

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	e200z0h
Core Size	32-Bit Single-Core
Speed	48MHz
Connectivity	CANbus, I ² C, LINbus, SCI, SPI
Peripherals	DMA, POR, PWM, WDT
Number of I/O	79
Program Memory Size	384KB (384K x 8)
Program Memory Type	FLASH
EEPROM Size	64K x 8
RAM Size	28K x 8
Voltage - Supply (Vcc/Vdd)	3V ~ 5.5V
Data Converters	A/D 28x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	100-LQFP
Supplier Device Package	100-LQFP (14x14)
Purchase URL	https://www.e-xfl.com/pro/item?MUrl=&PartUrl=spc5603bf2mll4r

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

1 Introduction

1.1 Document overview

This document describes the features of the family and options available within the family members, and highlights important electrical and physical characteristics of the device. To ensure a complete understanding of the device functionality, refer also to the device reference manual and errata sheet.

1.2 Description

The MPC5604B/C is a family of next generation microcontrollers built on the Power Architecture® embedded category.

The MPC5604B/C family of 32-bit microcontrollers is the latest achievement in integrated automotive application controllers. It belongs to an expanding family of automotive-focused products designed to address the next wave of body electronics applications within the vehicle. The advanced and cost-efficient host processor core of this automotive controller family complies with the Power Architecture embedded category and only implements the VLE (variable-length encoding) APU, providing improved code density. It operates at speeds of up to 64 MHz and offers high performance processing optimized for low power consumption. It capitalizes on the available development infrastructure of current Power Architecture devices and is supported with software drivers, operating systems and configuration code to assist with users implementations.

								De	evice							
Feature					MPC56 02CxLL											MPC5604 BxMG
CPU		e200z0h														
Execution speed ²		Static – up to 64 MHz														
Code Flash			256 KB					384 KB					51	2 KB		
Data Flash								64 KB (4	4 × 16 KE	3)						
RAM		24 KB		32	KB	28 KB 40 KB				32 KB				48 KB		
MPU								8-0	entry					I		
ADC (10-bit)	12 ch	28 ch	36 ch	8 ch	28 ch	12 ch	28 ch	36 ch	8 ch	28 ch	12 ch	28 ch	36 ch	8 ch	28 ch	36 ch
CTU								```	/es							
Total timer I/O ³ eMIOS					28 ch, 16-bit	12 ch, 16-bit	28 ch, 16-bit	56 ch, 16-bit	12 ch, 16-bit	28 ch, 16-bit	12 ch, 16-bit	28 ch, 16-bit	56 ch, 16-bit	12 ch, 16-bit	28 ch, 16-bit	56 ch, 16-bit
• PWM+MC + IC/OC ⁴	2 ch	5 ch	10 ch	2 ch	5 ch	2 ch	5 ch	10 ch	2 ch	5 ch	2 ch	5 ch	10 ch	2 ch	5 ch	10 ch

Table 1. MPC5604B/C device comparison¹

MPC5604B/C Microcontroller Data Sheet, Rev.

14

		.					u		Pin	num	ber	
Port pin	PCR	Alternate function ¹	Function	Peripheral	I/O direction ²	Pad type	RESET configuration	MPC560xB 64 LQFP	MPC560xC 64 LQFP	100 LQFP	144 LQFP	208 MAPBGA ³
PB[15]	PCR[31]	AF0 AF1 AF2 AF3 —	GPIO[31] E0UC[7] — CS4_0 ANX[3]	SIUL eMIOS_0 DSPI_0 ADC	I/O I/O — 0 I	J	Tristate	42	38	67	89	L13
PC[0] ⁹	PCR[32]	AF0 AF1 AF2 AF3	GPIO[32] — TDI —	SIUL — JTAGC —	I/O 	М	Input, weak pull-up	59	59	87	126	A8
PC[1] ⁹	PCR[33]	AF0 AF1 AF2 AF3	GPIO[33] — TDO ¹⁰ —	SIUL — JTAGC —	I/O O 	М	Tristate	54	54	82	121	C9
PC[2]	PCR[34]	AF0 AF1 AF2 AF3 —	GPIO[34] SCK_1 CAN4TX ¹¹ — EIRQ[5]	SIUL DSPI_1 FlexCAN_4 — SIUL	I/O I/O O I	М	Tristate	50	50	78	117	A11
PC[3]	PCR[35]	AF0 AF1 AF2 AF3 — —	GPIO[35] CS0_1 MA[0] — CAN1RX CAN4RX ¹¹ EIRQ[6]	SIUL DSPI_1 ADC — FlexCAN_1 FlexCAN_4 SIUL	/0 /0 - 	S	Tristate	49	49	77	116	B11
PC[4]	PCR[36]	AF0 AF1 AF2 AF3 —	GPIO[36] — — SIN_1 CAN3RX ¹¹	SIUL — — DSPI_1 FlexCAN_3	I/O — — — — —	М	Tristate	62	62	92	131	B7
PC[5]	PCR[37]	AF0 AF1 AF2 AF3 —	GPIO[37] SOUT_1 CAN3TX ¹¹ — EIRQ[7]	SIUL DSPI1 FlexCAN_3 — SIUL	I/O O O I	М	Tristate	61	61	91	130	A7
PC[6]	PCR[38]	AF0 AF1 AF2 AF3	GPIO[38] LIN1TX — —	SIUL LINFlex_1 —	I/O O —	S	Tristate	16	16	25	36	R2

