

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	-
Core Size	-
Speed	-
Connectivity	-
Peripherals	-
Number of I/O	-
Program Memory Size	-
Program Memory Type	-
EEPROM Size	-
RAM Size	-
Voltage - Supply (Vcc/Vdd)	-
Data Converters	-
Oscillator Type	-
Operating Temperature	-
Mounting Type	-
Package / Case	-
Supplier Device Package	-
Purchase URL	https://www.e-xfl.com/product-detail/nxp-semiconductors/spc5603bf2mll4

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16		
A	PC[8]	PC[13]	NC	NC	PH[8]	PH[4]	PC[5]	PC[0]	NC	NC	PC[2]	NC	PE[15]	NC	NC	NC	А	
В	PC[9]	PB[2]	NC	PC[12]	PE[6]	PH[5]	PC[4]	PH[9]	PH[10]	NC	PC[3]	PG[11]	PG[15]	PG[14]	PA[11]	PA[10]	в	
С	PC[14]	VDD_HV	PB[3]	PE[7]	PH[7]	PE[5]	PE[3]	VSS_LV	PC[1]	NC	PA[5]	NC	PE[14]	PE[12]	PA[9]	PA[8]	с	
D	NC	NC	PC[15]	NC	PH[6]	PE[4]	PE[2]	VDD_LV	VDD_HV	NC	PA[6]	NC	PG[10]	PF[14]	PE[13]	PA[7]	D	
Е	PG[4]	PG[5]	PG[3]	PG[2]			•						PG[1]	PG[0]	PF[15]	VDD_HV	Е	
F	PE[0]	PA[2]	PA[1]	PE[1]									PH[0]	PH[1]	PH[3]	PH[2]	F	
G	PE[9]	PE[8]	PE[10]	PA[0]			VSS_HV	VSS_HV	VSS_HV	VSS_HV			VDD_HV	NC	NC	MSEO	G	
н	VSS_HV	PE[11]	VDD_HV	NC			VSS_HV	VSS_HV	VSS_HV	VSS_HV			MDO3	MDO2	MDO0	MDO1	н	
J	RESET	VSS_LV	NC	NC			VSS_HV	VSS_HV	VSS_HV	VSS_HV			NC	NC	NC	NC	J	
к	EVTI	NC	VDD_BV	VDD_LV			VSS_HV	VSS_HV	VSS_HV	VSS_HV			NC	PG[12]	PA[3]	PG[13]	к	
L	PG[9]	PG[8]	NC	EVTO				1		1	<u>i</u>		PB[15]	PD[15]	PD[14]	PB[14]	L	
М	PG[7]	PG[6]	PC[10]	PC[11]									PB[13]	PD[13]	PD[12]	PB[12]	м	
Ν	PB[1]	PF[9]	PB[0]	NC	NC	PA[4]	VSS_LV	EXTAL	VDD_HV	PF[0]	PF[4]	NC	PB[11]	PD[10]	PD[9]	PD[11]	N	
Ρ	PF[8]	NC	PC[7]	NC	NC	PA[14]	VDD_LV	XTAL	PB[10]	PF[1]	PF[5]	PD[0]	PD[3]	VDD_HV _ADC	PB[6]	PB[7]	Р	
R	PF[12]	PC[6]	PF[10]	PF[11]	VDD_HV	PA[15]	PA[13]	NC	OSC32K _XTAL	PF[3]	PF[7]	PD[2]	PD[4]	PD[7]	VSS_HV _ADC	PB[5]	R	
т	NC	NC	NC	МСКО	NC	PF[13]	PA[12]	NC	OSC32K _EXTAL	PF[2]	PF[6]	PD[1]	PD[5]	PD[6]	PD[8]	PB[4]	т	
	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16		
Not	e: 208 I	MAPBG	A availa	ble only	as dev	elopme	nt packa	age for I	Vexus 2	+.				NC	= Not connected			

Figure 6. 208 MAPBGA configuration

2.2 Pad configuration during reset phases

All pads have a fixed configuration under reset.

During the power-up phase, all pads are forced to tristate.

After power-up phase, all pads are forced to tristate with the following exceptions:

- PA[9] (FAB) is pull-down. Without external strong pull-up the device starts fetching from flash.
- PA[8] (ABS[0]) is pull-up.
- RESET pad is driven low. This is pull-up only after PHASE2 reset completion.
- JTAG pads (TCK, TMS and TDI) are pull-up whilst TDO remains tristate.
- Precise ADC pads (PB[7:4] and PD[11:0]) are left tristate (no output buffer available).

		-					u		Pin	num	ber	
Port pin	РСК	Alternate function ¹	Function	Peripheral	I/O direction ²	Pad type	RESET configuration	MPC560xB 64 LQFP	MPC560xC 64 LQFP	100 LQFP	144 LQFP	208 MAPBGA ³
PA[8]	PCR[8]	AF0 AF1 AF2 AF3 — N/A ⁶ —	GPIO[8] E0UC[8] — EIRQ[3] ABS[0] LIN3RX	SIUL eMIOS_0 SIUL BAM LINFlex_3	/O /O - 	S	Input, weak pull-up	45	45	72	105	C16
PA[9]	PCR[9]	AF0 AF1 AF2 AF3 N/A ⁶	GPIO[9] E0UC[9] — FAB	SIUL eMIOS_0 — BAM	/O /O 	S	Pull-down	46	46	73	106	C15
PA[10]	PCR[10]	AF0 AF1 AF2 AF3	GPIO[10] E0UC[10] SDA —	SIUL eMIOS_0 I2C_0 —	I/O I/O I/O —	S	Tristate	47	47	74	107	B16
PA[11]	PCR[11]	AF0 AF1 AF2 AF3	GPIO[11] E0UC[11] SCL —	SIUL eMIOS_0 I2C_0 —	I/O I/O I/O —	S	Tristate	48	48	75	108	B15
PA[12]	PCR[12]	AF0 AF1 AF2 AF3 —	GPIO[12] — — — SIN_0	SIUL — — — DSPI0	/O _ I	S	Tristate	22	22	31	45	Τ7
PA[13]	PCR[13]	AF0 AF1 AF2 AF3	GPIO[13] SOUT_0 —	SIUL DSPI_0 — —	I/O O —	М	Tristate	21	21	30	44	R7
PA[14]	PCR[14]	AF0 AF1 AF2 AF3 —	GPIO[14] SCK_0 CS0_0 — EIRQ[4]	SIUL DSPI_0 DSPI_0 SIUL	/O /O /O 	М	Tristate	19	19	28	42	P6
PA[15]	PCR[15]	AF0 AF1 AF2 AF3 —	GPIO[15] CS0_0 SCK_0 — WKPU[10] ⁴	SIUL DSPI_0 DSPI_0 — WKPU	/O /O /O 	М	Tristate	18	18	27	40	R6

