

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	AVR
Core Size	32-Bit Single-Core
Speed	50MHz
Connectivity	CANbus, Ethernet, I ² C, IrDA, LINbus, SPI, UART/USART, USB
Peripherals	Brown-out Detect/Reset, DMA, I ² S, POR, PWM, WDT
Number of I/O	45
Program Memory Size	512KB (512K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	64K x 8
Voltage - Supply (Vcc/Vdd)	3V ~ 5.5V
Data Converters	A/D 11x12b; D/A 2x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	64-VFQFN Exposed Pad
Supplier Device Package	64-QFN (9x9)
Purchase URL	https://www.e-xfl.com/product-detail/atmel/at32uc3c2512c-z2zt

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

2.2 Configuration Summary

 Table 2-1.
 Configuration Summary

Feature	AT32UC3C0512C	AT32UC3C1512C	AT32UC3C2512C			
Flash	512 KB	512 KB	512 KB			
SRAM	64KB	64KB	64KB			
HSB RAM		4 KB				
EBI	1	0	0			
GPIO	123	81	45			
External Interrupts	8	8	8			
TWI	3	3	2			
USART	5	5	4			
Peripheral DMA Channels	16	16	16			
Peripheral Event System	1	1	1			
SPI	2	2	1			
CAN channels	2	2				
USB	1	1	1			
Ethernet MAC 10/100	1	1	1			
	RMII/MII	RMII/MII	RMII only			
12S	1	1	1			
Asynchronous Timers	1	1	1			
Timer/Counter Channels	6	6	3			
PWM channels	4x2					
QDEC	2	1				
Frequency Meter		1				
Watchdog Timer	1					
Power Manager	1					
Oscillators	PLL 80-240 MHz (PLL0/PLL1) Crystal Oscillator 0.4-20 MHz (OSC0) Crystal Oscillator 32 KHz (OSC32K) RC Oscillator 115 kHz (RCSYS) RC Oscillator 8 MHz (RC8M) RC Oscillator 120 MHz (RC120M)					
	0.4-20 Mi	Hz (OSC1)	-			
12-bit ADC	1 16	1	1 11			
12-hit DAC	1	1	1			
number of channels	4	4	2			
Analog Comparators	4	4	2			
JTAG	1					

Table 3-1.	GPIO	Controller	Function	Multiplexing

TQFP				G			GPIO function					
/ QFN 64	TQFP 100	LQFP 144	PIN	P I O	Supply	Pin Type (1)	A	в	с	D	Е	F
		124	PD15	111	VDDIO3	x1/x2	TC0 - A0	USART3 - TXD	EBI - ADDR[11]			
		125	PD16	112	VDDIO3	x1/x2	TC0 - B0	USART3 - RXD	EBI - ADDR[12]			
		126	PD17	113	VDDIO3	x1/x2	TC0 - A1	USART3 - CTS	EBI - ADDR[13]	USART3- CLK		
		127	PD18	114	VDDIO3	x1/x2	TC0 - B1	USART3 - RTS	EBI - ADDR[14]			
		128	PD19	115	VDDIO3	x1/x2	TC0 - A2		EBI - ADDR[15]			
		129	PD20	116	VDDIO3	x1/x2	TC0 - B2		EBI - ADDR[16]			
57	88	130	PD21	117	VDDIO3	x1/x2	USART3 - TXD	EIC - EXTINT[0]	EBI - ADDR[17]	QDEC1 - QEPI		
	89	131	PD22	118	VDDIO1	x1/x2	USART3 - RXD	TC0 - A2	EBI - ADDR[18]	SCIF - GCLK[0]		
	90	132	PD23	119	VDDIO1	x1/x2	USART3 - CTS	USART3 - CLK	EBI - ADDR[19]	QDEC1 - QEPA		
	91	133	PD24	120	VDDIO1	x1/x2	USART3 - RTS	EIC - EXTINT[8]	EBI - NWE1	QDEC1 - QEPB		
		134	PD25	121	VDDIO1	x1/x2	TC0 - CLK0	USBC - ID	EBI - NWE0		USART4 - CLK	
		135	PD26	122	VDDIO1	x1/x2	TC0 - CLK1	USBC - VBOF	EBI - NRD			
58	92	136	PD27	123	VDDIO1	x1/x2	USART0 - TXD	CANIF - RXLINE[0]	EBI - NCS[1]	TC0 - A0	MACB - RX_ER	
59	93	137	PD28	124	VDDIO1	x1/x2	USART0 - RXD	CANIF - TXLINE[0]	EBI - NCS[2]	TC0 - B0	MACB - RX_DV	
60	94	138	PD29	125	VDDIO1	x1/x2	USART0 - CTS	EIC - EXTINT[6]	USART0 - CLK	TC0 - CLK0	MACB - TX_CLK	
61	95	139	PD30	126	VDDIO1	x1/x2	USART0 - RTS	EIC - EXTINT[3]	EBI - NWAIT	TC0 - A1	MACB - TX_EN	