Table 5. Functional port pin descriptions (continued)

		-					u		Pin	num	ber	
Port pin	PCR	Alternate function ¹	Function	Peripheral	I/O direction ²	Pad type	RESET configuration	MPC560xB 64 LQFP	MPC560xC 64 LQFP	100 LQFP	144 LQFP	208 MAPBGA ³
PF[8]	PCR[88]	AF0 AF1 AF2 AF3	GPIO[88] CAN3TX ¹⁴ CS4_0 CAN2TX ¹⁵	SIUL FlexCAN_3 DSPI_0 FlexCAN_2	1/0 0 0 0	М	Tristate				34	P1
PF[9]	PCR[89]	AF0 AF1 AF2 AF3 —	GPIO[89] 	SIUL DSPI_0 FlexCAN_2 FlexCAN_3	I/O — O — I — I	S	Tristate	_			33	N2
PF[10]	PCR[90]	AF0 AF1 AF2 AF3	GPIO[90] — — —	SIUL — — —	I/O _	М	Tristate	—			38	R3
PF[11]	PCR[91]	AF0 AF1 AF2 AF3 —	GPIO[91] — — — WKPU[15] ⁴	SIUL — — — WKPU	I/O — — — —	S	Tristate	_	_	_	39	R4
PF[12]	PCR[92]	AF0 AF1 AF2 AF3	GPIO[92] E1UC[25] — —	SIUL eMIOS_1 —	I/O I/O 	М	Tristate	_	_		35	R1
PF[13]	PCR[93]	AF0 AF1 AF2 AF3 —	GPIO[93] E1UC[26] — WKPU[16] ⁴	SIUL eMIOS_1 WKPU	I/O I/O I	S	Tristate	_	_		41	T6
PF[14]	PCR[94]	AF0 AF1 AF2 AF3	GPIO[94] CAN4TX ¹¹ E1UC[27] CAN1TX	SIUL FlexCAN_4 eMIOS_1 FlexCAN_4	I/O O I/O O	М	Tristate		43		102	D14
PF[15]	PCR[95]	AF0 AF1 AF2 AF3 — — —	GPIO[95] — — CAN1RX CAN4RX ¹¹ EIRQ[13]	SIUL — — FlexCAN_1 FlexCAN_4 SIUL	I/O — — — — — — —	S	Tristate	_	42		101	E15

Table 5. Functional port pin descriptions (continued)

2.13 Recommended operating conditions

Table 12. Recommended operating conditions (3.3 V)

Symbol		Parameter	Conditions	Va	lue	Unit
Symbol		Falameter	Conditions	Min	Max	Unit
V _{SS}	SR	Digital ground on VSS_HV pins	—	0	0	V
V _{DD} ¹	SR	Voltage on VDD_HV pins with respect to ground (V _{SS})	—	3.0	3.6	V
V _{SS_LV} ²	SR	Voltage on VSS_LV (low voltage digital supply) pins with respect to ground (V _{SS})		V _{SS} -0.1	V _{SS} +0.1	V
V _{DD_BV} ³	SR		—	3.0	3.6	V
		respect to ground (V _{SS})	Relative to V_{DD}	V _{DD} -0.1	V _{DD} +0.1	
V _{SS_ADC}	SR	Voltage on VSS_HV_ADC (ADC reference) pin with respect to ground (V _{SS})	—	V _{SS} -0.1	V _{SS} +0.1	V
V _{DD_ADC} ⁴	SR	Voltage on VDD_HV_ADC pin (ADC reference)	—	3.0 ⁵	3.6	V
		with respect to ground (V _{SS})	Relative to V_{DD}	V _{DD} -0.1	V _{DD} +0.1	
V _{IN}	SR	o j i i o	—	V _{SS} -0.1	—	V
		(V _{SS})	Relative to V_{DD}		V _{DD} +0.1	
I _{INJPAD}	SR	Injected input current on any pin during overload condition	—	-5	5	mA
IINJSUM	SR	Absolute sum of all injected input currents during overload condition	—	-50	50	
TV _{DD}	SR	V _{DD} slope to ensure correct power up ⁶	—	3.0 ⁷	0.25[V/µs])	V/s
TA C-Grade Part	SR	Ambient temperature under bias	$f_{CPU} \le 64 \text{ MHz}$	-40	85	°C
T _{J C-Grade Part}	SR	Junction temperature under bias		-40	110	
TA V-Grade Part	SR	Ambient temperature under bias		-40	105	
T _{J V-Grade Part}	SR	Junction temperature under bias		-40	130	
TA M-Grade Part	SR	Ambient temperature under bias		-40	125	
T _{J M-Grade Part}	SR	Junction temperature under bias		-40	150	

 $^1\,$ 100 nF capacitance needs to be provided between each V_{DD}/V_{SS} pair

 2 330 nF capacitance needs to be provided between each $V_{\text{DD}_LV}/V_{\text{SS}_LV}$ supply pair.