Table 5. Functional port pin descriptions (continued)

		-					u		Pir	num	ber	
Port pin	РСК	Alternate function ¹	Function	Peripheral	I/O direction ²	Pad type	RESET configuration	MPC560xB 64 LQFP	MPC560xC 64 LQFP	100 LQFP	144 LQFP	208 MAPBGA ³
PC[15]	PCR[47]	AF0 AF1 AF2 AF3	GPIO[47] E0UC[15] CS0_2 —	SIUL eMIOS_0 DSPI_2 —	I/O I/O I/O —	М	Tristate	_		4	4	D3
PD[0]	PCR[48]	AF0 AF1 AF2 AF3 —	GPIO[48] — — GPI[4]	SIUL - ADC	 - 	Ι	Tristate			41	63	P12
PD[1]	PCR[49]	AF0 AF1 AF2 AF3 —	GPIO[49] — — GPI[5]	SIUL — — ADC	 - 	I	Tristate	_		42	64	T12
PD[2]	PCR[50]	AF0 AF1 AF2 AF3	GPIO[50] — — GPI[6]	SIUL - ADC	 - 	-	Tristate	_	_	43	65	R12
PD[3]	PCR[51]	AF0 AF1 AF2 AF3 —	GPIO[51] — — — GPI[7]	SIUL — — ADC	 - 	I	Tristate	_	_	44	66	P13
PD[4]	PCR[52]	AF0 AF1 AF2 AF3 —	GPIO[52] — — — GPI[8]	SIUL — — ADC	 	I	Tristate	_		45	67	R13
PD[5]	PCR[53]	AF0 AF1 AF2 AF3 —	GPIO[53] — — — GPI[9]	SIUL — — ADC	 - 	Ι	Tristate	_		46	68	T13
PD[6]	PCR[54]	AF0 AF1 AF2 AF3 —	GPIO[54] — — — GPI[10]	SIUL — — ADC	 - 	Ι	Tristate			47	69	T14

Table 5. Functional port pin descriptions (continued)

		-					uo		Pin	num	ber	
Port pin	РСК	Alternate function ¹	Function	Peripheral	I/O direction ²	Pad type	RESET configuration	MPC560xB 64 LQFP	MPC560xC 64 LQFP	100 LQFP	144 LQFP	208 MAPBGA ³
PD[15]	PCR[63]	AF0 AF1 AF2 AF3 —	GPIO[63] CS2_1 E0UC[27] — ANS[7]	SIUL DSPI_1 eMIOS_0 — ADC	I/O O I/O _ I	J	Tristate	_	_	66	88	L14
PE[0]	PCR[64]	AF0 AF1 AF2 AF3 —	GPIO[64] E0UC[16] CAN5RX ¹¹ WKPU[6] ⁴	SIUL eMIOS_0 FlexCAN_5 WKPU	/O /O 	S	Tristate	—	—	6	10	F1
PE[1]	PCR[65]	AF0 AF1 AF2 AF3	GPIO[65] E0UC[17] CAN5TX ¹¹ —	SIUL eMIOS_0 FlexCAN_5 —	I/O I/O O	М	Tristate	_		8	12	F4
PE[2]	PCR[66]	AF0 AF1 AF2 AF3 —	GPIO[66] E0UC[18] SIN_1	SIUL eMIOS_0 — DSPI_1	/O /O 	Μ	Tristate	—	_	89	128	D7
PE[3]	PCR[67]	AF0 AF1 AF2 AF3	GPIO[67] E0UC[19] SOUT_1 —	SIUL eMIOS_0 DSPI_1 —	I/O I/O O	Μ	Tristate			90	129	C7
PE[4]	PCR[68]	AF0 AF1 AF2 AF3 —	GPIO[68] E0UC[20] SCK_1 — EIRQ[9]	SIUL eMIOS_0 DSPI_1 — SIUL	/O /O /O 	М	Tristate	_	_	93	132	D6
PE[5]	PCR[69]	AF0 AF1 AF2 AF3	GPIO[69] E0UC[21] CS0_1 MA[2]	SIUL eMIOS_0 DSPI_1 ADC	I/O I/O I/O O	М	Tristate	—		94	133	C6
PE[6]	PCR[70]	AF0 AF1 AF2 AF3	GPIO[70] E0UC[22] CS3_0 MA[1]	SIUL eMIOS_0 DSPI_0 ADC	I/O I/O O	М	Tristate	_	_	95	139	B5
PE[7]	PCR[71]	AF0 AF1 AF2 AF3	GPIO[71] E0UC[23] CS2_0 MA[0]	SIUL eMIOS_0 DSPI_0 ADC	I/O I/O O O	М	Tristate			96	140	C4

