NXP USA Inc. - <u>SPC5603BF2MLH6 Datasheet</u>

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	e200z0h
Core Size	32-Bit Single-Core
Speed	64MHz
Connectivity	CANbus, I ² C, LINbus, SCI, SPI
Peripherals	DMA, POR, PWM, WDT
Number of I/O	45
Program Memory Size	384KB (384K x 8)
Program Memory Type	FLASH
EEPROM Size	64K x 8
RAM Size	28K x 8
Voltage - Supply (Vcc/Vdd)	3V ~ 5.5V
Data Converters	A/D 12x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	64-LQFP
Supplier Device Package	64-LQFP (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/nxp-semiconductors/spc5603bf2mlh6

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Introduction

Table 2 summarizes the functions of all blocks present in the MPC5604B/C series of microcontrollers. Please note that the presence and number of blocks vary by device and package.

Block	Function
Analog-to-digital converter (ADC)	Multi-channel, 10-bit analog-to-digital converter
Boot assist module (BAM)	A block of read-only memory containing VLE code which is executed according to the boot mode of the device
Clock monitor unit (CMU)	Monitors clock source (internal and external) integrity
Cross triggering unit (CTU)	Enables synchronization of ADC conversions with a timer event from the eMIOS or from the PIT
Deserial serial peripheral interface (DSPI)	Provides a synchronous serial interface for communication with external devices
Error Correction Status Module (ECSM)	Provides a myriad of miscellaneous control functions for the device including program-visible information about configuration and revision levels, a reset status register, wakeup control for exiting sleep modes, and optional features such as information on memory errors reported by error-correcting codes
Enhanced Direct Memory Access (eDMA)	Performs complex data transfers with minimal intervention from a host processor via " <i>n</i> " programmable channels.
Enhanced modular input output system (eMIOS)	Provides the functionality to generate or measure events
Flash memory	Provides non-volatile storage for program code, constants and variables
FlexCAN (controller area network)	Supports the standard CAN communications protocol
Frequency-modulated phase-locked loop (FMPLL)	Generates high-speed system clocks and supports programmable frequency modulation
Internal multiplexer (IMUX) SIU subblock	Allows flexible mapping of peripheral interface on the different pins of the device
Inter-integrated circuit (I ² C [™]) bus	A two wire bidirectional serial bus that provides a simple and efficient method of data exchange between devices
Interrupt controller (INTC)	Provides priority-based preemptive scheduling of interrupt requests
JTAG controller	Provides the means to test chip functionality and connectivity while remaining transparent to system logic when not in test mode
LINFlex controller	Manages a high number of LIN (Local Interconnect Network protocol) messages efficiently with a minimum of CPU load
Clock generation module (MC_CGM)	Provides logic and control required for the generation of system and peripheral clocks
Mode entry module (MC_ME)	Provides a mechanism for controlling the device operational mode and mode transition sequences in all functional states; also manages the power control unit, reset generation module and clock generation module, and holds the configuration, control and status registers accessible for applications
Power control unit (MC_PCU)	Reduces the overall power consumption by disconnecting parts of the device from the power supply via a power switching device; device components are grouped into sections called "power domains" which are controlled by the PCU
Reset generation module (MC_RGM)	Centralizes reset sources and manages the device reset sequence of the device

Table 2. MPC5604B/C series block summary

Package	pinouts	and	signal	descriptions
---------	---------	-----	--------	--------------

	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	
A	PC[8]	PC[13]	NC	NC	PH[8]	PH[4]	PC[5]	PC[0]	NC	NC	PC[2]	NC	PE[15]	NC	NC	NC	A
В	PC[9]	PB[2]	NC	PC[12]	PE[6]	PH[5]	PC[4]	PH[9]	PH[10]	NC	PC[3]	PG[11]	PG[15]	PG[14]	PA[11]	PA[10]	в
С	PC[14]	VDD_HV	PB[3]	PE[7]	PH[7]	PE[5]	PE[3]	VSS_LV	PC[1]	NC	PA[5]	NC	PE[14]	PE[12]	PA[9]	PA[8]	с
D	NC	NC	PC[15]	NC	PH[6]	PE[4]	PE[2]	VDD_LV	VDD_HV	NC	PA[6]	NC	PG[10]	PF[14]	PE[13]	PA[7]	D
Е	PG[4]	PG[5]	PG[3]	PG[2]									PG[1]	PG[0]	PF[15]	VDD_HV	Е
F	PE[0]	PA[2]	PA[1]	PE[1]									PH[0]	PH[1]	PH[3]	PH[2]	F
G	PE[9]	PE[8]	PE[10]	PA[0]			VSS_HV	VSS_HV	VSS_HV	VSS_HV			VDD_HV	NC	NC	MSEO	G
н	VSS_HV	PE[11]	VDD_HV	NC			VSS_HV	VSS_HV	VSS_HV	VSS_HV			MDO3	MDO2	MDO0	MDO1	н
J	RESET	VSS_LV	NC	NC			VSS_HV	VSS_HV	VSS_HV	VSS_HV			NC	NC	NC	NC	J
к	EVTI	NC	VDD_BV	VDD_LV			VSS_HV	VSS_HV	VSS_HV	VSS_HV			NC	PG[12]	PA[3]	PG[13]	к
L	PG[9]	PG[8]	NC	EVTO				1	1		1		PB[15]	PD[15]	PD[14]	PB[14]	L
М	PG[7]	PG[6]	PC[10]	PC[11]									PB[13]	PD[13]	PD[12]	PB[12]	М
Ν	PB[1]	PF[9]	PB[0]	NC	NC	PA[4]	VSS_LV	EXTAL	VDD_HV	PF[0]	PF[4]	NC	PB[11]	PD[10]	PD[9]	PD[11]	N
Ρ	PF[8]	NC	PC[7]	NC	NC	PA[14]	VDD_LV	XTAL	PB[10]	PF[1]	PF[5]	PD[0]	PD[3]	VDD_HV _ADC	PB[6]	PB[7]	Р
R	PF[12]	PC[6]	PF[10]	PF[11]	VDD_HV	PA[15]	PA[13]	NC	OSC32K _XTAL	PF[3]	PF[7]	PD[2]	PD[4]	PD[7]	VSS_HV _ADC	PB[5]	R
т	NC	NC	NC	МСКО	NC	PF[13]	PA[12]	NC	OSC32K _EXTAL	PF[2]	PF[6]	PD[1]	PD[5]	PD[6]	PD[8]	PB[4]	т
	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	
Not	e: 208 I	МАРВС	A availa	ble only	as dev	elopme	nt packa	age for N	Vexus 2	+.				NC	= Not c	onnecte	эd

