MAC Signals⁽¹⁾

Symbol	Parameter	Conditions	Min.	Max.	Unit
MAC ₁	Setup for MDIO from MDC rising	$V_{VDD} = 3.0V,$	0	2.6	ns
MAC ₂	Hold for MDIO from MDC rising	drive strength of the pads set to the highest.	0	0.7	ns
MAC ₃	MDIO toggling from MDC falling	external capacitor = 10pF on MACB pins	0	1.1	ns

Note: 1. These values are based on simulation and characterization of other AVR microcontrollers manufactured in the same process technology. These values are not covered by test limits in production.


 Table 7-60.
 Ethernet MAC MII Specific Signals⁽¹⁾


Symbol	Parameter	Conditions	Min.	Max.	Unit
MAC ₄	Setup for COL from TX_CLK rising		0		ns
MAC ₅	Hold for COL from TX_CLK rising		0		ns
MAC ₆	Setup for CRS from TX_CLK rising	_	0.5		ns
MAC ₇	Hold for CRS from TX_CLK rising	_	0.6		ns
MAC ₈	TX_ER toggling from TX_CLK rising	-	17.3	19.6	ns
MAC ₉	TX_EN toggling from TX_CLK rising	V _{VDD} = 3.0V, drive strength of the pads set to the	15.5	16.2	ns
MAC ₁₀	TXD toggling from TX_CLK rising	highest,	14.9	19.2	ns
MAC ₁₁	Setup for RXD from RX_CLK	external capacitor = 10pF on MACB	1.3		ns
MAC ₁₂	Hold for RXD from RX_CLK	– pins	2		ns
MAC ₁₃	Setup for RX_ER from RX_CLK	-	3.6		ns
MAC ₁₄	Hold for RX_ER from RX_CLK	-	0		ns
MAC ₁₅	Setup for RX_DV from RX_CLK		0.7		ns
MAC ₁₆	Hold for RX_DV from RX_CLK		1.4		ns

Note: 1. These values are based on simulation and characterization of other AVR microcontrollers manufactured in the same process technology. These values are not covered by test limits in production.

8.2 Package Drawings

Note: The exposed pad is not connected to anything internally, but should be soldered to ground to increase board level reliability.

200		mg	
Table 8-3.	Package Characteristics		
Moisture Ser	nsitivity Level	Jdec J-STD0-20D - MSL 3	
Table 8-4.	Package Reference		
JEDEC Drav	wing Reference	MS-026	
JESD97 Cla	ssification	E3	

8.3 Soldering Profile

Table 8-14 gives the recommended soldering profile from J-STD-20.

Profile Feature	Green Package
Average Ramp-up Rate (217°C to Peak)	3°C/sec
Preheat Temperature 175°C ±25°C	Min. 150 °C, Max. 200 °C
Temperature Maintained Above 217°C	60-150 sec
Time within 5.C of Actual Peak Temperature	30 sec
Peak Temperature Range	260 °C
Ramp-down Rate	6 °C/sec
Time 25 C to Peak Temperature	Max. 8 minutes

Note: It is recommended to apply a soldering temperature higher than 250°C. A maximum of three reflow passes is allowed per component.

9. Ordering Information

Table 9-1. Ordering Information				
Device	Ordering Code	Carrier Type	Package	Temperature Operating Range
AT32UC3C0512C	AT32UC3C0512C-ALZT	Tray	LQFP 144	Automotive (-40°C to 125°C)
	AT32UC3C0512C-ALZR	Tape & Reel		
AT32UC3C1512C	AT32UC3C1512C-AZT	Tray	TQFP 100	
	AT32UC3C1512C-AZR	Tape & Reel		
AT32UC3C1256C	AT32UC3C1256C-AZT	Tray	- TQFP 100	
	AT32UC3C1256C-AZR	Tape & Reel		
AT32UC3C2512C	AT32UC3C2512C-A2ZT	Tray	TQFP 64	
	AT32UC3C2512C-A2ZR	Tape & Reel		
AT32UC3C2512C	AT32UC3C2512C-Z2ZT	Tray	QFN 64	
	AT32UC3C2512C-Z2ZR	Tape & Reel		
AT32UC3C2256C	AT32UC3C2256C-A2ZT	Tray	TQFP 64	
	AT32UC3C2256C-A2ZR	Tape & Reel		
AT32UC3C2256C	AT32UC3C2256C-Z2ZT	Tray	QFN 64	
	AT32UC3C2256C-Z2ZR	Tape & Reel		
AT32UC3C2128C	AT32UC3C2128C-A2ZT	Tray	TQFP 64	
	AT32UC3C2128C-A2ZR	Tape & Reel		
AT32UC3C2128C	AT32UC3C2128C-Z2ZT	Tray	QFN 64	
	AT32UC3C2128C-Z2ZR	Tape & Reel		

2 Disabling SPI has no effect on the SR.TDRE bit

Disabling SPI has no effect on the SR.TDRE bit whereas the write data command is filtered when SPI is disabled. Writing to TDR when SPI is disabled will not clear SR.TDRE. If SPI is disabled during a PDCA transfer, the PDCA will continue to write data to TDR until its buffer is empty, and this data will be lost.