Table 5. Functional	port pi	n descri	ptions	(continued))

		-					F		Pin	num	ber	
Port pin	РСК	Alternate function ¹	Function	Peripheral	I/O direction ²	Pad type	RESET configuration	MPC560xB 64 LQFP	MPC560xC 64 LQFP	100 LQFP	144 LQFP	208 MAPBGA ³
PG[0]	PCR[96]	AF0 AF1 AF2 AF3	GPIO[96] CAN5TX ¹¹ E1UC[23] —	SIUL FlexCAN_5 eMIOS_1 —	I/O O I/O —	М	Tristate	_	41		98	E14
PG[1]	PCR[97]	AF0 AF1 AF2 AF3 —	GPIO[97] — E1UC[24] — CAN5RX ¹¹ EIRQ[14]	SIUL — eMIOS_1 — FlexCAN_5 SIUL	I/O I/O I - I	S	Tristate		40		97	E13
PG[2]	PCR[98]	AF0 AF1 AF2 AF3	GPIO[98] E1UC[11] — —	SIUL eMIOS_1 —	I/O I/O 	М	Tristate	—	—	—	8	E4
PG[3]	PCR[99]	AF0 AF1 AF2 AF3 —	GPIO[99] E1UC[12] — — WKPU[17] ⁴	SIUL eMIOS_1 — WKPU	I/O I/O I	S	Tristate	_	_	_	7	E3
PG[4]	PCR[100]	AF0 AF1 AF2 AF3	GPIO[100] E1UC[13] — —	SIUL eMIOS_1 —	I/O I/O 	М	Tristate	_	_		6	E1
PG[5]	PCR[101]	AF0 AF1 AF2 AF3 —	GPIO[101] E1UC[14] — WKPU[18] ⁴	SIUL eMIOS_1 — WKPU	I/O I/O I	S	Tristate	_	_	_	5	E2
PG[6]	PCR[102]	AF0 AF1 AF2 AF3	GPIO[102] E1UC[15] — —	SIUL eMIOS_1 —	I/O I/O 	М	Tristate				30	M2
PG[7]	PCR[103]	AF0 AF1 AF2 AF3	GPIO[103] E1UC[16] — —	SIUL eMIOS_1 —	I/O I/O 	М	Tristate				29	M1
PG[8]	PCR[104]	AF0 AF1 AF2 AF3 —	GPIO[104] E1UC[17] — CS0_2 EIRQ[15]	SIUL eMIOS_1 DSPI_2 SIUL	I/O I/O I/O I	S	Tristate				26	L2

Table 5. Functional port pin descriptions (continued)

Sym	nbol C Parameter		Conditions ²	Pin count	Value	Unit	
Ψ_{JC}	CC	D	Junction-to-case thermal	Single-layer board - 1s	64	TBD	°C/W
			characterization parameter, natural convection		100	9	
					144	10	
				Four-layer board - 2s2p	64	TBD	
					100	9	
					144	10	

Table 14. LQFP thermal characteristics¹ (continued)

¹ Thermal characteristics are based on simulation.

 $^2~V_{DD}$ = 3.3 V \pm 10% / 5.0 V \pm 10%, T_A = –40 to 125 °C

³ Junction-to-ambient thermal resistance determined per JEDEC JESD51-3 and JESD51-6. Thermal test board meets JEDEC specification for this package.

⁴ Junction-to-board thermal resistance determined per JEDEC JESD51-8. Thermal test board meets JEDEC specification for the specified package.

⁵ Junction-to-case at the top of the package determined using MIL-STD 883 Method 1012.1. The cold plate temperature is used for the case temperature. Reported value includes the thermal resistance of the interface layer.

2.14.2 Power considerations

The average chip-junction temperature, T_I, in degrees Celsius, may be calculated using Equation 1:

$$T_{J} = T_{A} + (P_{D} \times R_{\theta JA})$$
 Eqn. 7

Where:

 T_A is the ambient temperature in °C.

 $R_{\theta JA}$ is the package junction-to-ambient thermal resistance, in °C/W.

 P_D is the sum of P_{INT} and $P_{I/O} (P_D = P_{INT} + P_{I/O})$.

P_{INT} is the product of I_{DD} and V_{DD}, expressed in watts. This is the chip internal power.

 $P_{I/O}$ represents the power dissipation on input and output pins; user determined.

Most of the time for the applications, $P_{I/O} < P_{INT}$ and may be neglected. On the other hand, $P_{I/O}$ may be significant, if the device is configured to continuously drive external modules and/or memories.

An approximate relationship between P_D and T_J (if $P_{I/O}$ is neglected) is given by:

$$P_{\rm D} = K / (T_{\rm J} + 273 \,^{\circ}{\rm C})$$
 Eqn. 2

Therefore, solving equations 1 and 2:

$$K = P_D x (T_A + 273 °C) + R_{\theta JA} x P_D^2$$
 Eqn. 3

Where:

¹ 208 MAPBGA available only as development package for Nexus2+

Table 22 provides I/O consumption figures.

In order to ensure device reliability, the average current of the I/O on a single segment should remain below the $I_{\rm AVGSEG}$ maximum value.

