

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	-
Core Size	-
Speed	-
Connectivity	-
Peripherals	-
Number of I/O	-
Program Memory Size	-
Program Memory Type	-
EEPROM Size	-
RAM Size	-
Voltage - Supply (Vcc/Vdd)	-
Data Converters	-
Oscillator Type	-
Operating Temperature	-
Mounting Type	-
Package / Case	-
Supplier Device Package	-
Purchase URL	https://www.e-xfl.com/product-detail/nxp-semiconductors/spc5603bf2cll6

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

		Device														
Feature					MPC56 02CxLL		MPC56 03BxLL				MPC56 04BxLH			MPC56 04CxLH		MPC5604 BxMG
• PWM + IC/OC ⁴	10 ch	20 ch	40 ch	10 ch	20 ch	10 ch	20 ch	40 ch	10 ch	20 ch	10 ch	20 ch	40 ch	10 ch	20 ch	40 ch
 IC/OC⁴ 	—	3 ch	6 ch	—	3 ch	—	3 ch	6 ch	—	3 ch	—	3 ch	6 ch	—	3 ch	6 ch
SCI (LINFlex)	x) 3 ⁵ 4															
SPI (DSPI)	2 3			2	3	2	:	3	2	3	2 3		2		3	
CAN (FlexCAN)		2 ⁶		5	5 6 3 ⁷			5	6	37			5	6		
I ² C									1							
32 kHz oscillator									Yes							
GPIO ⁸	45	79	123	45	79	45	79	123	45	79	45	79	123	45	79	123
Debug			•	•	•	•	•	JTAG	•	•	•			•		Nexus2+
Package	64 LQFP	100 LQFP	144 LQFP	64 LQFP	100 LQFP	64 LQFP	100 LQFP	144 LQFP	64 LQFP	100 LQFP	64 LQFP	100 LQFP	144 LQFP	64 LQFP	100 LQFP	208 MAPBGA ⁹

Table 1. MPC5604B/C device comparison¹ (continued)

Feature set dependent on selected peripheral multiplexing—table shows example implementation.

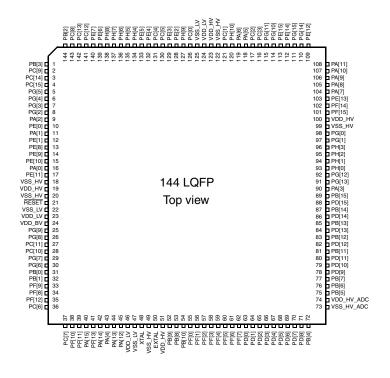
² Based on 125 °C ambient operating temperature.

³ See the eMIOS section of the device reference manual for information on the channel configuration and functions.

⁴ IC – Input Capture; OC – Output Compare; PWM – Pulse Width Modulation; MC – Modulus counter.

⁵ SCI0, SCI1 and SCI2 are available. SCI3 is not available.

⁶ CAN0, CAN1 are available. CAN2, CAN3, CAN4 and CAN5 are not available.


⁷ CAN0, CAN3 and either CAN1 or CAN4 are available. CAN2, CAN5 and CAN6 are not available

⁸ I/O count based on multiplexing with peripherals.

⁹ 208 MAPBGA available only as development package for Nexus2+.

MPC5604B/C Microcontroller Data Sheet, Rev.

14

Note: Availability of port pin alternate functions depends on product selection.

Figure 5. LQFP 144-pin configuration

		-					u		Pin	num	ber	
Port pin	PCR	Alternate function ¹	Function	Peripheral	I/O direction ²	Pad type	RESET configuration	MPC560xB 64 LQFP	MPC560xC 64 LQFP	100 LQFP	144 LQFP	208 MAPBGA ³
PC[7]	PCR[39]	AF0 AF1 AF2 AF3 —	GPIO[39] — — LIN1RX WKPU[12] ⁴	SIUL — — LINFlex_1 WKPU	I/O — — — — —	S	Tristate	17	17	26	37	P3
PC[8]	PCR[40]	AF0 AF1 AF2 AF3	GPIO[40] LIN2TX — —	SIUL LINFlex_2 —	I/O O 	S	Tristate	63	63	99	143	A1
PC[9]	PCR[41]	AF0 AF1 AF2 AF3 —	GPIO[41] — — LIN2RX WKPU[13] ⁴	SIUL — — LINFlex_2 WKPU	I/O 	S	Tristate	2	2	2	2	B1
PC[10]	PCR[42]	AF0 AF1 AF2 AF3	GPIO[42] CAN1TX CAN4TX ¹¹ MA[1]	SIUL FlexCAN_1 FlexCAN_4 ADC	I/O O O O	М	Tristate	13	13	22	28	MЗ
PC[11]	PCR[43]	AF0 AF1 AF2 AF3 — —	GPIO[43] — — CAN1RX CAN4RX ¹¹ WKPU[5] ⁴	SIUL — — FlexCAN_1 FlexCAN_4 WKPU	I/O — — — — — —	S	Tristate			21	27	M4
PC[12]	PCR[44]	AF0 AF1 AF2 AF3 —	GPIO[44] E0UC[12] SIN_2	SIUL eMIOS_0 — DSPI_2	I/O I/O — I	Μ	Tristate			97	141	B4
PC[13]	PCR[45]	AF0 AF1 AF2 AF3	GPIO[45] E0UC[13] SOUT_2 —	SIUL eMIOS_0 DSPI_2 —	I/O I/O O	S	Tristate		_	98	142	A2
PC[14]	PCR[46]	AF0 AF1 AF2 AF3 —	GPIO[46] E0UC[14] SCK_2 — EIRQ[8]	SIUL eMIOS_0 DSPI_2 — SIUL	I/O I/O I/O I	S	Tristate			3	3	C1