Figure 6. 208 MAPBGA configuration

2.2 Pad configuration during reset phases

All pads have a fixed configuration under reset.

During the power-up phase, all pads are forced to tristate.

After power-up phase, all pads are forced to tristate with the following exceptions:

- PA[9] (FAB) is pull-down. Without external strong pull-up the device starts fetching from flash.
- PA[8] (ABS[0]) is pull-up.
- RESET pad is driven low. This is pull-up only after PHASE2 reset completion.
- JTAG pads (TCK, TMS and TDI) are pull-up whilst TDO remains tristate.
- Precise ADC pads (PB[7:4] and PD[11:0]) are left tristate (no output buffer available).

MPC5604B/C Microcontroller Data Sheet, Rev. 14

 $I = Input only with analog feature^1$

- J = Input/Output ('S' pad) with analog feature
- X = Oscillator

2.5 System pins

The system pins are listed in Table 4.

Table 4.	System	pin	descri	ptions

				ation	Pin number				
System pin	Function	I/O direction	Pad type	RESET configura	64 LQFP ¹	100 LQFP	144 LQFP	208 MAPBGA ²	
RESET	Bidirectional reset with Schmitt-Trigger characteristics and noise filter.	I/O	Μ	Input, weak pull-up only after PHASE2	9	17	21	J1	
EXTAL	Analog output of the oscillator amplifier circuit, when the oscillator is not in bypass mode. Analog input for the clock generator when the oscillator is in bypass mode. 3	I/O	Х	Tristate	27	36	50	N8	
XTAL	Analog input of the oscillator amplifier circuit. Needs to be grounded if oscillator is used in bypass mode. ³	Ι	Х	Tristate	25	34	48	P8	

¹ Pin numbers apply to both the MPC560xB and MPC560xC packages.

² 208 MAPBGA available only as development package for Nexus2+

³ See the relevant section of the datasheet

2.6 Functional ports

The functional port pins are listed in Table 5.

		-					uo		Pin	num	ber	
Port pin	РСК	Alternate function	Function	Peripheral	I/O direction ²	Pad type	RESET configurati	MPC560xB 64 LQFP	MPC560xC 64 LQFP	100 LQFP	144 LQFP	208 MAPBGA ³
PA[0]	PCR[0]	AF0 AF1 AF2 AF3 —	GPIO[0] E0UC[0] CLKOUT — WKPU[19] ⁴	SIUL eMIOS_0 CGL — WKPU	I/O I/O O I	Μ	Tristate	5	5	12	16	G4

		1					uo	Pin number				
Port pin	РСК	Alternate function	Function	Peripheral	I/O direction ²	Pad type	RESET configurati	MPC560xB 64 LQFP	MPC560xC 64 LQFP	100 LQFP	144 LQFP	208 MAPBGA ³
PA[1]	PCR[1]	AF0 AF1 AF2 AF3 —	GPIO[1] E0UC[1] — NMI ⁵ WKPU[2] ⁴	SIUL eMIOS_0 — WKPU WKPU	I/O I/O — I I	S	Tristate	4	4	7	11	F3
PA[2]	PCR[2]	AF0 AF1 AF2 AF3 —	GPIO[2] E0UC[2] — — WKPU[3] ⁴	SIUL eMIOS_0 — WKPU	/O /O 	S	Tristate	3	3	5	9	F2
PA[3]	PCR[3]	AF0 AF1 AF2 AF3 —	GPIO[3] E0UC[3] — EIRQ[0]	SIUL eMIOS_0 — SIUL	/O /O 	S	Tristate	43	39	68	90	K15
PA[4]	PCR[4]	AF0 AF1 AF2 AF3 —	GPIO[4] E0UC[4] — — WKPU[9] ⁴	SIUL eMIOS_0 — WKPU	/O /O 	S	Tristate	20	20	29	43	N6
PA[5]	PCR[5]	AF0 AF1 AF2 AF3	GPIO[5] E0UC[5] —	SIUL eMIOS_0 —	I/O I/O —	М	Tristate	51	51	79	118	C11
PA[6]	PCR[6]	AF0 AF1 AF2 AF3 —	GPIO[6] E0UC[6] — EIRQ[1]	SIUL eMIOS_0 — SIUL	/O /O 	S	Tristate	52	52	80	119	D11
PA[7]	PCR[7]	AF0 AF1 AF2 AF3 —	GPIO[7] E0UC[7] LIN3TX — EIRQ[2]	SIUL eMIOS_0 LINFlex_3 SIUL	/O /O - 	S	Tristate	44	44	71	104	D16