Pin type x1 is pin with drive strength of x1. Pin type x1/x2 is pin with programmable drive strength of x1 or x2. Pin type x2/x4 is pin with programmable drive strength of x2 or x4. The drive strength is programmable through ODCR0, ODCR0S, ODCR0C, ODCR0T registers of GPIO. Refer to "Electrical Characteristics" on page 49 for a description of the electrical properties of the pin types used.

See Section 3.3 for a description of the various peripheral signals.

3.2.2 Peripheral Functions

Each GPIO line can be assigned to one of several peripheral functions. The following table describes how the various peripheral functions are selected. The last listed function has priority in case multiple functions are enabled on the same pin.

Table 3-2. Peripheral Functions	able 3-2.	Peripheral Functions
---------------------------------	-----------	----------------------

Function	Description
GPIO Controller Function multiplexing	GPIO and GPIO peripheral selection A to F
Nexus OCD AUX port connections	OCD trace system
aWire DATAOUT	aWire output in two-pin mode
JTAG port connections	JTAG debug port
Oscillators	OSC0, OSC32

3.2.3 Oscillator Pinout

The oscillators are not mapped to the normal GPIO functions and their muxings are controlled by registers in the System Control Interface (SCIF). Please refer to the SCIF chapter for more information about this.

QFN64/ TQFP64 pin	TQFP100 pin	LQFP144 pin	Pad	Oscillator pin
31	47	69	PB30	xin0
	99	143	PB02	xin1
62	96	140	PB00	xin32
32	48	70	PB31	xout0
	100	144	PB03	xout1
63	97	141	PB01	xout32

Table 3-3.Oscillator pinout

3.2.4 JTAG port connections

If the JTAG is enabled, the JTAG will take control over a number of pins, irrespectively of the I/O Controller configuration.

Table 3-4. JTAG pinout

QFN64/ TQFP64 pin	TQFP100 pin	LQFP144 pin	Pin name	JTAG pin
2	2	2	PA01	TDI
3	3	3	PA02	TDO
4	4	4	PA03	TMS
1	1	1	PA00	ТСК

3.2.5 Nexus OCD AUX port connections

If the OCD trace system is enabled, the trace system will take control over a number of pins, irrespectively of the GPIO configuration. Three different OCD trace pin mappings are possible,

Table 3-7.Signal Description List

Signal Name	Function	Туре	Active Level	Comments			
RX_CLK	Receive Clock	Input					
RX_DV	Receive Data Valid	Input					
RX_ER	Receive Coding Error	Input					
SPEED	Speed	Output					
TXD[3:0]	Transmit Data	Output					
TX_CLK	Transmit Clock or Reference Clock	Input					
TX_EN	Transmit Enable	Output					
TX_ER	Transmit Coding Error	Output					
WOL	Wake-On-LAN	Output					
Peripheral Event Controller - PEVC							
PAD_EVT[15:0]	Event Input Pins	Input					
Power Manager - PM							
RESET_N	Reset Pin	Input	Low				
Pulse Width Modulator - PWM							
PWMH[3:0] PWML[3:0]	PWM Output Pins	Output					
EXT_FAULT[1:0]	PWM Fault Input Pins	Input					
	Quadrature Decoder- QDEC0/QDEC1						
QEPA	QEPA quadrature input	Input					
QEPB	QEPB quadrature input	Input					
QEPI	Index input	Input					
	System Controller Inte	erface- SCIF					
XIN0, XIN1, XIN32	Crystal 0, 1, 32K Inputs	Analog					
XOUT0, XOUT1, XOUT32	Crystal 0, 1, 32K Output	Analog					
GCLK0 - GCLK1	Generic Clock Pins	Output					
	Serial Peripheral Interfac	e - SPI0, SP	911				
MISO	Master In Slave Out	I/O					
MOSI	Master Out Slave In	I/O					

4.3.2.5 Unaligned Reference Handling

AVR32UC does not support unaligned accesses, except for doubleword accesses. AVR32UC is able to perform word-aligned *st.d* and *ld.d*. Any other unaligned memory access will cause an address exception. Doubleword-sized accesses with word-aligned pointers will automatically be performed as two word-sized accesses.