Table 5. Functional port pin descriptions (continued)

		-					u		Pin	num	ber	
Port pin	PCR	Alternate function ¹	Function	Peripheral	I/O direction ²	Pad type	RESET configuration	MPC560xB 64 LQFP	MPC560xC 64 LQFP	100 LQFP	144 LQFP	208 MAPBGA ³
PF[8]	PCR[88]	AF0 AF1 AF2 AF3	GPIO[88] CAN3TX ¹⁴ CS4_0 CAN2TX ¹⁵	SIUL FlexCAN_3 DSPI_0 FlexCAN_2	1/0 0 0 0	М	Tristate				34	P1
PF[9]	PCR[89]	AF0 AF1 AF2 AF3 —	GPIO[89] 	SIUL DSPI_0 FlexCAN_2 FlexCAN_3	I/O — O — I — I	S	Tristate	_			33	N2
PF[10]	PCR[90]	AF0 AF1 AF2 AF3	GPIO[90] — — —	SIUL — — —	I/O _	М	Tristate	—			38	R3
PF[11]	PCR[91]	AF0 AF1 AF2 AF3 —	GPIO[91] — — — WKPU[15] ⁴	SIUL — — — WKPU	I/O — — — —	S	Tristate	_	_	_	39	R4
PF[12]	PCR[92]	AF0 AF1 AF2 AF3	GPIO[92] E1UC[25] — —	SIUL eMIOS_1 —	I/O I/O 	М	Tristate	_	_		35	R1
PF[13]	PCR[93]	AF0 AF1 AF2 AF3 —	GPIO[93] E1UC[26] — WKPU[16] ⁴	SIUL eMIOS_1 WKPU	I/O I/O I	S	Tristate	_	_		41	T6
PF[14]	PCR[94]	AF0 AF1 AF2 AF3	GPIO[94] CAN4TX ¹¹ E1UC[27] CAN1TX	SIUL FlexCAN_4 eMIOS_1 FlexCAN_4	I/O O I/O O	М	Tristate		43		102	D14
PF[15]	PCR[95]	AF0 AF1 AF2 AF3 — — —	GPIO[95] — — CAN1RX CAN4RX ¹¹ EIRQ[13]	SIUL — — FlexCAN_1 FlexCAN_4 SIUL	I/O — — — — — — —	S	Tristate	_	42		101	E15

Table 5. Functional port pin descriptions (continued)

		- _					uo		Pin	num	ber	
Port pin	PCR	Alternate function ¹	Function	Peripheral	I/O direction ²	Pad type	RESET configuration	MPC560xB 64 LQFP	MPC560xC 64 LQFP	100 LQFP	144 LQFP	208 MAPBGA ³
PH[2]	PCR[114]	AF0 AF1 AF2 AF3	GPIO[114] E1UC[4] SCK_1 —	SIUL eMIOS_1 DSPI_1 —	I/O I/O I/O —	М	Tristate	_			95	F16
PH[3]	PCR[115]	AF0 AF1 AF2 AF3	GPIO[115] E1UC[5] CS0_1 —	SIUL eMIOS_1 DSPI_1 —	I/O I/O I/O —	М	Tristate				96	F15
PH[4]	PCR[116]	AF0 AF1 AF2 AF3	GPIO[116] E1UC[6] — —	SIUL eMIOS_1 —	I/O I/O 	М	Tristate				134	A6
PH[5]	PCR[117]	AF0 AF1 AF2 AF3	GPIO[117] E1UC[7] — —	SIUL eMIOS_1 —	I/O I/O 	S	Tristate	_			135	B6
PH[6]	PCR[118]	AF0 AF1 AF2 AF3	GPIO[118] E1UC[8] — MA[2]	SIUL eMIOS_1 ADC	I/O I/O — O	М	Tristate			_	136	D5
PH[7]	PCR[119]	AF0 AF1 AF2 AF3	GPIO[119] E1UC[9] CS3_2 MA[1]	SIUL eMIOS_1 DSPI_2 ADC	I/O I/O O O	М	Tristate				137	C5
PH[8]	PCR[120]	AF0 AF1 AF2 AF3	GPIO[120] E1UC[10] CS2_2 MA[0]	SIUL eMIOS_1 DSPI_2 ADC	I/O I/O O O	М	Tristate				138	A5
PH[9] ⁹	PCR[121]	AF0 AF1 AF2 AF3	GPIO[121] — TCK —	SIUL — JTAGC —	I/O — I —	S	Input, weak pull-up	60	60	88	127	B8
PH[10] ⁹	PCR[122]	AF0 AF1 AF2 AF3	GPIO[122] TMS 	SIUL — JTAGC —	I/O — I —	S	Input, weak pull-up	53	53	81	120	B9

Table 5. Functional port pin descriptions (continued)

2.8 Electrical characteristics

2.9 Introduction

This section contains electrical characteristics of the device as well as temperature and power considerations.