		-					uo		Pin	num	ber	
Port pin	PCR	Alternate function	Function	Peripheral	I/O direction ²	Pad type	RESET configurati	MPC560xB 64 LQFP	MPC560xC 64 LQFP	100 LQFP	144 LQFP	208 MAPBGA ³
PB[8]	PCR[24]	AF0 AF1 AF2 AF3 —	GPIO[24] — — ANS[0] OSC32K_XTAL ⁷	SIUL — — ADC SXOSC	 - /O	Ι	Tristate	30	30	39	53	R9
PB[9]	PCR[25]	AF0 AF1 AF2 AF3 —	GPIO[25] — — ANS[1] OSC32K_EXTAL ⁷	SIUL — — ADC SXOSC	 - /0	Η	Tristate	29	29	38	52	Т9
PB[10]	PCR[26]	AF0 AF1 AF2 AF3 —	GPIO[26] — — ANS[2] WKPU[8] ⁴	SIUL — — ADC WKPU	I/O — — — — —	J	Tristate	31	31	40	54	P9
PB[11] ⁸	PCR[27]	AF0 AF1 AF2 AF3 —	GPIO[27] E0UC[3] — CS0_0 ANS[3]	SIUL eMIOS_0 DSPI_0 ADC	/O /O /O 	J	Tristate	38	36	59	81	N13
PB[12]	PCR[28]	AF0 AF1 AF2 AF3 —	GPIO[28] E0UC[4] — CS1_0 ANX[0]	SIUL eMIOS_0 — DSPI_0 ADC	/O /O — 0 	J	Tristate	39	_	61	83	M16
PB[13]	PCR[29]	AF0 AF1 AF2 AF3 —	GPIO[29] E0UC[5] — CS2_0 ANX[1]	SIUL eMIOS_0 — DSPI_0 ADC	I/O I/O — 0 I	J	Tristate	40	_	63	85	M13
PB[14]	PCR[30]	AF0 AF1 AF2 AF3 —	GPIO[30] E0UC[6] — CS3_0 ANX[2]	SIUL eMIOS_0 — DSPI_0 ADC	/O /O 	J	Tristate	41	37	65	87	L16

		-					uo		Pin number			
Port pin	РСК	Alternate function	Function	Peripheral	I/O direction ²	Pad type	RESET configurati	MPC560xB 64 LQFP	MPC560xC 64 LQFP	100 LQFP	144 LQFP	208 MAPBGA ³
PB[15]	PCR[31]	AF0 AF1 AF2 AF3 —	GPIO[31] E0UC[7] — CS4_0 ANX[3]	SIUL eMIOS_0 — DSPI_0 ADC	I/O I/O — 0 I	J	Tristate	42	38	67	89	L13
PC[0] ⁹	PCR[32]	AF0 AF1 AF2 AF3	GPIO[32] — TDI —	SIUL — JTAGC —	I/O 	М	Input, weak pull-up	59	59	87	126	A8
PC[1] ⁹	PCR[33]	AF0 AF1 AF2 AF3	GPIO[33] — TDO ¹⁰ —	SIUL — JTAGC —	I/O 0 	М	Tristate	54	54	82	121	C9
PC[2]	PCR[34]	AF0 AF1 AF2 AF3 —	GPIO[34] SCK_1 CAN4TX ¹¹ — EIRQ[5]	SIUL DSPI_1 FlexCAN_4 — SIUL	I/O I/O O I	М	Tristate	50	50	78	117	A11
PC[3]	PCR[35]	AF0 AF1 AF2 AF3 — —	GPIO[35] CS0_1 — CAN1RX CAN4RX ¹¹ EIRQ[6]	SIUL DSPI_1 ADC — FlexCAN_1 FlexCAN_4 SIUL	I/O I/O O I I I I	S	Tristate	49	49	77	116	B11
PC[4]	PCR[36]	AF0 AF1 AF2 AF3 —	GPIO[36] — — SIN_1 CAN3RX ¹¹	SIUL — — DSPI_1 FlexCAN_3	I/O 	М	Tristate	62	62	92	131	B7
PC[5]	PCR[37]	AF0 AF1 AF2 AF3 —	GPIO[37] SOUT_1 CAN3TX ¹¹ — EIRQ[7]	SIUL DSPI1 FlexCAN_3 — SIUL	I/O O O I	М	Tristate	61	61	91	130	A7
PC[6]	PCR[38]	AF0 AF1 AF2 AF3	GPIO[38] LIN1TX — —	SIUL LINFlex_1 —	I/O O	S	Tristate	16	16	25	36	R2