The following table shows the instructions with support for unaligned addresses. All other instructions require aligned addresses.

Instruction	Supported Alignment
ld.d	Word
st.d	Word

Table 4-1.Instructions with	Unaligned	Reference	Support
-----------------------------	-----------	-----------	---------

4.3.2.6 Unimplemented Instructions

The following instructions are unimplemented in AVR32UC, and will cause an Unimplemented Instruction Exception if executed:

- All SIMD instructions
- All coprocessor instructions if no coprocessors are present
- retj, incjosp, popjc, pushjc
- tlbr, tlbs, tlbw
- cache

4.3.2.7 CPU and Architecture Revision

Three major revisions of the AVR32UC CPU currently exist. The device described in this datasheet uses CPU revision 3.

The Architecture Revision field in the CONFIG0 system register identifies which architecture revision is implemented in a specific device.

AVR32UC CPU revision 3 is fully backward-compatible with revisions 1 and 2, ie. code compiled for revision 1 or 2 is binary-compatible with revision 3 CPUs.

4.5.3 Supervisor Calls

The AVR32 instruction set provides a supervisor mode call instruction. The *scall* instruction is designed so that privileged routines can be called from any context. This facilitates sharing of code between different execution modes. The *scall* mechanism is designed so that a minimal execution cycle overhead is experienced when performing supervisor routine calls from time-critical event handlers.

The *scall* instruction behaves differently depending on which mode it is called from. The behaviour is detailed in the instruction set reference. In order to allow the *scall* routine to return to the correct context, a return from supervisor call instruction, *rets*, is implemented. In the AVR32UC CPU, *scall* and *rets* uses the system stack to store the return address and the status register.

4.5.4 Debug Requests

The AVR32 architecture defines a dedicated Debug mode. When a debug request is received by the core, Debug mode is entered. Entry into Debug mode can be masked by the DM bit in the status register. Upon entry into Debug mode, hardware sets the SR.D bit and jumps to the Debug Exception handler. By default, Debug mode executes in the exception context, but with dedicated Return Address Register and Return Status Register. These dedicated registers remove the need for storing this data to the system stack, thereby improving debuggability. The Mode bits in the Status Register can freely be manipulated in Debug mode, to observe registers in all contexts, while retaining full privileges.

Debug mode is exited by executing the *retd* instruction. This returns to the previous context.

4.5.5 Entry Points for Events

Several different event handler entry points exist. In AVR32UC, the reset address is 0x80000000. This places the reset address in the boot flash memory area.

TLB miss exceptions and *scall* have a dedicated space relative to EVBA where their event handler can be placed. This speeds up execution by removing the need for a jump instruction placed at the program address jumped to by the event hardware. All other exceptions have a dedicated event routine entry point located relative to EVBA. The handler routine address identifies the exception source directly.

AVR32UC uses the ITLB and DTLB protection exceptions to signal a MPU protection violation. ITLB and DTLB miss exceptions are used to signal that an access address did not map to any of the entries in the MPU. TLB multiple hit exception indicates that an access address did map to multiple TLB entries, signalling an error.

All interrupt requests have entry points located at an offset relative to EVBA. This autovector offset is specified by an interrupt controller. The programmer must make sure that none of the autovector offsets interfere with the placement of other code. The autovector offset has 14 address bits, giving an offset of maximum 16384 bytes.

Special considerations should be made when loading EVBA with a pointer. Due to security considerations, the event handlers should be located in non-writeable flash memory, or optionally in a privileged memory protection region if an MPU is present.