Symbo		с	Parameter	Condi	Conditions ¹		Value		Unit
Symbo	1	Č	Farameter	Condi	10115	Min	Тур	Max	Onne
I _{SWTSLW} ²	СС	D	Dynamic I/O current for SLOW configuration	C _L = 25 pF	$V_{DD} = 5.0 V \pm 10\%,$ PAD3V5V = 0		—	20	mA
					V _{DD} = 3.3 V ± 10%, PAD3V5V = 1			16	
I _{SWTMED} ²	СС	D	Dynamic I/O current for MEDIUM configuration	C _L = 25 pF	$V_{DD} = 5.0 V \pm 10\%,$ PAD3V5V = 0	_		29	mA
					V _{DD} = 3.3 V ± 10%, PAD3V5V = 1			17	
I _{SWTFST} ²	сс	D	Dynamic I/O current for FAST configuration	C _L = 25 pF	$V_{DD} = 5.0 V \pm 10\%,$ PAD3V5V = 0	_		110	mA
					V _{DD} = 3.3 V ± 10%, PAD3V5V = 1	_		50	
I _{RMSSLW}	СС	D	Root mean square I/O	C _L = 25 pF, 2 MHz	$V_{DD} = 5.0 V \pm 10\%,$		—	2.3	mA
			current for SLOW configuration	C _L = 25 pF, 4 MHz	PAD3V5V = 0		—	3.2	
		0	C _L = 100 pF, 2 MHz	z		—	6.6		
				C _L = 25 pF, 2 MHz	$V_{DD} = 3.3 V \pm 10\%,$		—	1.6	
				C _L = 25 pF, 4 MHz	PAD3V5V = 1		—	2.3	
				C _L = 100 pF, 2 MHz			—	4.7	
I _{RMSMED}	СС	D	Root mean square I/O	C _L = 25 pF, 13 MHz	$V_{DD} = 5.0 V \pm 10\%,$		—	6.6	mA
			current for MEDIUM configuration	C _L = 25 pF, 40 MHz	PAD3V5V = 0		—	13.4	
			Ū	C _L = 100 pF, 13 MHz		_	_	18.3	
				C _L = 25 pF, 13 MHz	$V_{DD} = 3.3 V \pm 10\%,$		—	5	
				C _L = 25 pF, 40 MHz	PAD3V5V = 1		_	8.5	
				C _L = 100 pF, 13 MHz			_	11	
I _{RMSFST}	СС	D	Root mean square I/O	C _L = 25 pF, 40 MHz	$V_{DD} = 5.0 V \pm 10\%,$ PAD3V5V = 0			22	mA
			current for FAST configuration	C _L = 25 pF, 64 MHz			_	33	
			5	C _L = 100 pF, 40 MHz]	—	_	56	
				C _L = 25 pF, 40 MHz	$V_{DD} = 3.3 V \pm 10\%$,	—	—	14	
				C _L = 25 pF, 64 MHz	PAD3V5V = 1	—	—	20	
				C _L = 100 pF, 40 MHz				35	

Table 22. I/O consumption

Example 2. Simplified regulator

The regulator should be able to provide significant amount of the current during the standby exit process. For example, in case of an ideal voltage regulator providing 200 mA current, it is possible to recalculate the equivalent $\text{ESR}_{\text{STDBY}}(\text{MAX})$ and $\text{C}_{\text{STDBY}}(\text{MIN})$ as follows:

 $ESR_{STDBY}(MAX) = |\Delta_{VDD(STDBY)}|/(I_{DD BV} - 200 mA) = (30 mV)/(100 mA) = 0.3 \Omega$

 $C_{STDBY}(MIN) = (I_{DD_BV} - 200 \text{ mA})/dVDD(STDBY)/dt = (300 \text{ mA} - 200 \text{ mA})/(15 \text{ mV/}\mu s) = 6.7 \mu F$

In case optimization is required, $C_{STDBY}(MIN)$ and $ESR_{STDBY}(MAX)$ should be calculated based on the regulator characteristics as well as the board V_{DD} plane characteristics.

2.17.2 Low voltage detector electrical characteristics

The device implements a Power-on Reset (POR) module to ensure correct power-up initialization, as well as four low voltage detectors (LVDs) to monitor the V_{DD} and the V_{DD} LV voltage while device is supplied:

- POR monitors V_{DD} during the power-up phase to ensure device is maintained in a safe reset state (refer to RGM Destructive Event Status (RGM_DES) Register flag F_POR in device reference manual)
- LVDHV3 monitors V_{DD} to ensure device reset below minimum functional supply (refer to RGM Destructive Event Status (RGM_DES) Register flag F_LVD27 in device reference manual)
- LVDHV5 monitors V_{DD} when application uses device in the 5.0 V ± 10% range (refer to RGM Functional Event Status (RGM_FES) Register flag F_LVD45 in device reference manual)
- LVDLVCOR monitors power domain No. 1 (refer to RGM Destructive Event Status (RGM_DES) Register flag F_LVD12_PD1 in device reference manual
- LVDLVBKP monitors power domain No. 0 (refer to RGM Destructive Event Status (RGM_DES) Register flag F_LVD12_PD0 in device reference manual)

NOTE

When enabled, power domain No. 2 is monitored through LVDLVBKP.

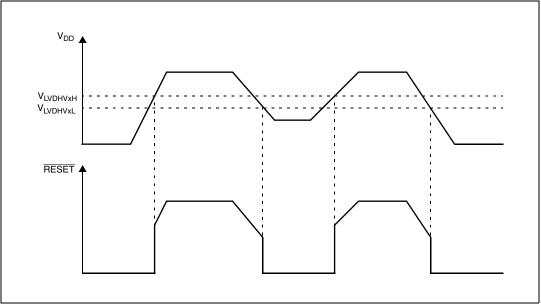


Figure 13. Low voltage detector vs reset

NOTE

Figure 13 does not apply to LVDHV5 low voltage detector because LVDHV5 is automatically disabled during reset and it must be enabled by software again. Once the device is forced to reset by LVDHV5, the LVDHV5 is disabled and reset is released as soon as internal reset sequence is completed regardless of LVDHV5H threshold.