		-					uo		Pin	Pin number d-D d-D d-D e 17 26 37 F 63 99 143 A 2 2 2 2 F 13 22 28 N 97 141 F		
Port pin	РСК	Alternate functior	Function	Peripheral	I/O direction ²	Pad type	RESET configurati	MPC560xB 64 LQFP	MPC560xC 64 LQFP	100 LQFP	144 LQFP	208 MAPBGA ³
PC[7]	PCR[39]	AF0 AF1 AF2 AF3 —	GPIO[39] — — LIN1RX WKPU[12] ⁴	SIUL — — LINFlex_1 WKPU	l∕0 	S	Tristate	17	17	26	37	P3
PC[8]	PCR[40]	AF0 AF1 AF2 AF3	GPIO[40] LIN2TX — —	SIUL LINFlex_2 —	000	S	Tristate	63	63	99	143	A1
PC[9]	PCR[41]	AF0 AF1 AF2 AF3 —	GPIO[41] — — LIN2RX WKPU[13] ⁴	SIUL — — LINFlex_2 WKPU	l∕0 	S	Tristate	2	2	2	2	B1
PC[10]	PCR[42]	AF0 AF1 AF2 AF3	GPIO[42] CAN1TX CAN4TX ¹¹ MA[1]	SIUL FlexCAN_1 FlexCAN_4 ADC	0 0 0 2	М	Tristate	13	13	22	28	M3
PC[11]	PCR[43]	AF0 AF1 AF2 AF3 — —	GPIO[43] — — CAN1RX CAN4RX ¹¹ WKPU[5] ⁴	SIUL — — FlexCAN_1 FlexCAN_4 WKPU	l∕0 − − −	S	Tristate			21	27	M4
PC[12]	PCR[44]	AF0 AF1 AF2 AF3 —	GPIO[44] E0UC[12] — SIN_2	SIUL eMIOS_0 DSPI_2	I∕O I∕O − −	Μ	Tristate			97	141	B4
PC[13]	PCR[45]	AF0 AF1 AF2 AF3	GPIO[45] E0UC[13] SOUT_2 —	SIUL eMIOS_0 DSPI_2 —	I/O I/O O	S	Tristate		—	98	142	A2
PC[14]	PCR[46]	AF0 AF1 AF2 AF3 —	GPIO[46] E0UC[14] SCK_2 — EIRQ[8]	SIUL eMIOS_0 DSPI_2 — SIUL	/0 /0 /0 	S	Tristate			3	3	C1

Svm	Symbol		Parameter	Conditions ¹			Value				
Cyn	1501	ľ	i didileter		Conditions	Min	Тур	Max	onne		
V _{OL}	СС	С	Output low level MEDIUM configuration	Push Pull	I _{OL} = 3.8 mA, V _{DD} = 5.0 V ± 10%, PAD3V5V = 0	_	_	0.2V _{DD}	V		
		Ρ			$I_{OL} = 2 \text{ mA},$ $V_{DD} = 5.0 \text{ V} \pm 10\%, \text{ PAD3V5V} = 0$ (recommended)	_	—	0.1V _{DD}			
		С			$I_{OL} = 1 \text{ mA},$ $V_{DD} = 5.0 \text{ V} \pm 10\%, \text{ PAD3V5V} = 1^2$	_	—	0.1V _{DD}			
		С			$I_{OL} = 1 \text{ mA},$ $V_{DD} = 3.3 \text{ V} \pm 10\%, \text{ PAD3V5V} = 1$ (recommended)	_	—	0.5			
		С			I _{OL} = 100 μA, V _{DD} = 5.0 V ± 10%, PAD3V5V = 0		—	0.1V _{DD}			

Table 18. MEDIUM configuration output buffer electrical characteristics (continued)

 1 V_{DD} = 3.3 V \pm 10% / 5.0 V \pm 10%, T_A = -40 to 125 °C, unless otherwise specified

² The configuration PAD3V5 = 1 when V_{DD} = 5 V is only a transient configuration during power-up. All pads but RESET and Nexus output (MDOx, EVTO, MCKO) are configured in input or in high impedance state.