This product contains devices to protect the inputs against damage due to high static voltages. However, it is advisable to take precautions to avoid applying any voltage higher than the specified maximum rated voltages.

To enhance reliability, unused inputs can be driven to an appropriate logic voltage level (V_{DD} or V_{SS}). This could be done by the internal pull-up and pull-down, which is provided by the product for most general purpose pins.

The parameters listed in the following tables represent the characteristics of the device and its demands on the system.

In the tables where the device logic provides signals with their respective timing characteristics, the symbol "CC" for Controller Characteristics is included in the Symbol column.

In the tables where the external system must provide signals with their respective timing characteristics to the device, the symbol "SR" for System Requirement is included in the Symbol column.

2.10 Parameter classification

The electrical parameters shown in this supplement are guaranteed by various methods. To give the customer a better understanding, the classifications listed in Table 7 are used and the parameters are tagged accordingly in the tables where appropriate.

Classification tag	Tag description
Р	Those parameters are guaranteed during production testing on each individual device.
С	Those parameters are achieved by the design characterization by measuring a statistically relevant sample size across process variations.
Т	Those parameters are achieved by design characterization on a small sample size from typical devices under typical conditions unless otherwise noted. All values shown in the typical column are within this category.
D	Those parameters are derived mainly from simulations.

Table 7.	Parameter	classifications
----------	-----------	-----------------

NOTE

The classification is shown in the column labeled "C" in the parameter tables where appropriate.

2.11 NVUSRO register

Bit values in the Non-Volatile User Options (NVUSRO) Register control portions of the device configuration, namely electrical parameters such as high voltage supply and oscillator margin, as well as digital functionality (watchdog enable/disable after reset).

For a detailed description of the NVUSRO register, please refer to the device reference manual.

2.11.1 NVUSRO[PAD3V5V] field description

The DC electrical characteristics are dependent on the PAD3V5V bit value. Table 8 shows how NVUSRO[PAD3V5V] controls the device configuration.

Table 8. PAD3V5V field description

Value ¹	Description
0	High voltage supply is 5.0 V
1	High voltage supply is 3.3 V

¹ Default manufacturing value is '1'. Value can be programmed by customer in Shadow Flash.

2.11.2 NVUSRO[OSCILLATOR_MARGIN] field description

The fast external crystal oscillator consumption is dependent on the OSCILLATOR_MARGIN bit value. Table 9 shows how NVUSRO[OSCILLATOR_MARGIN] controls the device configuration.

Table 9. OSCILLATOR_MARGIN field description

Value ¹	Description				
0	ow consumption configuration (4 MHz/8 MHz)				
1	High margin configuration (4 MHz/16 MHz)				
1					

¹ Default manufacturing value is '1'. Value can be programmed by customer in Shadow Flash.

2.11.3 NVUSRO[WATCHDOG_EN] field description

The watchdog enable/disable configuration after reset is dependent on the WATCHDOG_EN bit value. Table 10 shows how NVUSRO[WATCHDOG_EN] controls the device configuration.

Table 10. WATCHDOG_EN field description

Value ¹	Description
0	Disable after reset
1	Enable after reset

¹ Default manufacturing value is '1'. Value can be programmed by customer in Shadow Flash.

Symbol		Parametar	Conditions	Va	lue	Unit
Symbol		Parameter	Conditions	Min	Max	Unit
V _{SS}	SR	Digital ground on VSS_HV pins	_	0	0	V
V _{DD} ¹	SR	Voltage on VDD_HV pins with respect to	_	4.5	5.5	V
		ground (V _{SS})	Voltage drop ²	3.0	5.5	
V _{SS_LV} ³	SR	Voltage on VSS_LV (low voltage digital supply) pins with respect to ground (V _{SS})	—	V _{SS} -0.1	V _{SS} +0.1	V
V _{DD_BV} ⁴	SR	Voltage on VDD_BV pin (regulator supply)	_	4.5	5.5	V
		with respect to ground (V _{SS})	Voltage drop ²	3.0	5.5	
			Relative to V _{DD}	V _{DD} -0.1	V _{DD} +0.1	
V _{SS_ADC}	SR	Voltage on VSS_HV_ADC (ADC reference) pin with respect to ground (V _{SS}	—	V _{SS} -0.1	V _{SS} +0.1	V
V _{DD_ADC} ⁵	SR	Voltage on VDD_HV_ADC pin (ADC		4.5	5.5	V
		reference) with respect to ground (V_{SS})	Voltage drop ²	3.0	5.5	
			Relative to V _{DD}	V _{DD} -0.1	V _{DD} +0.1	
V _{IN}	SR	5 5 1 1		V _{SS} -0.1	—	V
		ground (V _{SS})	Relative to V _{DD}	—	V _{DD} +0.1	
I _{INJPAD}	SR	Injected input current on any pin during overload condition	—	-5	5	mA
I _{INJSUM}	SR	Absolute sum of all injected input currents during overload condition	—	-50	50	
TV _{DD}	SR	V _{DD} slope to ensure correct power up ⁶		3.0 ⁷	0.25 V/µs	V/s
TA C-Grade Part	SR	Ambient temperature under bias	f _{CPU} ≤64 MHz	-40	85	°C
T _{J C-Grade Part}	SR	Junction temperature under bias		-40	110	
TA V-Grade Part	SR	Ambient temperature under bias	1	-40	105	
T _{J V-Grade Part}	SR	Junction temperature under bias		-40	130	
TA M-Grade Part	SR	Ambient temperature under bias		-40	125	
T _{J M-Grade} Part	SR	Junction temperature under bias		-40	150	