Symbol	Symbol		Parameter	Conditions ¹	Value			Unit
Cymbol			i aranceei	Conditions	Min	Тур	Мах	U
V _{PORUP}	SR	Ρ	Supply for functional POR module	—	1.0	_	5.5	V
V _{PORH}	СС	Ρ	Power-on reset threshold	$T_A = 25 \ ^{\circ}C,$ after trimming	1.5		2.6	
		Т		_	1.5		2.6	
V _{LVDHV3H}	СС	Т	LVDHV3 low voltage detector high threshold	—			2.95	
V _{LVDHV3L}	СС	Ρ	LVDHV3 low voltage detector low threshold		2.6	_	2.9	
V _{LVDHV5H}	СС	Т	LVDHV5 low voltage detector high threshold		—	_	4.5	
V _{LVDHV5L}	сс	Ρ	LVDHV5 low voltage detector low threshold		3.8	_	4.4	
V _{LVDLVCORL}	СС	Ρ	LVDLVCOR low voltage detector low threshold		1.08	_	1.16	
V _{LVDLVBKPL}	СС	Ρ	LVDLVBKP low voltage detector low threshold		1.08	_	1.16	

 $\overline{}^{1}$ V_{DD} = 3.3 V ± 10% / 5.0 V ± 10%, T_A = -40 to 125 °C, unless otherwise specified

- ⁵ Only for the "P" classification: Data and Code Flash in Normal Power. Code fetched from RAM: Serial IPs CAN and LIN in loop back mode, DSPI as Master, PLL as system Clock (4 x Multiplier) peripherals on (eMIOS/CTU/ADC) and running at max frequency, periodic SW/WDG timer reset enabled.
- ⁶ Data Flash Power Down. Code Flash in Low Power. SIRC (128 kHz) and FIRC (16 MHz) on. 10 MHz XTAL clock. FlexCAN: instances: 0, 1, 2 ON (clocked but not reception or transmission), instances: 4, 5, 6 clock gated. LINFlex: instances: 0, 1, 2 ON (clocked but not reception or transmission), instance: 3 clock gated. eMIOS: instance: 0 ON (16 channels on PA[0]–PA[11] and PC[12]–PC[15]) with PWM 20 kHz, instance: 1 clock gated. DSPI: instance: 0 (clocked but no communication). RTC/API ON. PIT ON. STM ON. ADC ON but not conversion except 2 analog watchdog.
- ⁷ Only for the "P" classification: No clock, FIRC (16 MHz) off, SIRC (128 kHz) on, PLL off, HPvreg off, ULPVreg/LPVreg on. All possible peripherals off and clock gated. Flash in power down mode.
- ⁸ When going from RUN to STOP mode and the core consumption is > 6 mA, it is normal operation for the main regulator module to be kept on by the on-chip current monitoring circuit. This is most likely to occur with junction temperatures exceeding 125 °C and under these circumstances, it is possible for the current to initially exceed the maximum STOP specification by up to 2 mA. After entering stop, the application junction temperature will reduce to the ambient level and the main regulator will be automatically switched off when the load current is below 6 mA.
- ⁹ Only for the "P" classification: ULPreg on, HP/LPVreg off, 32 KB RAM on, device configured for minimum consumption, all possible modules switched off.
- ¹⁰ ULPreg on, HP/LPVreg off, 8 KB RAM on, device configured for minimum consumption, all possible modules switched off.

2.19 Flash memory electrical characteristics

2.19.1 **Program/Erase characteristics**

Table 28 shows the program and erase characteristics.

					Va	lue			
Symbol		С	Parameter	Min	Typ ¹	Initial max ²	Max ³	Unit	
T _{dwprogram}	CC	С	Double word (64 bits) program time ⁴	—	22	50	500	μs	
T _{16Kpperase}			16 KB block preprogram and erase time	—	300	500	5000	ms	
T _{32Kpperase}			32 KB block preprogram and erase time	—	400	600	5000	ms	
T _{128Kpperase}			128 KB block preprogram and erase time	_	800	1300	7500	ms	
T _{esus}	СС	D	Erase suspend latency	—	_	30	30	μs	

Table 28. Program and erase specifications

¹ Typical program and erase times assume nominal supply values and operation at 25 °C.

² Initial factory condition: < 100 program/erase cycles, 25 °C, typical supply voltage.

³ The maximum program and erase times occur after the specified number of program/erase cycles. These maximum values are characterized but not guaranteed.

⁴ Actual hardware programming times. This does not include software overhead.

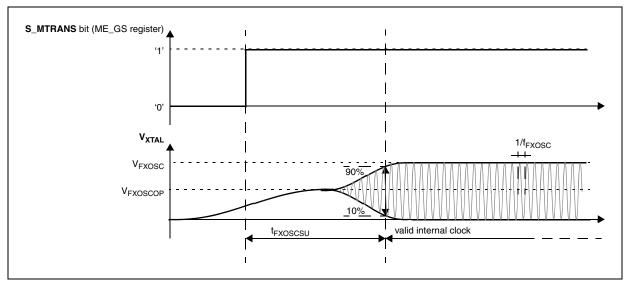


Figure 15. Fast external crystal oscillator (4 to 16 MHz) timing diagram

Symbo		с	Parameter	Cor	nditions ¹	Value			Unit
Symbol		Ŭ	i didileter	001		Min	Тур	Max	onne
I _{FIRCSTOP}	СС	Т	Fast internal RC oscillator high	T _A = 25 °C	sysclk = off		500	_	μΑ
			frequency and system clock current in stop mode		sysclk = 2 MHz	_	600		
			•		sysclk = 4 MHz	—	700		
				:	sysclk = 8 MHz	—	900		
					sysclk = 16 MHz	—	1250	_	
t _{FIRCSU}	СС	С	Fast internal RC oscillator start-up time	$V_{DD} = 5.0 \text{ V} \pm 10\%$		_	1.1	2.0	μs
$\Delta_{FIRCPRE}$	СС	Т	Fast internal RC oscillator precision after software trimming of f _{FIRC}	T _A = 25 °C		-1	_	+1	%
$\Delta_{FIRCTRIM}$	СС	Т	Fast internal RC oscillator trimming step	T _A = 25 °C		_	1.6		%
	CC	Ρ	Fast internal RC oscillator variation in over temperature and supply with respect to f_{FIRC} at $T_A = 25$ °C in high-frequency configuration		_	-5		+5	%