Svm	Symbol C		Parameter		Conditions ¹				Unit
Joyin	1001	Ŭ	i arameter		Conditions	Min	Тур	Мах	onne
V _{OH}	СС	Ρ	Output high level FAST configuration	Push Pull	$I_{OH} = -14$ mA, $V_{DD} = 5.0$ V ± 10%, PAD3V5V = 0 (recommended)	0.8V _{DD}		_	V
		С			$I_{OH} = -7mA$, $V_{DD} = 5.0 V \pm 10\%$, PAD3V5V = 1 ²	0.8V _{DD}	_	—	
		С			$I_{OH} = -11$ mA, $V_{DD} = 3.3$ V ± 10%, PAD3V5V = 1 (recommended)	V _{DD} -0.8	_	_	
V _{OL}	СС	Ρ	Output low level FAST configuration	Push Pull	$I_{OL} = 14mA$, $V_{DD} = 5.0 V \pm 10\%$, PAD3V5V = 0 (recommended)	—	_	0.1V _{DD}	V
		С			$I_{OL} = 7mA,$ $V_{DD} = 5.0 V \pm 10\%, PAD3V5V = 12$	—	_	0.1V _{DD}	
		С			I_{OL} = 11mA, V_{DD} = 3.3 V ± 10%, PAD3V5V = 1 (recommended)		_	0.5	

Table 19. FAST configuration output buffer electrical characteristics

 $^1~V_{DD}$ = 3.3 V \pm 10% / 5.0 V \pm 10%, T_A = -40 to 125 °C, unless otherwise specified

² The configuration PAD3V5 = 1 when V_{DD} = 5 V is only a transient configuration during power-up. All pads but RESET and Nexus output (MDOx, EVTO, MCKO) are configured in input or in high impedance state.

¹ 208 MAPBGA available only as development package for Nexus2+

Table 22 provides I/O consumption figures.

In order to ensure device reliability, the average current of the I/O on a single segment should remain below the $I_{\rm AVGSEG}$ maximum value.

Cumha		~	Deveneter	Qandi			Value		1.1
Symbo	1	C	Parameter	Condi	tions	Min	Тур	Max	Unit
I _{SWTSLW} ,2	СС	D	Dynamic I/O current for SLOW configuration	C _L = 25 pF	$V_{DD} = 5.0 V \pm 10\%,$ PAD3V5V = 0		—	20	mA
					V _{DD} = 3.3 V ± 10%, PAD3V5V = 1			16	
I _{SWTMED} ²	СС	D	Dynamic I/O current for MEDIUM configuration	C _L = 25 pF	$V_{DD} = 5.0 V \pm 10\%,$ PAD3V5V = 0			29	mA
					V _{DD} = 3.3 V ± 10%, PAD3V5V = 1	_	—	17	
I _{SWTFST} ²	СС	D	Dynamic I/O current for FAST configuration	C _L = 25 pF	$V_{DD} = 5.0 V \pm 10\%,$ PAD3V5V = 0		—	110	mA
					V _{DD} = 3.3 V ± 10%, PAD3V5V = 1		—	50	
I _{RMSSLW}	СС	D	Root mean square I/O	C _L = 25 pF, 2 MHz	$V_{DD} = 5.0 V \pm 10\%$,	_	—	2.3	mA
			current for SLOW	C _L = 25 pF, 4 MHz	PAD3V5V = 0	_	_	3.2	
			C C	C _L = 100 pF, 2 MHz			—	6.6	
				C _L = 25 pF, 2 MHz	$V_{DD} = 3.3 V \pm 10\%$,		—	1.6	
				C _L = 25 pF, 4 MHz	PAD3V5V = 1			2.3	
				C _L = 100 pF, 2 MHz			—	4.7	
I _{RMSMED}	СС	D	Root mean square I/O	C _L = 25 pF, 13 MHz	$V_{DD} = 5.0 V \pm 10\%$,	_		6.6	mA
			current for MEDIUM configuration	C _L = 25 pF, 40 MHz	PAD3V5V = 0		—	13.4	
			C C	C _L = 100 pF, 13 MHz		_		18.3	
				C _L = 25 pF, 13 MHz	$V_{DD} = 3.3 V \pm 10\%$,			5	
				C _L = 25 pF, 40 MHz	PAD3V5V = 1	_		8.5	
				C _L = 100 pF, 13 MHz		_	—	11	
I _{RMSFST}	СС	D	Root mean square I/O	C _L = 25 pF, 40 MHz	$V_{DD} = 5.0 V \pm 10\%$,	_		22	mA
			current for FASI configuration	C _L = 25 pF, 64 MHz	PAD3V5V = 0		—	33	1
			C C	C _L = 100 pF, 40 MHz		_	—	56	
				C _L = 25 pF, 40 MHz	$V_{DD} = 3.3 V \pm 10\%$,	_	—	14	
				C _L = 25 pF, 64 MHz	FAD3V5V = 1	_	_	20	
				C _L = 100 pF, 40 MHz		_		35	

Table 22. I/O consumption

2.20.1 Designing hardened software to avoid noise problems

EMC characterization and optimization are performed at component level with a typical application environment and simplified MCU software. It should be noted that good EMC performance is highly dependent on the user application and the software in particular.

Therefore it is recommended that the user apply EMC software optimization and prequalification tests in relation with the EMC level requested for his application.

- Software recommendations: The software flowchart must include the management of runaway conditions such as:
 - Corrupted program counter
 - Unexpected reset
 - Critical data corruption (control registers...)
- Prequalification trials: Most of the common failures (unexpected reset and program counter corruption) can be reproduced by manually forcing a low state on the reset pin or the oscillator pins for 1 second.

To complete these trials, ESD stress can be applied directly on the device. When unexpected behavior is detected, the software can be hardened to prevent unrecoverable errors occurring.