Table 13	. Recommended	operating	conditions	(5.0 V))
----------	---------------	-----------	------------	---------	---

 1 100 nF capacitance needs to be provided between each $V_{\text{DD}}/V_{\text{SS}}$ pair.

² Full device operation is guaranteed by design when the voltage drops below 4.5 V down to 3.0 V. However, certain analog electrical characteristics will not be guaranteed to stay within the stated limits.

 $^3~$ 330 nF capacitance needs to be provided between each V_{DD_LV}/V_{SS_LV} supply pair.

⁴ 100 nF capacitance needs to be provided between V_{DD_BV} and the nearest V_{SS_LV} (higher value may be needed depending on external regulator characteristics).

⁵ 1 μF (electrolithic/tantalum) + 47 nF (ceramic) capacitance needs to be provided between V_{DD_ADC}/V_{SS_ADC} pair. Another ceramic cap of 10 nF with low inductance package can be added.

⁶ Guaranteed by device validation.

⁷ Minimum value of TV_{DD} must be guaranteed until V_{DD} reaches 2.6 V (maximum value of V_{PORH}).

Sym	Symbol C		Parameter	Conditions ²	Pin count	Value	Unit
Ψ_{JC}	CC	D	Junction-to-case thermal	Single-layer board - 1s	64	TBD	°C/W
			characterization parameter, natural convection		100	9	
					144	10	
				Four-layer board - 2s2p	64	TBD	
					100	9	
					144	10	

Table 14. LQFP thermal characteristics¹ (continued)

¹ Thermal characteristics are based on simulation.

 $^2~V_{DD}$ = 3.3 V \pm 10% / 5.0 V \pm 10%, T_A = –40 to 125 °C

³ Junction-to-ambient thermal resistance determined per JEDEC JESD51-3 and JESD51-6. Thermal test board meets JEDEC specification for this package.

⁴ Junction-to-board thermal resistance determined per JEDEC JESD51-8. Thermal test board meets JEDEC specification for the specified package.

⁵ Junction-to-case at the top of the package determined using MIL-STD 883 Method 1012.1. The cold plate temperature is used for the case temperature. Reported value includes the thermal resistance of the interface layer.

2.14.2 Power considerations

The average chip-junction temperature, T_I, in degrees Celsius, may be calculated using Equation 1:

$$T_{J} = T_{A} + (P_{D} \times R_{\theta JA})$$
 Eqn. 7

Where:

 T_A is the ambient temperature in °C.

 $R_{\theta JA}$ is the package junction-to-ambient thermal resistance, in °C/W.

 P_D is the sum of P_{INT} and $P_{I/O} (P_D = P_{INT} + P_{I/O})$.

P_{INT} is the product of I_{DD} and V_{DD}, expressed in watts. This is the chip internal power.

 $P_{I/O}$ represents the power dissipation on input and output pins; user determined.

Most of the time for the applications, $P_{I/O} < P_{INT}$ and may be neglected. On the other hand, $P_{I/O}$ may be significant, if the device is configured to continuously drive external modules and/or memories.

An approximate relationship between P_D and T_J (if $P_{I/O}$ is neglected) is given by:

$$P_{\rm D} = K / (T_{\rm J} + 273 \,^{\circ}{\rm C})$$
 Eqn. 2

Therefore, solving equations 1 and 2:

$$K = P_D x (T_A + 273 °C) + R_{\theta JA} x P_D^2$$
 Eqn. 3

Where:

MPC5604B/C Microcontroller Data Sheet, Rev. 14

¹ 208 MAPBGA available only as development package for Nexus2+

Table 22 provides I/O consumption figures.

In order to ensure device reliability, the average current of the I/O on a single segment should remain below the $I_{\rm AVGSEG}$ maximum value.