If several events occur on the same instruction, they are handled in a prioritized way. The priority ordering is presented in Table 4-4 on page 38. If events occur on several instructions at different locations in the pipeline, the events on the oldest instruction are always handled before any events on any younger instruction, even if the younger instruction has events of higher priority

6. Supply and Startup Considerations

6.1 Supply Considerations

6.1.1 Power Supplies

The AT32UC3C has several types of power supply pins:

- VDDIO pins (VDDIO1, VDDIO2, VDDIO3): Power I/O lines. Two voltage ranges are available: 5V or 3.3V nominal. The VDDIO pins should be connected together.
- VDDANA: Powers the Analog part of the device (Analog I/Os, ADC, ACs, DACs). 2 voltage ranges available: 5V or 3.3V nominal.
- VDDIN_5: Input voltage for the 1.8V and 3.3V regulators. Two Voltage ranges are available: 5V or 3.3V nominal.
- VDDIN_33:
 - USB I/O power supply
 - if the device is 3.3V powered: Input voltage, voltage is 3.3V nominal.
 - if the device is 5V powered: stabilization for the 3.3V voltage regulator, requires external capacitors
- VDDCORE: Stabilization for the 1.8V voltage regulator, requires external capacitors.
- GNDCORE: Ground pins for the voltage regulators and the core.
- GNDANA: Ground pin for Analog part of the design
- GNDPLL: Ground pin for the PLLs
- GNDIO pins (GNDIO1, GNDIO2, GNDIO3): Ground pins for the I/O lines. The GNDIO pins should be connected together.

See "Electrical Characteristics" on page 49 for power consumption on the various supply pins.

For decoupling recommendations for the different power supplies, please refer to the schematic checklist.

6.1.2 Voltage Regulators

The AT32UC3C embeds two voltage regulators:

- One 1.8V internal regulator that converts from VDDIN_5 to 1.8V. The regulator supplies the output voltage on VDDCORE.
- One 3.3V internal regulator that converts from VDDIN_5 to 3.3V. The regulator supplies the USB pads on VDDIN_33. If the USB is not used or if VDDIN_5 is within the 3V range, the 3.3V regulator can be disabled through the VREG33CTL field of the VREGCTRL SCIF register.

6.1.3 Regulators Connection

The AT32UC3C supports two power supply configurations.

- 5V single supply mode
- 3.3V single supply mode

6.1.3.1 5V Single Supply Mode

In 5V single supply mode, the 1.8V internal regulator is connected to the 5V source (VDDIN_5 pin) and its output feeds VDDCORE.

- PLL1 stopped
- Clocks
 - External clock on XIN0 as main clock source.
 - CPU, HSB, and PB clocks undivided

Consumption active is the added current consumption when the module clock is turned on and when the module is doing a typical set of operations.

Peripheral	Typ Consumption Active	Unit
ACIFA ⁽¹⁾	3	
ADCIFA ⁽¹⁾	7	
AST	3	
CANIF	25	
DACIFB ⁽¹⁾	3	
EBI	23	
EIC	0.5	
FREQM	0.5	
GPIO	37	
INTC	3	
MDMA	4	
PDCA	24	
PEVC	15	
PWM	40	
QDEC	3	µA/MHz
SAU	3	
SDRAMC	2	
SMC	9	
SPI	5	
ТС	8	
TWIM	2	
TWIS	2	
USART	10	
USBC	5	
WDT	2	

 Table 7-5.
 Typical Current Consumption by Peripheral⁽²⁾

Notes: 1. Includes the current consumption on VDDANA.

2. These numbers are valid for the measured condition only and must not be extrapolated to other frequencies.

7.7 Flash Characteristics

Table 7-15 gives the device maximum operating frequency depending on the number of flash wait states. The FSW bit in the FLASHC FSR register controls the number of wait states used when accessing the flash memory.

 Table 7-15.
 Maximum Operating Frequency

Flash Wait States	Read Mode	Maximum Operating Frequency
0	1 cycle	25MHz
1	2 cycles	50MHz

Table 7-16. Flash Characteristics

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
t _{FPP}	Page programming time	6 50MU-		17		
t _{FPE}	Page erase time			17		
t _{FFP}	Fuse programming time	$I_{CLK_{HSB}} = 50101HZ$		1.3		ms
t _{FEA}	Full chip erase time (EA)	_		18.3		
t _{FCE}	JTAG chip erase time (CHIP_ERASE)	f _{CLK_HSB} = 115kHz		640		

Table 7-17. Flash Endurance and Data Retention

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
N _{FARRAY}	Array endurance (write/page)		10k			cycles
N _{FFUSE}	General Purpose fuses endurance (write/bit)		500			cycles
t _{RET}	Data retention		15			years