 Table 41. Fast internal RC oscillator (16 MHz) electrical characteristics (continued)

 $^1~V_{DD}$ = 3.3 V \pm 10% / 5.0 V \pm 10%, T_A = –40 to 125 °C, unless otherwise specified.

² This does not include consumption linked to clock tree toggling and peripherals consumption when RC oscillator is ON.

2.25 Slow internal RC oscillator (128 kHz) electrical characteristics

The device provides a 128 kHz slow internal RC oscillator. This can be used as the reference clock for the RTC module.

Symbol	Symbol		Parameter	Conditions ¹		Unit		
Cymber		С	i didineter	Conditions	Min	Тур	Max	
f _{SIRC}	CC	Ρ	Slow internal RC oscillator low	T _A = 25 °C, trimmed		128	_	kHz
	SR	_	frequency	_	100	_	150	
I _{SIRC} ^{2,}	СС		Slow internal RC oscillator low frequency current	T _A = 25 °C, trimmed			5	μA
t _{SIRCSU}	СС	Ρ	Slow internal RC oscillator start-up time	$T_A = 25 \ ^{\circ}C, V_{DD} = 5.0 \ V \pm 10\%$	_	8	12	μs
$\Delta_{SIRCPRE}$	СС	С	Slow internal RC oscillator precision after software trimming of f _{SIRC}	T _A = 25 °C	-2	_	+2	%
	СС	С	Slow internal RC oscillator trimming step	—		2.7	—	

Table 42. Slow internal RC oscillator (128 kHz) electrical characteristics

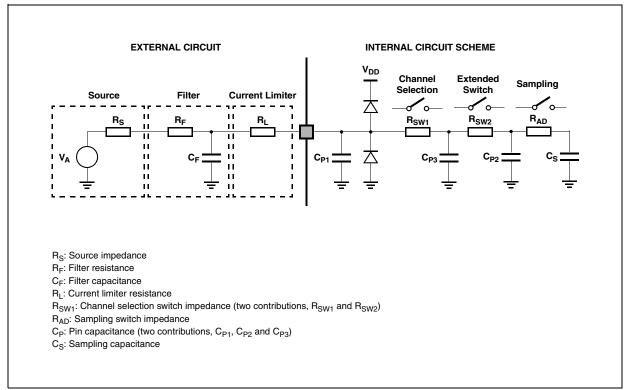


Figure 21. Input equivalent circuit (extended channels)

A second aspect involving the capacitance network shall be considered. Assuming the three capacitances C_F , C_{P1} and C_{P2} are initially charged at the source voltage V_A (refer to the equivalent circuit in Figure 20): A charge sharing phenomenon is installed when the sampling phase is started (A/D switch close).

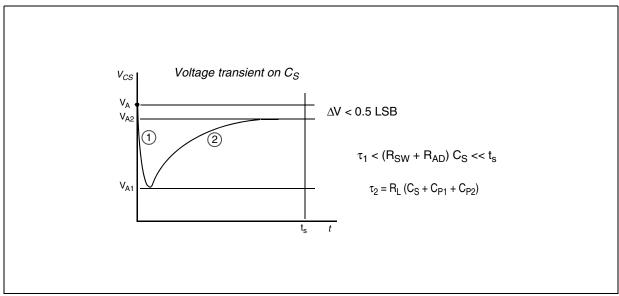


Figure 22. Transient behavior during sampling phase

In particular two different transient periods can be distinguished:

Cumh		С	Deveneter	Conditions ¹			Unit			
Symbol		C	Parameter	Conditions		Min	Тур	Мах		
C _{P3}	СС	D	ADC input pin capacitance 3	-	—		—	1	pF	
R _{SW1}	СС	D	Internal resistance of analog source	-	_	—	-	3	kΩ	
R _{SW2}	СС	D	Internal resistance of analog source	_	_	—	-	2	kΩ	
R _{AD}	СС	D	Internal resistance of analog source	_	_	—	—	2	kΩ	
I _{INJ}	SR	—	Input current Injection	Current injection on one	V _{DD} = 3.3 V ± 10%	-5	—	5	mA	
				ADC input, different from the converted one	V _{DD} = 5.0 V ± 10%	-5	-	5		
INL	СС	Т	Absolute value for integral non-linearity	No overload	1	—	0.5	1.5	LSB	
DNL	СС	Т	Absolute differential non-linearity	No overload		_	0.5	1.0	LSB	
E _O	СС	Т	Absolute offset error	-	_	-	0.5	_	LSB	
E _G	СС	Т	Absolute gain error	—		—	0.6	_	LSB	
TUEp	СС	Ρ	Total unadjusted error ⁷	Without current injection		-2	0.6	2	LSB	
		Т	for precise channels, input only pins	With current injection		-3		3		
TUEx	СС	Т	Total unadjusted error ⁷	Without current	injection	-3	1	3	LSB	
		Т	for extended channel	With current injection		-4		4		

Table 44. ADC conversion characteristics (continued)

 $^1~V_{DD}$ = 3.3 V \pm 10% / 5.0 V \pm 10%, T_A = –40 to 125 °C, unless otherwise specified.