Symbo		с	Parameter	Condi	tions ¹		Value		Unit
Symbo	1	Č	Farameter	Condi	10115	Min	Тур	Max	Onne
I _{SWTSLW} ²	СС	D	Dynamic I/O current for SLOW configuration	C _L = 25 pF	$V_{DD} = 5.0 V \pm 10\%,$ PAD3V5V = 0		—	20	mA
					V _{DD} = 3.3 V ± 10%, PAD3V5V = 1			16	
I _{SWTMED} ²	СС	D	Dynamic I/O current for MEDIUM configuration	C _L = 25 pF	$V_{DD} = 5.0 V \pm 10\%,$ PAD3V5V = 0	_		29	mA
					V _{DD} = 3.3 V ± 10%, PAD3V5V = 1			17	
I _{SWTFST} ²	сс	D	Dynamic I/O current for FAST configuration	C _L = 25 pF	$V_{DD} = 5.0 V \pm 10\%,$ PAD3V5V = 0	_		110	mA
					V _{DD} = 3.3 V ± 10%, PAD3V5V = 1	_		50	
I _{RMSSLW}	СС	D	Root mean square I/O	C _L = 25 pF, 2 MHz	$V_{DD} = 5.0 V \pm 10\%,$		—	2.3	mA
			current for SLOW configuration	C _L = 25 pF, 4 MHz	PAD3V5V = 0		- — 3.2	3.2	
			0	C _L = 100 pF, 2 MHz			—	6.6	
				C _L = 25 pF, 2 MHz	$V_{DD} = 3.3 V \pm 10\%,$		—	1.6	
				C _L = 25 pF, 4 MHz	PAD3V5V = 1		—	2.3	
				C _L = 100 pF, 2 MHz			—	4.7	
I _{RMSMED}	СС	D	Root mean square I/O	C _L = 25 pF, 13 MHz	$V_{DD} = 5.0 V \pm 10\%,$		—	6.6	mA
			current for MEDIUM configuration	C _L = 25 pF, 40 MHz	PAD3V5V = 0		—	13.4	
			Ū.	C _L = 100 pF, 13 MHz		_	_	18.3	
				C _L = 25 pF, 13 MHz	$V_{DD} = 3.3 V \pm 10\%,$		—	5	
				C _L = 25 pF, 40 MHz	PAD3V5V = 1		_	8.5	
				C _L = 100 pF, 13 MHz			_	11	
I _{RMSFST}	СС	D	Root mean square I/O	C _L = 25 pF, 40 MHz	$V_{DD} = 5.0 V \pm 10\%$,			22	mA
			current for FAST configuration	C _L = 25 pF, 64 MHz	PAD3V5V = 0		_	33	
			5	C _L = 100 pF, 40 MHz]	—	_	56	
				C _L = 25 pF, 40 MHz	$V_{DD} = 3.3 V \pm 10\%$,	—	—	14	
				C _L = 25 pF, 64 MHz	PAD3V5V = 1	—	—	20	
				C _L = 100 pF, 40 MHz				35	

Table 22. I/O consumption

Symbo	I	с	Parameter	Conditions ¹		Unit		
Cymbo	Symbol C		i urumeter	Conditions	Min	Тур	Max	
I _{AVGSEG}	SR			V _{DD} = 5.0 V ± 10%, PAD3V5V = 0	_	_	70	mA
			current within a supply segment	$V_{DD} = 3.3 \text{ V} \pm 10\%, \text{ PAD3V5V} = 1$	_		65	

Table 22. I/O consumption (continued)

Table 23 provides the weight of concurrent switching I/Os.

Due to the dynamic current limitations, the sum of the weight of concurrent switching I/Os on a single segment must not exceed 100% to ensure device functionality.

Sup	Supply segment				144/100) LQFP			64 L	QFP	
Sup	piy seg	ment	Pad	Weigh	nt 5 V	Weight 3.3 V		Weig	ht 5 V	Weigh	t 3.3 V
144 LQFP	100 LQFP	64 LQFP ²		SRC ³ = 0	SRC = 1	SRC = 0	SRC = 1	SRC = 0	SRC = 1	SRC = 0	SRC = 1
4	4	3	PB[3]	10%	—	12%	—	10%	_	12%	
			PC[9]	10%	_	12%	_	10%		12%	_
		_	PC[14]	9%	—	11%	—	—	_	—	_
		—	PC[15]	9%	13%	11%	12%	—	_	—	—
		—	PG[5]	9%	—	11%	—	—	_	—	—
		—	PG[4]	9%	12%	10%	11%	—		—	—
		—	PG[3]	9%	—	10%	—	—	_	—	—
4		—	PG[2]	8%	12%	10%	10%	—	_	—	—
	4	3	PA[2]	8%	—	9%	—	8%		9%	—
		—	PE[0]	8%	—	9%	—	—	_	—	—
		3	PA[1]	7%	—	9%	—	7%	_	9%	—
		—	PE[1]	7%	10%	8%	9%	—		—	—
		—	PE[8]	7%	9%	8%	8%	—		—	—
		_	PE[9]	6%	—	7%	—	—	_	—	—
		_	PE[10]	6%	—	7%	—	—	_	—	—
		3	PA[0]	5%	8%	6%	7%	5%	8%	6%	7%
		_	PE[11]	5%	_	6%	_	_		_	—

Table 23. I/O weight¹

Example 2. Simplified regulator

The regulator should be able to provide significant amount of the current during the standby exit process. For example, in case of an ideal voltage regulator providing 200 mA current, it is possible to recalculate the equivalent $\text{ESR}_{\text{STDBY}}(\text{MAX})$ and $\text{C}_{\text{STDBY}}(\text{MIN})$ as follows:

 $ESR_{STDBY}(MAX) = |\Delta_{VDD(STDBY)}|/(I_{DD BV} - 200 mA) = (30 mV)/(100 mA) = 0.3 \Omega$

 $C_{STDBY}(MIN) = (I_{DD_BV} - 200 \text{ mA})/dVDD(STDBY)/dt = (300 \text{ mA} - 200 \text{ mA})/(15 \text{ mV/}\mu s) = 6.7 \mu F$

In case optimization is required, $C_{STDBY}(MIN)$ and $ESR_{STDBY}(MAX)$ should be calculated based on the regulator characteristics as well as the board V_{DD} plane characteristics.