 Table 7-29.
 ADC Decoupling requirements

Symbol	Parameter	Conditions	Min	Тур	Мах	Units
CADCREFPN	ADCREFP/ADCREFN capacitance	No voltage reference appplied on ADCREFP/ADCREFN		100		nF

Table 7-30. ADC Inputs

Symbol	Parameter	Conditions	Min	Тур	Max	Units
V _{ADCINn}	ADC input voltage range		0		V _{VDDANA}	V
<u> </u>	Internal Canaditanaa	ADC used without S/H			5	۳E
CONCHIP	Internal Capacitance	ADC used with S/H			4	р⊢
R _{ONCHIP}	Switch resistance	ADC used without S/H			5.1	ko
		ADC used with S/H			4.6	- KS2

Symbol	Parameter	Conditions	Min	Тур	Max	Units
RES	Resolution	Differential mode,			12	Bit
INL	Integral Non-Linearity	$V_{VDDANA} = 3V,$			6	LSB
DNL	Differential Non-Linearity	$V_{ADCREF0} = 1V,$			5	LSB
	Offset error	ADCFIA.SEQCFGn.SRES = 0	-10		10	mV
	Gain error	$(F_{adc} = 1.2MHz)$	-30		30	mV

Symbol	Parameter	Conditions	Min	Тур	Max	Units
RES	Resolution	Differential mode,			10	Bit
INL	Integral Non-Linearity	$V_{VDDANA} = 5V,$			2	LSB
DNL	Differential Non-Linearity	$V_{ADCREF0} = 3V,$			2	LSB
	Offset error		-30		30	mV
	Gain error	$(F_{adc} = 1.5 MHz)$	-30		30	mV

Table 7-36. ADC and S/H Transfer Characteristics (Continued)10-bit Resolution Mode and S/H gain from 1 to 16⁽¹⁾

Note: 1. The measures are done without any I/O activity on VDDANA/GNDANA power domain.

7.8.7 Digital to Analog Converter (DAC) Characteristics

 Table 7-37.
 Channel Conversion Time and DAC Clock

Symbol	Parameter	Conditions	Min	Тур	Max	Units
f _{DAC}	DAC clock frequency				1	MHz
t _{STARTUP}	Startup time				3	μs
		No S/H enabled, internal DAC			1	μs
t _{CONV}	Conversion time (latency)	One S/H			1.5	μs
		Two S/H			2	μs
	Throughput rate				1/t _{CONV}	MSPS

Table 7-38. External Voltage Reference Input

Symbol	Parameter	Conditions	Min	Тур	Мах	Units
V _{DACREF}	DACREF input voltage range		1.2		V _{VDDANA} -0.7	V

Table 7-39. DAC Outputs

Symbol	Parameter	Conditions	Min	Тур	Max	Units
	Output range	with external DAC reference	0.2		VDACREF	V
		with internal DAC reference	0.2		V _{VDDANA} -0.7	v
C _{LOAD}	Output capacitance		0		100	pF
R _{LOAD}	Output resitance		2			kΩ

Figure 7-9. USART in SPI Slave Mode With (CPOL= CPHA= 0) or (CPOL= CPHA= 1)

 Table 7-47.
 USART in SPI mode Timing, Slave Mode⁽¹⁾

Symbol	Parameter	Conditions	Min	Мах	Units
USPI6	SPCK falling to MISO delay			28.5	ns
USPI7	MOSI setup time before SPCK rises		$t_{SAMPLE}^{(2)} + t_{CLK_USART}$		ns
USPI8	MOSI hold time after SPCK rises		0		ns
USPI9	SPCK rising to MISO delay			30	ns
USPI10	MOSI setup time before SPCK falls	external	$t_{SAMPLE}^{(2)} + t_{CLK_USART}$		ns
USPI11	MOSI hold time after SPCK falls	40pF	0		ns
USPI12	NSS setup time before SPCK rises		35		ns
USPI13	NSS hold time after SPCK falls		0		ns
USPI14	NSS setup time before SPCK falls		35		ns
USPI15	NSS hold time after SPCK rises		0		ns

2. Where:
$$t_{SAMPLE} = t_{SPCK} - \left(\left\lfloor \frac{t_{SPCK}}{2 \times t_{CLKUSART}} \right\rfloor + \frac{1}{2} \right) \times t_{CLKUSART}$$

Maximum SPI Frequency, Slave Input Mode

The maximum SPI slave input frequency is given by the following formula:

$$f_{SPCKMAX} = MIN(\frac{f_{CLKSPI} \times 2}{9}, \frac{1}{SPIn})$$

Where *SPIn* is the MOSI setup and hold time, USPI7 + USPI8 or USPI10 + USPI11 depending on CPOL and NCPHA. f_{CLKSPI} is the maximum frequency of the CLK_SPI. Refer to the SPI chapter for a description of this clock.