 2 Analog and digital V_{SS} **must** be common (to be tied together externally).

³ V_{AINx} may exceed V_{SS_ADC} and V_{DD_ADC} limits, remaining on absolute maximum ratings, but the results of the conversion will be clamped respectively to 0x000 or 0x3FF.

⁴ Duty cycle is ensured by using system clock without prescaling. When ADCLKSEL = 0, the duty cycle is ensured by internal divider by 2.

⁵ During the sampling time the input capacitance C_S can be charged/discharged by the external source. The internal resistance of the analog source must allow the capacitance to reach its final voltage level within t_s . After the end of the sampling time t_s , changes of the analog input voltage have no effect on the conversion result. Values for the sample clock t_s depend on programming.

⁶ This parameter does not include the sampling time t_s, but only the time for determining the digital result and the time to load the result's register with the conversion result.

⁷ Total Unadjusted Error: The maximum error that occurs without adjusting Offset and Gain errors. This error is a combination of Offset, Gain and Integral Linearity errors.

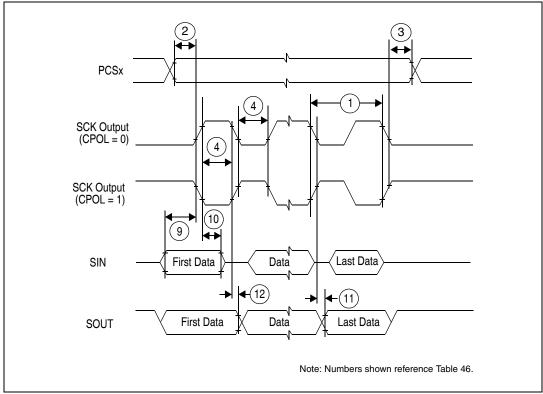


Figure 24. DSPI classic SPI timing – master, CPHA = 0

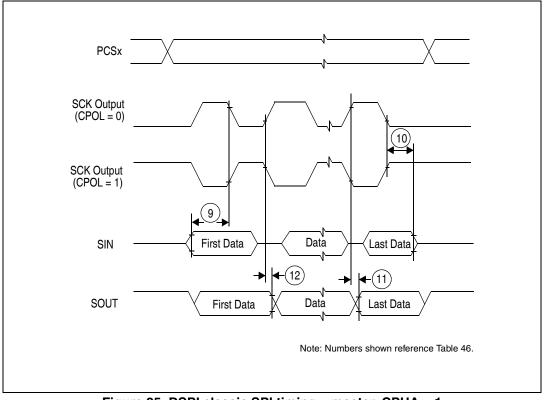
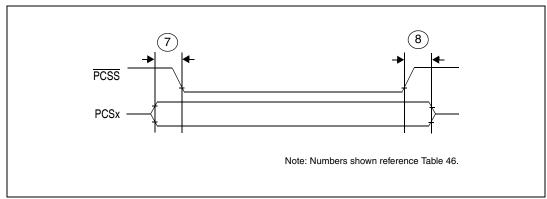
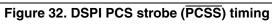




Figure 25. DSPI classic SPI timing – master, CPHA = 1

2.27.3 Nexus characteristics

No.	Symb		с	Parameter		Value		Unit	
NO.	Symbol		C	Falameter	Min	Тур	Max		
1	t _{TCYC}	CC	D	TCK cycle time	64	—	—	ns	
2	t _{MCYC}	CC	D	MCKO cycle time	32	—	_	ns	
3	t _{MDOV}	CC	D	MCKO low to MDO data valid	—	—	8	ns	
4	t _{MSEOV}	CC	D	MCKO low to MSEO_b data valid	—	—	8	ns	
5	t _{EVTOV}	CC	D	MCKO low to EVTO data valid	—	—	8	ns	
10	t _{NTDIS}	CC	D	TDI data setup time	15	—	—	ns	
	t _{NTMSS}	CC	D	TMS data setup time	15	—	—	ns	
11	t _{NTDIH}	CC	D	TDI data hold time	5	—	—	ns	
	t _{NTMSH}	CC	D	TMS data hold time	5	—	—	ns	
12	t _{TDOV}	CC	D	TCK low to TDO data valid	35	—	—	ns	
13	t _{TDOI}	CC	D	TCK low to TDO data invalid	6	—	—	ns	

Table 47.	Nexus	characteristics
-----------	-------	-----------------

Package characteristics

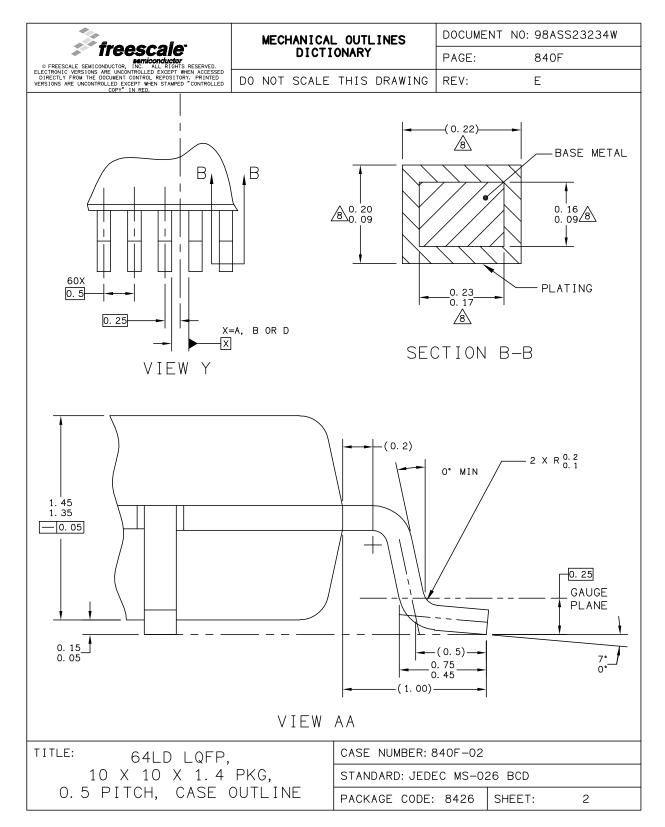


Figure 36. 64 LQFP package mechanical drawing (2 of 3)