2.17.2 Low voltage detector electrical characteristics

The device implements a Power-on Reset (POR) module to ensure correct power-up initialization, as well as four low voltage detectors (LVDs) to monitor the V_{DD} and the V_{DD} LV voltage while device is supplied:

- POR monitors V_{DD} during the power-up phase to ensure device is maintained in a safe reset state (refer to RGM Destructive Event Status (RGM_DES) Register flag F_POR in device reference manual)
- LVDHV3 monitors V_{DD} to ensure device reset below minimum functional supply (refer to RGM Destructive Event Status (RGM_DES) Register flag F_LVD27 in device reference manual)
- LVDHV5 monitors V_{DD} when application uses device in the 5.0 V ± 10% range (refer to RGM Functional Event Status (RGM_FES) Register flag F_LVD45 in device reference manual)
- LVDLVCOR monitors power domain No. 1 (refer to RGM Destructive Event Status (RGM_DES) Register flag F_LVD12_PD1 in device reference manual
- LVDLVBKP monitors power domain No. 0 (refer to RGM Destructive Event Status (RGM_DES) Register flag F_LVD12_PD0 in device reference manual)

NOTE

When enabled, power domain No. 2 is monitored through LVDLVBKP.

Symbo	4	с	Parameter	Conditions			Unit		
Symbol		Ŭ	rarameter	Conditions	Min	Тур	Max		
P/E	СС		Number of program/erase cycles	16 KB blocks	100,000	—	—	cycles	
			per block over the operating temperature range (T _{.1})	32 KB blocks	10,000	100,000	_		
				128 KB blocks	1,000	100,000	_		
Retention	СС		Minimum data retention at 85 °C average ambient temperature ¹	Blocks with 0–1,000 P/E cycles	20	—	_	years	
				Blocks with 1,001–10,000 P/E cycles	10	—	_		
				Blocks with 10,001–100,000 P/E cycles	5	—	—		

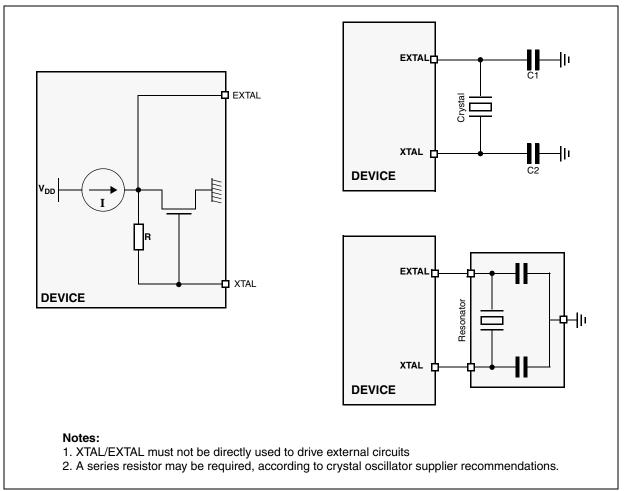
Table 29. Flash module life

¹ Ambient temperature averaged over duration of application, not to exceed recommended product operating temperature range.

ECC circuitry provides correction of single bit faults and is used to improve further automotive reliability results. Some units will experience single bit corrections throughout the life of the product with no impact to product reliability.

Table 30. Flash read access timing

Symb	ol	С	Parameter	Conditions ¹	Max	Unit
f _{READ}	CC	Ρ	Maximum frequency for Flash reading	2 wait states	64	MHz
		С		1 wait state	40	
		С		0 wait states	20	


 1 V_{DD} = 3.3 V \pm 10% / 5.0 V \pm 10%, T_A = –40 to 125 °C, unless otherwise specified

2.19.2 Flash power supply DC characteristics

Table 31 shows the power supply DC characteristics on external supply.

Table 31. Flash memory power supply DC electrical characteristics

Symbol C		C	Parameter	Conditions ¹			Unit	
		Ũ		oonaliono	Min	Тур	Max	
I _{FREAD} ²	СС	D	Sum of the current consumption on VDD_HV and VDD_BV on read access	Code flash memory module read $f_{CPU} = 64 \text{ MHz}^3$		15	33	mA
				Data flash memory module read f _{CPU} = 64 MHz ³		15	33	

Figure 14. Crystal oscillator and resonator connection scheme

Nominal frequency (MHz)	NDK crystal reference	Crystal equivalent series resistance ESR Ω	Crystal motional capacitance (C _m) fF	Crystal motional inductance (L _m) mH	Load on xtalin/xtalout C1 = C2 (pF) ¹	Shunt capacitance between xtalout and xtalin C0 ² (pF)
4	NX8045GB	300	2.68	591.0	21	2.93
8	NX5032GA	300	2.46	160.7	17	3.01
10		150	2.93	86.6	15	2.91
12		120	3.11	56.5	15	2.93
16		120	3.90	25.3	10	3.00

Table 36. Crystal description

¹ The values specified for C1 and C2 are the same as used in simulations. It should be ensured that the testing includes all the parasitics (from the board, probe, crystal, etc.) as the AC / transient behavior depends upon them.