2.20.2 Electromagnetic interference (EMI)

The product is monitored in terms of emission based on a typical application. This emission test conforms to the IEC 61967-1 standard, which specifies the general conditions for EMI measurements.

Symbol		C	Parameter	Conditions			Value			
Cymb		Ŭ	i urumeter	Conditions		Min	Тур	Max	onit	
	SR		Scan range —					1000	MHz	
f _{CPU}	SR		Operating frequency	—			64	_	MHz	
V _{DD_LV}	SR		LV operating voltages	_		—	1.28	_	V	
S _{EMI}	СС	Т	Peak level	$V_{DD} = 5 V, T_A = 25 °C,$ LQFP144 package	No PLL frequency modulation	_	—	18	dBµV	
				$f_{OSC} = 8 \text{ MHz/}f_{CPU} = 64 \text{ MHz}$	±2% PLL frequency modulation	_	—	14	dBµV	

Table 33. EMI radiated emission measurement^{1,2}

¹ EMI testing and I/O port waveforms per IEC 61967-1, -2, -4

² For information on conducted emission and susceptibility measurement (norm IEC 61967-4), please contact your local marketing representative.

2.20.3 Absolute maximum ratings (electrical sensitivity)

Based on two different tests (ESD and LU) using specific measurement methods, the product is stressed in order to determine its performance in terms of electrical sensitivity.

Symbol		C	Parameter	Conditions ¹		Unit		
Symbo		C	Farameter	conditions	Min	Тур	Max	Unit
f _{FXOSC}	SR	_	Fast external crystal oscillator frequency	_	4.0	_	16.0	MHz
9 _{mFXOSC}	СС	С	Fast external crystal oscillator transconductance	$V_{DD} = 3.3 V \pm 10\%,$ PAD3V5V = 1 OSCILLATOR_MARGIN = 0	2.2		8.2	mA/V
	СС	Ρ	*	$V_{DD} = 5.0 V \pm 10\%$, PAD3V5V = 0 OSCILLATOR_MARGIN = 0	2.0		7.4	
	СС	С	*	$V_{DD} = 3.3 V \pm 10\%,$ PAD3V5V = 1 OSCILLATOR_MARGIN = 1	2.7		9.7	
	СС	С	*	$V_{DD} = 5.0 V \pm 10\%,$ PAD3V5V = 0 OSCILLATOR_MARGIN = 1	2.5		9.2	
V _{FXOSC}	СС	Т	Oscillation amplitude at EXTAL	f _{OSC} = 4 MHz, OSCILLATOR_MARGIN = 0	1.3	_	—	V
				f _{OSC} = 16 MHz, OSCILLATOR_MARGIN = 1	1.3	_	_	
V _{FXOSCOP}	СС	С	Oscillation operating point	—		0.95		V
I _{FXOSC} ,2	СС	Т	Fast external crystal oscillator consumption	_	_	2	3	mA
t _{FXOSCSU}	СС	Т	Fast external crystal oscillator start-up time	f _{OSC} = 4 MHz, OSCILLATOR_MARGIN = 0	—	_	6	ms
				f _{OSC} = 16 MHz, OSCILLATOR_MARGIN = 1	—	_	1.8	
V _{IH}	SR	Ρ	Input high level CMOS (Schmitt Trigger)	Oscillator bypass mode	0.65V _{DD}	_	V _{DD} +0.4	V
V _{IL}	SR	Ρ	Input low level CMOS (Schmitt Trigger)	Oscillator bypass mode	-0.4		0.35V _{DD}	V

Table 37. Fast external crystal oscillator (4 to 16 MHz) electrical characteristics

 1 V_{DD} = 3.3 V \pm 10% / 5.0 V \pm 10%, T_{A} = –40 to 125 °C, unless otherwise specified

² Stated values take into account only analog module consumption but not the digital contributor (clock tree and enabled peripherals)

2.22 Slow external crystal oscillator (32 kHz) electrical characteristics

The device provides a low power oscillator/resonator driver.

- ² This is the recommended range of load capacitance at OSC32K_XTAL and OSC32K_EXTAL with respect to ground. It includes all the parasitics due to board traces, crystal and package.
- ³ Maximum ESR (R_m) of the crystal is 50 k Ω
- ⁴ C0 includes a parasitic capacitance of 2.0 pF between OSC32K_XTAL and OSC32K_EXTAL pins

Figure 18. Slow external crystal oscillator (32 kHz) timing diagram

Symbol		ر	Parameter	Conditions ¹		Unit		
		C	r ai ainetei	Conditions	Min	Тур	Max	
f _{SXOSC}	SR	—	Slow external crystal oscillator frequency	_	32	32.768	40	kHz
V _{SXOSC}	СС	Т	Oscillation amplitude	_	_	2.1	_	V
I _{SXOSCBIAS}	СС	Т	Oscillation bias current	—	_	2.5		μA
I _{SXOSC}	СС	Т	Slow external crystal oscillator consumption	_	_	—	8	μA
T _{SXOSCSU}	СС	Т	Slow external crystal oscillator start-up time	—		—	2 ²	S

Table 39. Slow external crystal oscillator (32 kHz) electrical characteristics

¹ $V_{DD} = 3.3 V \pm 10\% / 5.0 V \pm 10\%$, $T_A = -40$ to 125 °C, unless otherwise specified. Values are specified for no neighbor GPIO pin activity. If oscillator is enabled (OSC32K_XTAL and OSC32K_EXTAL pins), neighboring pins should not toggle.