Maximum SPI Frequency, Slave Output Mode

The maximum SPI slave output frequency is given by the following formula:

$$f_{SPCKMAX} = MIN(\frac{f_{CLKSPI} \times 2}{9}, f_{PINMAX}, \frac{1}{SPIn + t_{SETUP}})$$

Where *SPIn* is the MISO delay, USPI6 or USPI9 depending on CPOL and NCPHA. T_{SETUP} is the SPI master setup time. Please refer to the SPI masterdatasheet for T_{SETUP} . f_{CLKSPI} is the maximum frequency of the CLK_SPI. Refer to the SPI chapter for a description of this clock. f_{PINMAX} is the maximum frequency of the SPI pins. Please refer to the I/O Pin Characteristics section for the maximum frequency of the pins.

7.9.4 SPI Timing

7.9.4.1 Master mode

Figure 7-11. SPI Master Mode With (CPOL= NCPHA= 0) or (CPOL= NCPHA= 1)

Symbol	Parameter	Conditions	Min	Units
SMC ₃₇	NWE rising to A2-A25 valid		9.1	
SMC ₃₈	NWE rising to NBS0/A0 valid		7.9	
SMC ₄₀	NWE rising to A1/NBS2 change	$V_{VDD} = 3.0V,$	9.1	
SMC ₄₂	NWE rising to NCS rising	drive strength of the pads	8.7	ns
SMC ₄₃	Data Out valid before NWE rising	external capacitor = 40pF	(nwe pulse length - 1) * tсрѕмс - 1.5	
SMC ₄₄	Data Out valid after NWE rising	_	8.7	
SMC ₄₅	NWE pulse width		nwe pulse length * tcpsmc - 0.1	

 Table 7-56.
 SMC Write Signals with No Hold Settings (NWE Controlled only)⁽¹⁾

Figure 7-17. SMC Signals for NCS Controlled Accesses

7.9.9 MACB Characteristics

 Table 7-59.
 Ethernet MAC Signals⁽¹⁾

Symbol	Parameter	Conditions	Min.	Max.	Unit
MAC ₁	Setup for MDIO from MDC rising	$V_{VDD} = 3.0V,$	0	2.6	ns
MAC ₂	Hold for MDIO from MDC rising	drive strength of the pads set to the	0	0.7	ns
MAC ₃	MDIO toggling from MDC falling	external capacitor = 10pF on MACB pins	0	1.1	ns

Note: 1. These values are based on simulation and characterization of other AVR microcontrollers manufactured in the same process technology. These values are not covered by test limits in production.

 Table 7-60.
 Ethernet MAC MII Specific Signals⁽¹⁾

Symbol	Parameter	Conditions	Min.	Max.	Unit
MAC ₄	Setup for COL from TX_CLK rising		0		ns
MAC ₅	Hold for COL from TX_CLK rising		0		ns
MAC ₆	Setup for CRS from TX_CLK rising		0.5		ns
MAC ₇	Hold for CRS from TX_CLK rising		0.6		ns
MAC ₈	TX_ER toggling from TX_CLK rising		17.3	19.6	ns
MAC ₉	TX_EN toggling from TX_CLK rising	$V_{VDD} = 3.0V$, drive strength of the pads set to the	15.5	16.2	ns
MAC ₁₀	TXD toggling from TX_CLK rising	highest,	14.9	19.2	ns
MAC ₁₁	Setup for RXD from RX_CLK	external capacitor = 10pF on MACB	1.3		ns
MAC ₁₂	Hold for RXD from RX_CLK	- pins	2		ns
MAC ₁₃	Setup for RX_ER from RX_CLK		3.6		ns
MAC ₁₄	Hold for RX_ER from RX_CLK		0		ns
MAC ₁₅	Setup for RX_DV from RX_CLK		0.7		ns
MAC ₁₆	Hold for RX_DV from RX_CLK		1.4		ns