² The value of C0 specified here includes 2 pF additional capacitance for parasitics (to be seen with bond-pads, package, etc.).

- ² This is the recommended range of load capacitance at OSC32K_XTAL and OSC32K_EXTAL with respect to ground. It includes all the parasitics due to board traces, crystal and package.
- ³ Maximum ESR (R_m) of the crystal is 50 k Ω
- ⁴ C0 includes a parasitic capacitance of 2.0 pF between OSC32K_XTAL and OSC32K_EXTAL pins

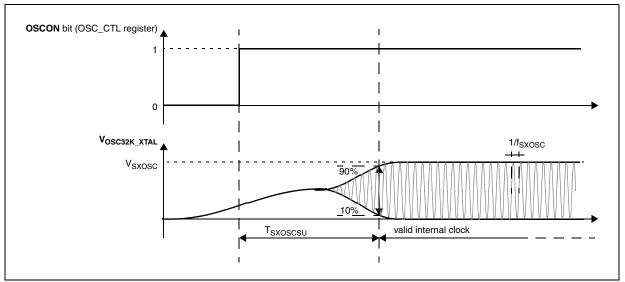


Figure 18. Slow external crystal oscillator (32 kHz) timing diagram

Symbol		С	Parameter	Conditions ¹			Unit	
Symbol		C	r ai ainetei	Conditions	Min	Тур	Max	onn
f _{sxosc}	SR	—	Slow external crystal oscillator frequency		32	32.768	40	kHz
V _{SXOSC}	СС	Т	Oscillation amplitude	_	_	2.1	_	V
I _{SXOSCBIAS}	СС	Т	Oscillation bias current	_	_	2.5	_	μA
I _{SXOSC}	СС	Т	Slow external crystal oscillator consumption	_	_	—	8	μA
T _{SXOSCSU}	СС	Т	Slow external crystal oscillator start-up time	_		—	2 ²	S

Table 39. Slow external crystal oscillator (32 kHz) electrical characteristics

¹ $V_{DD} = 3.3 V \pm 10\% / 5.0 V \pm 10\%$, $T_A = -40$ to 125 °C, unless otherwise specified. Values are specified for no neighbor GPIO pin activity. If oscillator is enabled (OSC32K_XTAL and OSC32K_EXTAL pins), neighboring pins should not toggle.

² Start-up time has been measured with EPSON TOYOCOM MC306 crystal. Variation may be seen with other crystal.

2.23 FMPLL electrical characteristics

The device provides a frequency-modulated phase-locked loop (FMPLL) module to generate a fast system clock from the main oscillator driver.

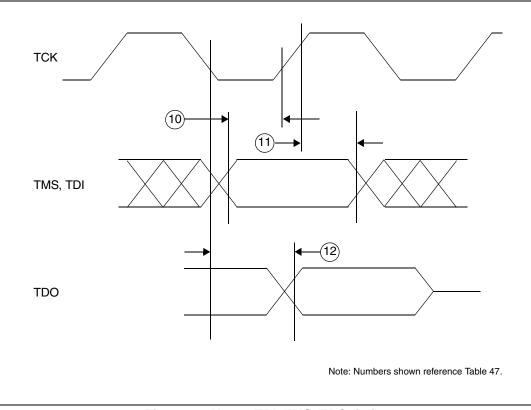


Figure 33. Nexus TDI, TMS, TDO timing

2.27.4 JTAG characteristics

Table 48. JTAG characteristics

No	No. Symbol		C Parameter				Unit	
NO.	Synt			Falanciel	Min	Тур	Max	Onit
1	t _{JCYC}	CC	D	TCK cycle time	64	_	_	ns
2	t _{TDIS}	СС	D	TDI setup time	15	_	_	ns
3	t _{TDIH}	CC	D	TDI hold time	5	_	_	ns
4	t _{TMSS}	СС	D	TMS setup time	15	_	_	ns
5	t _{TMSH}	СС	D	TMS hold time	5	_	_	ns
6	t _{TDOV}	CC	D	TCK low to TDO valid	_	_	33	ns
7	t _{TDOI}	СС	D	TCK low to TDO invalid	6		_	ns