² Start-up time has been measured with EPSON TOYOCOM MC306 crystal. Variation may be seen with other crystal.

2.23 FMPLL electrical characteristics

The device provides a frequency-modulated phase-locked loop (FMPLL) module to generate a fast system clock from the main oscillator driver.

Symbol		C	Parameter	Cor		Unit			
Symbo		Ŭ	i arameter	001	Min	Тур	Max	onne	
I _{FIRCSTOP}	СС	Т	Fast internal RC oscillator high	$T_A = 25 \ ^\circ C$ sysclk = off			500	—	μΑ
			in stop mode		sysclk = 2 MHz	_	600	—	
					sysclk = 4 MHz	_	700	_	
					sysclk = 8 MHz	_	900	_	
					sysclk = 16 MHz		1250	_	
t _{FIRCSU}	CC	С	Fast internal RC oscillator start-up time	V _{DD} = 5.0 V	± 10%	_	1.1	2.0	μs
$\Delta_{FIRCPRE}$	CC	Т	Fast internal RC oscillator precision after software trimming of f _{FIRC}	T _A = 25 °C		-1	—	+1	%
$\Delta_{FIRCTRIM}$	CC	Т	Fast internal RC oscillator trimming step	T _A = 25 °C		_	1.6		%
$\Delta_{FIRCVAR}$	CC	Ρ	Fast internal RC oscillator variation in over temperature and supply with respect to f_{FIRC} at $T_A = 25$ °C in high-frequency configuration		_	-5	_	+5	%

 Table 41. Fast internal RC oscillator (16 MHz) electrical characteristics (continued)

 $^1~V_{DD}$ = 3.3 V \pm 10% / 5.0 V \pm 10%, T_A = –40 to 125 °C, unless otherwise specified.

² This does not include consumption linked to clock tree toggling and peripherals consumption when RC oscillator is ON.

2.25 Slow internal RC oscillator (128 kHz) electrical characteristics

The device provides a 128 kHz slow internal RC oscillator. This can be used as the reference clock for the RTC module.

Symbol		C	Parameter	Conditions ¹		Unit		
		Ŭ	rurumeter	Conditions	Min	Тур	Max	
f _{SIRC}	СС	Ρ	Slow internal RC oscillator low	T _A = 25 °C, trimmed	_	128	—	kHz
	SR		Trequency	—	100	_	150	
I _{SIRC} ^{2,}	СС	С	Slow internal RC oscillator low frequency current	T _A = 25 °C, trimmed		—	5	μA
t _{SIRCSU}	СС	Ρ	Slow internal RC oscillator start-up time	$T_A = 25 ^{\circ}C, V_{DD} = 5.0 V \pm 10\%$	_	8	12	μs
$\Delta_{SIRCPRE}$	СС	С	Slow internal RC oscillator precision after software trimming of f _{SIRC}	T _A = 25 °C	-2	—	+2	%
$\Delta_{SIRCTRIM}$	СС	С	Slow internal RC oscillator trimming step	—		2.7	_	

Table 42. Slow internal RC oscillator (128 kHz) electrical characteristics

2.26 ADC electrical characteristics

2.26.1 Introduction

The device provides a 10-bit Successive Approximation Register (SAR) analog-to-digital converter.

Figure 19. ADC characteristic and error definitions

2.26.2 Input impedance and ADC accuracy

In the following analysis, the input circuit corresponding to the precise channels is considered.

To preserve the accuracy of the A/D converter, it is necessary that analog input pins have low AC impedance. Placing a capacitor with good high frequency characteristics at the input pin of the device can

1. A first and quick charge transfer from the internal capacitance C_{P1} and C_{P2} to the sampling capacitance C_S occurs (C_S is supposed initially completely discharged): considering a worst case (since the time constant in reality would be faster) in which C_{P2} is reported in parallel to C_{P1} (call $C_P = C_{P1} + C_{P2}$), the two capacitances C_P and C_S are in series, and the time constant is

$$\tau_1 = (R_{SW} + R_{AD}) \bullet \frac{C_P \bullet C_S}{C_P + C_S}$$

Equation 5 can again be simplified considering only C_S as an additional worst condition. In reality, the transient is faster, but the A/D converter circuitry has been designed to be robust also in the very worst case: the sampling time t_s is always much longer than the internal time constant:

$$\tau_1 < (\mathbf{R}_{SW} + \mathbf{R}_{AD}) \bullet \mathbf{C}_S \ll t_s$$

The charge of C_{P1} and C_{P2} is redistributed also on C_S , determining a new value of the voltage V_{A1} on the capacitance according to Equation 7:

$$V_{A1} \bullet (C_S + C_{P1} + C_{P2}) = V_A \bullet (C_{P1} + C_{P2})$$

2. A second charge transfer involves also C_F (that is typically bigger than the on-chip capacitance) through the resistance R_L : again considering the worst case in which C_{P2} and C_S were in parallel to C_{P1} (since the time constant in reality would be faster), the time constant is:

Eqn. 5

Eqn. 6

Eqn. 7

$$\tau_2 < R_L \bullet (C_S + C_{P1} + C_{P2})$$

In this case, the time constant depends on the external circuit: in particular imposing that the transient is completed well before the end of sampling time t_s , a constraints on R_L sizing is obtained:

$$Eqn. 9$$

8.5 • $\tau_2 = 8.5 • R_L • (C_S + C_{P1} + C_{P2}) < t_s$

Of course, R_L shall be sized also according to the current limitation constraints, in combination with R_S (source impedance) and R_F (filter resistance). Being C_F definitively bigger than C_{P1} , C_{P2} and C_S , then the final voltage V_{A2} (at the end of the charge transfer transient) will be much higher than V_{A1} . Equation 10 must be respected (charge balance assuming now C_S already charged at V_{A1}):

Eqn. 10

$$V_{A2} \bullet (C_{S} + C_{P1} + C_{P2} + C_{F}) = V_{A} \bullet C_{F} + V_{A1} \bullet (C_{P1} + C_{P2} + C_{S})$$

2.27 On-chip peripherals

2.27.1 Current consumption

Symbol		С	Parameter		Conditions	Typical value ²	Unit
I _{DD_BV(CAN)}	СС	Т	CAN (FlexCAN) supply current on VDD_BV	Bitrate: 500 Kbyte/s	Total (static + dynamic) consumption:	8 * f _{periph} + 85	μA
				Bitrate: 125 Kbyte/s	 FlexCAN in loop-back mode XTAL @ 8 MHz used as CAN engine clock source Message sending period is 580 µs 	8 * f _{periph} + 27	
I _{DD_BV(eMIOS)}	СС	Т	eMIOS supply current on VDD_BV	Static consur • eMIOS cha • Global pre	nption: annel OFF scaler enabled	29 * f _{periph}	μA
				 Dynamic con It does not (0.003 mA) 	sumption: change varying the frequency)	3	
I _{DD_BV(SCI)}	СС	Т	SCI (LINFlex) supply current on VDD_BV	Total (static + • LIN mode • Baudrate:	dynamic) consumption: 20 Kbyte/s	5 * f _{periph} + 31	μA
I _{DD_BV(SPI)}	СС	Т	SPI (DSPI) supply current	Ballast static	consumption (only clocked)	1	μA
				Ballast dynar communicatio • Baudrate: • Transmissi • Frame: 16	nic consumption (continuous on): 2 Mbit/s ion every 8 μs bits	16 * f _{periph}	
I _{DD_BV(ADC)}	СС	Т	ADC supply current on VDD_BV	V _{DD} = 5.5 V	Ballast static consumption (no conversion)	41 * f _{periph}	μA
					Ballast dynamic consumption (continuous conversion) ³	5 * f _{periph}	
I _{DD_HV_ADC(ADC)}	СС	Т	ADC supply current on VDD_HV_ADC	V _{DD} = 5.5 V	Analog static consumption (no conversion)	2 * f _{periph}	μA
					Analog dynamic consumption (continuous conversion)	75 * f _{periph} + 32	
I _{DD_HV} (FLASH)	СС	Т	Code Flash + Data Flash supply current on VDD_HV	V _{DD} = 5.5 V	_	8.21	mA
I _{DD_HV} (PLL)	СС	Т	PLL supply current on VDD_HV	V _{DD} = 5.5 V —		30 * f _{periph}	μA

Table 45. On-chip peripherals current consumption¹

¹ Operating conditions: $T_A = 25$ °C, $f_{periph} = 8$ MHz to 64 MHz

 2 f_{periph} is an absolute value.

³ During the conversion, the total current consumption is given from the sum of the static and dynamic consumption, i.e., $(41 + 5) * f_{periph}$.

- ³ Maximum value is reached when CSn pad is configured as MEDIUM pad while SCK pad is configured as SLOW. A positive value means that CSn is deasserted before SCK. DSPI0 and DSPI1 have only MEDIUM SCK available.
- ⁴ The t_{CSC} delay value is configurable through a register. When configuring t_{CSC} (using PCSSCK and CSSCK fields in DSPI_CTARx registers), delay between internal CS and internal SCK must be higher than Δt_{CSC} to ensure positive t_{CSCext}.
- ⁵ The t_{ASC} delay value is configurable through a register. When configuring t_{ASC} (using PASC and ASC fields in DSPI_CTARx registers), delay between internal CS and internal SCK must be higher than Δt_{ASC} to ensure positive t_{ASCext} .
- ⁶ This delay value corresponds to SMPL_PT = 00b which is bit field 9 and 8 of the DSPI_MCR.
- ⁷ SCK and SOUT configured as MEDIUM pad

Figure 42. 144 LQFP package mechanical drawing (2 of 2)

4 Ordering information

Figure 45. Commercial product code structure

¹ 208 MAPBGA available only as development package for Nexus2+

5 Document revision history

Table 49 summarizes revisions to this document.

Table 49. Revision history

Revision	Date	Description of Changes
1	04-Apr-2008	Initial release.