Symbol	Parameter	Conditions	Min.	Max.	Unit
MAC ₂₁	TX_EN toggling from TX_CLK rising		12.5	13.4	ns
MAC ₂₂	TXD toggling from TX_CLK rising		12.5	13.4	ns
MAC ₂₃	Setup for RXD from TX_CLK	$V_{VDD} = 3.0V,$	4.7		ns
MAC ₂₄	Hold for RXD from TX_CLK	drive strength of the pads set to the	0		ns
MAC ₂₅	Setup for RX_ER from TX_CLK	external capacitor = 10pF on MACB	3.6		ns
MAC ₂₆	Hold for RX_ER from TX_CLK	pins	0		ns
MAC ₂₇	Setup for RX_DV from TX_CLK		4.6		ns
MAC ₂₈	Hold for RX_DV from TX_CLK		0		ns

Table 7-61. Ethernet MAC RMII Specific Signals⁽¹⁾

8. Mechanical Characteristics

8.1 Thermal Considerations

8.1.1 Thermal Data

Table 8-1 summarizes the thermal resistance data depending on the package.

Symbol	Parameter	Condition	Package	Тур	Unit
θ_{JA}	Junction-to-ambient thermal resistance	No air flow	QFN64	20.0	°C ///
θ_{JC}	Junction-to-case thermal resistance		QFN64	0.8	-C/W
θ_{JA}	Junction-to-ambient thermal resistance	No air flow	TQFP64	40.5	°C ///
θ_{JC}	Junction-to-case thermal resistance		TQFP64	8.7	-0/00
θ_{JA}	Junction-to-ambient thermal resistance	No air flow	TQFP100	39.3	00000
θ_{JC}	Junction-to-case thermal resistance		TQFP100	8.5	-0/00
θ_{JA}	Junction-to-ambient thermal resistance	No air flow	LQFP144	38.1	0000
θ_{JC}	Junction-to-case thermal resistance		LQFP144	8.4	°C/W

 Table 8-1.
 Thermal Resistance Data

8.1.2 Junction Temperature

The average chip-junction temperature, T_J, in °C can be obtained from the following:

1.
$$T_J = T_A + (P_D \times \theta_{JA})$$

2. $T_J = T_A + (P_D \times (\theta_{HEATSINK} + \theta_{JC}))$

where:

- θ_{JA} = package thermal resistance, Junction-to-ambient (°C/W), provided in Table 8-1 on page 89.
- θ_{JC} = package thermal resistance, Junction-to-case thermal resistance (°C/W), provided in Table 8-1 on page 89.
- $\theta_{HEAT SINK}$ = cooling device thermal resistance (°C/W), provided in the device datasheet.
- P_D = device power consumption (W) estimated from data provided in the section "Power Consumption" on page 50.
- T_A = ambient temperature (°C).

From the first equation, the user can derive the estimated lifetime of the chip and decide if a cooling device is necessary or not. If a cooling device is to be fitted on the chip, the second equation should be used to compute the resulting average chip-junction temperature T_J in °C.

10. Errata

10.1 rev E

10.1.1 ADCIFA

1 ADCREFP/ADCREFN can not be selected as an external ADC reference by setting the ADCIFA.CFG.EXREF bit to one Fix/Workaround

A voltage reference can be applied on ADCREFP/ADCREFN pins if the ADCIFA.CFG.EXREF bit is set to zero, the ADCIFA.CFG.RS bit is set to zero and the voltage reference applied on ADCREFP/ADCREFN pins is higher than the internal 1V reference.

10.1.2 AST

1 AST wake signal is released one AST clock cycle after the BUSY bit is cleared After writing to the Status Clear Register (SCR) the wake signal is released one AST clock cycle after the BUSY bit in the Status Register (SR.BUSY) is cleared. If entering sleep mode directly after the BUSY bit is cleared the part will wake up immediately. Fix/Workaround

Read the Wake Enable Register (WER) and write this value back to the same register. Wait for BUSY to clear before entering sleep mode.

10.1.3 aWire

1 aWire MEMORY_SPEED_REQUEST command does not return correct CV

The aWire MEMORY_SPEED_REQUEST command does not return a CV corresponding to the formula in the aWire Debug Interface chapter.