Package characteristics

	MECHANICA	L OUTLINES	DOCUME	ENT NO: 98ASS23308W
		NARY	PAGE:	983
© FREESCALE SEMICONDUCTOR, INC. ALL RIGHTS RESERVED. ELECTRONIC VERSIONS ARE UNCONTROLLED EXCEPT WHEN ACCESSED DIRECTLY FROM THE DOCUMENT CONTROL REPORTIORY. PRINTED VERSIONS ARE UNCONTROLLED EXCEPT WHEN STAMPED "CONTROLLED COPY" IN RED.	DO NOT SCALE	THIS DRAWING	REV:	Н
NOTES:				
1. ALL DIMENSIONS ARE IN MILL	IMETERS.			
2. INTERPRET DIMENSIONS AND	TOLERANCES PER	ASME Y14.5M-1	994.	
3. DATUMS B, C AND D TO BE	DETERMINED AT I	DATUM PLANE H.		
4. THE TOP PACKAGE BODY SIZ BY A MAXIMUM OF 0.1 MM.	E MAY BE SMALL	ER THAN THE BC	TTOM PA	CKAGE SIZE
5. DIMENSIONS DO NOT INCLUDE PROTRUSION IS 0.25 mm PE SIZE DIMENSIONS INCLUDING	ER SIDE. THE DIMI			
6. DIMENSION DOES NOT INCLUE CAUSE THE LEAD WIDTH TO AND AN ADJACENT LEAD SH	EXCEED 0.35. MII	NIMUM SPACE BE		
7. dimensions are determined	AT THE SEATING	G PLANE, DATUM	Α.	
TITLE: 100 LEAD LQF	Ð	CASE NUMBER: S	983–02	
14 X 14, 0.5 PITCH,		STANDARD: NON	-JEDEC	
, , , , , , , , , , , , , , , , , , , ,		PACKAGE CODE:	8264	SHEET: 3

Figure 40. 100 LQFP package mechanical drawing (3 of 3)

MPC5604B/C Microcontroller Data Sheet, Rev. 14

3.1.3 144 LQFP

Figure 41. 144 LQFP package mechanical drawing (1 of 2)

Figure 42. 144 LQFP package mechanical drawing (2 of 2)

Document revision history

9	16 June 2011	Formatting and minor editorial changes throughout Harmonized oscillator nomenclature Removed all instances of note "All 64 LQFP information is indicative and must be confirmed during silicon validation."
		Removed all instances of note "All 64 LQFP information is indicative and must be confirmed during silicon validation."
		confirmed during silicon validation."
		Device comparison table: changed temperature value in footnote 2 from 105 °C to 125 °C MPC560xB LQFP 64-pin configuration and MPC560xC LQFP 64-pin configuration: renamed pin 6 from VPP_TEST to VSS_HV
		Removed "Pin Muxing" section; added sections "Pad configuration during reset phases", "Voltage supply pins", "Pad types", "System pins," "Functional ports", and "Nexus 2+ pins"
		Section "NVUSRO register": edited content to separate configuration into electrical parameters and digital functionality; updated footnote describing default value of '1' in field descriptions NVUSRO[PAD3V5V] and NVUSRO[OSCILLATOR_MARGIN]
		Added section "NVUSRO[WATCHDOG_EN] field description"
		Recommended operating conditions (3.3 V) and Recommended operating conditions (5.0 V): updated conditions for ambient and junction temperature characteristics I/O input DC electrical characteristics: updated I _{LKG} characteristics
		Section "I/O pad current specification": removed content referencing the I _{DYNSEG} maximum value
		I/O consumption: replaced instances of "Root medium square" with "Root mean square"
		I/O weight: replaced instances of bit "SRE" with "SRC"; added pads PH[9] and PH[10]; added supply segments; removed weight values in 64-pin LQFP for pads that do not exist in that package
		Reset electrical characteristics: updated parameter classification for II _{WPU} I Updated Voltage regulator electrical characteristics
		Section "Low voltage detector electrical characteristics": changed title (was "Voltage monitor electrical characteristics"); added event status flag names found in RGM chapter of device reference manual to POR module and LVD descriptions; replaced instances of "Low voltage monitor" with "Low voltage detector"; updated values for V _{LVDLVBKPL} and V _{LVDLVCORL} ; replaced "LVD_DIGBKP" with "LVDLVBKP" in note Updated section "Power consumption"
		Fast external crystal oscillator (4 to 16 MHz) electrical characteristics: updated parameter
		classification for V _{FXOSCOP} Crystal oscillator and resonator connection scheme: added footnote about possibility of adding a series resistor
		Slow external crystal oscillator (32 kHz) electrical characteristics: updated footnote 1
		FMPLL electrical characteristics: added short term jitter characteristics; inserted "—" in empty min value cell of t _{lock} row
		Section "Input impedance and ADC accuracy": changed "V _A /V _{A2} " to "V _{A2} /V _A " in Equation 11
		ADC input leakage current: updated ILKG characteristics
		ADC conversion characteristics: updated symbols
		On-chip peripherals current consumption: changed "supply current on "V _{DD_HV_ADC} " to "supply current on" V _{DD_HV} " in I _{DD_HV(FLASH)} row; updated I _{DD_HV(PLL)} value—was 3 * f _{periph} , is 30 * f _{periph} ; updated footnotes DSPI deprocedurations added rows t
		DSPI characteristics: added rows t _{PCSC} and t _{PASC} Added DSPI PCS strobe (PCSS) timing diagram