Fix/Workaround

Disable the PDCA, add two NOPs, and disable the SPI. To continue the transfer, enable the SPI and PDCA.

3 SPI disable does not work in SLAVE mode

SPI disable does not work in SLAVE mode.

Fix/Workaround

Read the last received data, then perform a software reset by writing a one to the Software Reset bit in the Control Register (CR.SWRST).

4 SPI bad serial clock generation on 2nd chip select when SCBR=1, CPOL=1, and NCPHA=0

When multiple chip selects (CS) are in use, if one of the baudrates equal 1 while one (CSRn.SCBR=1) of the others do not equal 1, and CSRn.CPOL=1 and CSRn.NCPHA=0, then an additional pulse will be generated on SCK.

Fix/Workaround

When multiple CS are in use, if one of the baudrates equals 1, the others must also equal 1 if CSRn.CPOL=1 and CSRn.NCPHA=0.

10.2.8 TC

1 Channel chaining skips first pulse for upper channel

When chaining two channels using the Block Mode Register, the first pulse of the clock between the channels is skipped.

Fix/Workaround

Configure the lower channel with RA = 0x1 and RC = 0x2 to produce a dummy clock cycle for the upper channel. After the dummy cycle has been generated, indicated by the SR.CPCS bit, reconfigure the RA and RC registers for the lower channel with the real values.

10.2.9 TWIM

1 SMBALERT bit may be set after reset

For TWIM0 and TWIM1 modules, the SMBus Alert (SMBALERT) bit in the Status Register (SR) might be erroneously set after system reset. Fix/Workaround

After system reset, clear the SR.SMBALERT bit before commencing any TWI transfer.

For TWIM2 module, the SMBus Alert (SMBALERT) is not implemented but the bit in the Status Register (SR) is erroneously set once TWIM2 is enabled. Fix/Workaround None.

2 TWIM TWALM polarity is wrong

The TWALM signal in the TWIM is active high instead of active low. Fix/Workaround

Use an external inverter to invert the signal going into the TWIM. When using both TWIM and TWIS on the same pins, the TWALM cannot be used.

10.2.10 TWIS

10.2.11 USBC

1 Clearing the NAK bit before the BTF bit is set locks up the TWI bus

When the TWIS is in transmit mode, clearing the NAK Received (NAK) bit of the Status Register (SR) before the end of the Acknowledge/Not Acknowledge cycle will cause the TWIS to attempt to continue transmitting data, thus locking up the bus. **Fix/Workaround**

Clear SR.NAK only after the Byte Transfer Finished (BTF) bit of the same register has been set.

2 TWIS stretch on Address match error

When the TWIS stretches TWCK due to a slave address match, it also holds TWD low for the same duration if it is to be receiving data. When TWIS releases TWCK, it releases TWD at the same time. This can cause a TWI timing violation. **Fix/Workaround**

None.

3 TWALM forced to GND

The TWALM pin is forced to GND when the alternate function is selected and the TWIS module is enabled.

Fix/Workaround

None.

1 UPINRQx.INRQ field is limited to 8-bits

In Host mode, when using the UPINRQx.INRQ feature together with the multi-packet mode to launch a finite number of packet among multi-packet, the multi-packet size (located in the descriptor table) is limited to the UPINRQx.INRQ value multiply by the pipe size. **Fix/Workaround**

UPINRQx.INRQ value shall be less than the number of configured multi-packet.

2 In USB host mode, downstream resume feature does not work (UHCON.RESUME=1). Fix/Workaround

None.

3 In host mode, the disconnection during OUT transition is not supported In USB host mode, a pipe can not work if the previous USB device disconnection has occurred during a USB transfer. Fix/Workaround

Reset the USBC (USBCON.USB=0 and =1) after a device disconnection (UHINT.DDISCI).

4 In USB host mode, entering suspend mode can fail

In USB host mode, entering suspend mode can fail when UHCON.SOFE=0 is done just after a SOF reception (UHINT.HSOFI).

Fix/Workaround

Check that UHNUM.FLENHIGH is below 185 in Full speed and below 21 in Low speed before clearing UHCON.SOFE.

5 In USB host mode, entering suspend mode for low speed device can fail when the USB freeze (USBCON.FRZCLK=1) is done just after UHCON.SOFE=0. Fix/Workaround

When entering suspend mode (UHCON.SOFE is cleared), check that USBFSM.DRDSTATE is not equal to three before freezing the clock (USBCON.FRZCLK=1).