Fix/Workaround

Issue a dummy read to address 0x10000000 before issuing the MEMORY_SPEED_REQUEST command and use this formula instead:

$$f_{sab} = \frac{7f_{aw}}{CV-3}$$

10.1.4 Power Manager

1 TWIS may not wake the device from sleep mode

If the CPU is put to a sleep mode (except Idle and Frozen) directly after a TWI Start condition, the CPU may not wake upon a TWIS address match. The request is NACKed. **Fix/Workaround**

When using the TWI address match to wake the device from sleep, do not switch to sleep modes deeper than Frozen. Another solution is to enable asynchronous EIC wake on the TWIS clock (TWCK) or TWIS data (TWD) pins, in order to wake the system up on bus events.

10.2 rev D

10.2.1 ADCIFA

1 ADCREFP/ADCREFN can not be selected as an external ADC reference by setting the ADCIFA.CFG.EXREF bit to one Fix/Workaround

A voltage reference can be applied on ADCREFP/ADCREFN pins if the ADCIFA.CFG.EXREF bit is set to zero, the ADCIFA.CFG.RS bit is set to zero and the voltage reference applied on ADCREFP/ADCREFN pins is higher than the internal 1V reference.

10.2.2 AST

1 AST wake signal is released one AST clock cycle after the BUSY bit is cleared After writing to the Status Clear Register (SCR) the wake signal is released one AST clock cycle after the BUSY bit in the Status Register (SR.BUSY) is cleared. If entering sleep mode directly after the BUSY bit is cleared the part will wake up immediately. Fix/Workaround Read the Wake Enable Register (WER) and write this value back to the same register. Wait

Read the Wake Enable Register (WER) and write this value back to the same register. Wait for BUSY to clear before entering sleep mode.

10.2.3 aWire

1 aWire MEMORY_SPEED_REQUEST command does not return correct CV The aWire MEMORY_SPEED_REQUEST command does not return a CV corresponding to

the formula in the aWire Debug Interface chapter.

Fix/Workaround

Issue a dummy read to address 0x10000000 before issuing the MEMORY_SPEED_REQUEST command and use this formula instead:

$$f_{sab} = \frac{7f_{aw}}{CV-3}$$

10.2.4 GPIO

1 Clearing Interrupt flags can mask other interrupts

When clearing interrupt flags in a GPIO port, interrupts on other pins of that port, happening in the same clock cycle will not be registered.

Fix/Workaround

Read the PVR register of the port before and after clearing the interrupt to see if any pin change has happened while clearing the interrupt. If any change occurred in the PVR between the reads, they must be treated as an interrupt.

10.2.5 Power Manager

1 Clock Failure Detector (CFD) can be issued while turning off the CFD

While turning off the CFD, the CFD bit in the Status Register (SR) can be set. This will change the main clock source to RCSYS.

Fix/Workaround

Solution 1: Enable CFD interrupt. If CFD interrupt is issues after turning off the CFD, switch back to original main clock source.

Solution 2: Only turn off the CFD while running the main clock on RCSYS.

AT32UC3C

	7.7	Flash Characteristics	59
	7.8	Analog Characteristics	60
	7.9	Timing Characteristics	69
8	Mecha	nical Characteristics	89
	8.1	Thermal Considerations	89
	8.2	Package Drawings	90
	8.3	Soldering Profile	94
9	Orderi	ng Information	95
10	Errata		
10	<i>Errata</i> 10.1	rev E	
10	<i>Errata</i> 10.1 10.2	rev E rev D	96 96 100
10 11	<i>Errata</i> 10.1 10.2 <i>Datash</i>	rev E rev D neet Revision History	
10 11	<i>Errata</i> 10.1 10.2 <i>Datash</i> 11.1	rev E rev D neet Revision History Rev. D – 01/12	
10 11	<i>Errata</i> 10.1 10.2 <i>Datash</i> 11.1 11.2	rev E rev D 	
10 11	<i>Errata</i> 10.1 10.2 <i>Datash</i> 11.1 11.2 11.3	rev E rev D 	
10	<i>Errata</i> 10.1 10.2 <i>Datash</i> 11.1 11.2 11.3 11.4	rev E rev D meet Revision History Rev. D – 01/12 Rev. C – 08/11 Rev. B – 02/11 Rev. A – 10/10	