3.1.4 208 MAPBGA

Figure 43. 208 MAPBGA package mechanical drawing (1 of 2)

Document revision history

Revision	Date	Description of Changes
6	15-Mar-2010	In the "Introduction" section, relocated a note. In the "MPC5604B/C device comparison" table, added footnote regarding SCI and CAN. In the "Absolute maximum ratings" table, removed the min value of V _{IN} relative to V _{DD} . In the "Recommended operating conditions (3.3 V)" table: * T _A C-Grade Part, T _J C-Grade Part, T _A V-Grade Part, T _J V-Grade Part, T _A M-Grade Part, T _J M-Grade Part: added new rows. * TV _{DD} : made single row. In the "LQFP thermal characteristics" table, added more rows. Removed "208 MAPBGA thermal characteristics" table. In the "I/Q consumption" table: * Removed I _{DVNSEG} row. * Added "I/O weight" table. In the "Voltage regulator electrical characteristics" table: * Updated the values. * Removed I _{VREGREF} and I _{VREDLVD12} . * Added a note about I _{DD_BC} . In the "Low voltage monitor electrical characteristics" table: * Updated V _{PORH} values. * Updated V _{PORH} values. * Updated V _{DONCORL} value. Entirely updated the "Eash power supply DC electrical characteristics" table. In the "Crystal oscillator and resonator connection scheme" figure, relocated a note. In the "Crystal oscillator and resonator conscheme" figure, relocated a note. In the "Crystal oscillator and resonator conscheme" figure, relocated a note. In the "Crystal oscillator and resonator conscheme" figure, relocated a note. In the "Crystal oscillator (32 kHz) electrical characteristics" table: * Removed g _{MSXOSC} row. * Inserted values of I _{SXOSCEIAS} : Entirely updated the "Fast internal RC oscillator (16 MHz) electrical characteristics" table. In the "Orderable part number summary" table, modified some orderable part number. Updated the "Commercial product code structure" figure. Removed the note about the condition from "Flash read access timing" table Removed the notes that assert the values need to be confirmed before validation Exchanged the order of "LQFP 100-pin configuration" and "LQFP 144-pin configuration" Exchanged the order of "LQFP 100-pin configuration" and "LQFP 144-pin configur

How to Reach Us: Home Page: nxp.com Web Support: nxp.com/support

Information in this document is provided solely to enable system and software implementers to use NXP products. There are no express or implied copyright licenses granted hereunder to design or fabricate any integrated circuits based on the information in this document. NXP reserves the right to make changes without further notice to any products herein.

NXP makes no warranty, representation, or guarantee regarding the suitability of its products for any particular purpose, nor does NXP assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. "Typical" parameters that may be provided in NXP data sheets and/or specifications can and do vary in different applications, and actual performance may vary over time. All operating parameters, including "typicals," must bevalidated for each customer application by customer's technical experts. NXP does not convey any license under its patent rights nor the rights of others. NXP sells products pursuant to standard terms and conditions of sale, which can befound at the following address: nxp.com/SalesTermsandConditions.

NXP, the NXP logo, NXP SECURE CONNECTIONS FOR A SMARTER WORLD, COOLFLUX, EMBRACE, GREENCHIP, HITAG, I2C BUS, ICODE, JCOP, LIFE VIBES, MIFARE, MIFARE CLASSIC, MIFARE DESFire, MIFARE PLUS, MIFARE FLEX, MANTIS, MIFARE ULTRALIGHT, MIFARE4MOBILE, MIGLO, NTAG, ROADLINK, SMARTLX, SMARTMX, STARPLUG, TOPFET, TRENCHMOS, UCODE, Freescale, the Freescale logo, AltiVec, C.5, CodeTEST, CodeWarrior, ColdFire, ColdFire+, C.Ware, the Energy Efficient Solutions logo, Kinetis, Layerscape, MagniV, mobileGT, PEG, PowerQUICC, Processor Expert, QorIQ, QorIQ Qonverge, Ready Play, SafeAssure, the SafeAssure logo, StarCore, Symphony, VortiQa, Vybrid, Airfast, BeeKit, BeeStack, CoreNet, Flexis, MXC, Platform in a Package, QUICC Engine, SMARTMOS, Tower, TurboLink, and UMEMS are trademarks of NXP B.V. All other product or service names are the property of their respective owners. Arm, AMBA, Arm Powered, Artisan, Cortex, Jazelle, Keil, SecurCore, Thumb, TrustZone, and ÏVision are registered trademarks of Arm Limited (or its subsidiaries) in the EU and/or elsewhere. Arm7, Arm9, Arm11, big.LITTLE, CoreLink, CoreSight, DesignStart, Mali, Mbed, NEON, POP, Sensinode, Socrates, ULINK and Versatile are trademarks of Arm Limited (or its subsidiaries) in the EU and/or elsewhere. All rights reserved. Oracle and Java are registered trademarks of Oracle and/or its affiliates. The Power Architecture and Power.org word marks and the Power and Power.org logos and related marks are trademarks and service marks licensed by Power.org.

© 2017 NXP B.V.

Document Number: MPC5604BC Rev. 14 11/2017