³ 400 nF capacitance needs to be provided between V_{DD_BV} and the nearest V_{SS_LV} (higher value may be needed depending on external regulator characteristics).

 $^4\,$ 100 nF capacitance needs to be provided between V_DD_ADC/V_SS_ADC pair.

⁵ Full electrical specification cannot be guaranteed when voltage drops below 3.0 V. In particular, ADC electrical characteristics and I/Os DC electrical specification may not be guaranteed. When voltage drops below V_{LVDHVL}, device is reset.

⁶ Guaranteed by device validation.

 $^7\,$ Minimum value of TV_{DD} must be guaranteed until V_{DD} reaches 2.6 V (maximum value of V_{PORH}).

Sym	nbol	С	Parameter	Conditions ²	Pin count	Value	Unit
Ψ_{JC}	CC	D	Junction-to-case thermal	Single-layer board - 1s	64	TBD	°C/W
			characterization parameter, natural convection		100	9	
					144	10	
				Four-layer board - 2s2p	64	TBD	
					100	9	
					144	10	

Table 14. LQFP thermal characteristics¹ (continued)

¹ Thermal characteristics are based on simulation.

 $^2~V_{DD}$ = 3.3 V \pm 10% / 5.0 V \pm 10%, T_A = –40 to 125 °C

³ Junction-to-ambient thermal resistance determined per JEDEC JESD51-3 and JESD51-6. Thermal test board meets JEDEC specification for this package.

⁴ Junction-to-board thermal resistance determined per JEDEC JESD51-8. Thermal test board meets JEDEC specification for the specified package.

⁵ Junction-to-case at the top of the package determined using MIL-STD 883 Method 1012.1. The cold plate temperature is used for the case temperature. Reported value includes the thermal resistance of the interface layer.

2.14.2 Power considerations

The average chip-junction temperature, T_I, in degrees Celsius, may be calculated using Equation 1:

$$T_{J} = T_{A} + (P_{D} \times R_{\theta JA})$$
 Eqn. 7

Where:

 T_A is the ambient temperature in °C.

 $R_{\theta JA}$ is the package junction-to-ambient thermal resistance, in °C/W.

 P_D is the sum of P_{INT} and $P_{I/O} (P_D = P_{INT} + P_{I/O})$.

P_{INT} is the product of I_{DD} and V_{DD}, expressed in watts. This is the chip internal power.

 $P_{I/O}$ represents the power dissipation on input and output pins; user determined.

Most of the time for the applications, $P_{I/O} < P_{INT}$ and may be neglected. On the other hand, $P_{I/O}$ may be significant, if the device is configured to continuously drive external modules and/or memories.

An approximate relationship between P_D and T_J (if $P_{I/O}$ is neglected) is given by:

$$P_{\rm D} = K / (T_{\rm J} + 273 \,^{\circ}{\rm C})$$
 Eqn. 2

Therefore, solving equations 1 and 2:

$$K = P_D x (T_A + 273 °C) + R_{\theta JA} x P_D^2$$
 Eqn. 3

Where:

MPC5604B/C Microcontroller Data Sheet, Rev. 14

Package pinouts and signal descriptions

Course	- 1	~	Deveneter	Conditions1		Value		1.1
Symbo	OI	С	Parameter	Conditions ¹	Min	Тур	Мах	Uni
V _{IL}	SR	Ρ	Input low Level CMOS (Schmitt Trigger)	_	-0.4	—	0.35V _{DD}	V
V _{HYS}	СС	С	Input hysteresis CMOS (Schmitt Trigger)	_	0.1V _{DD}	_	-	V
V _{OL}	СС	Ρ	Output low level	Push Pull, $I_{OL} = 2mA$, V _{DD} = 5.0 V ± 10%, PAD3V5V = 0 (recommended)	—	_	0.1V _{DD}	V
		С		Push Pull, I_{OL} = 1mA, V _{DD} = 5.0 V ± 10%, PAD3V5V = 1 ²	—	—	0.1V _{DD}	
		С		Push Pull, $I_{OL} = 1mA$, $V_{DD} = 3.3 V \pm 10\%$, PAD3V5V = 1 (recommended)	_	_	0.5	
t _{tr}	СС	D	Output transition time output pin ³	C _L = 25pF, V _{DD} = 5.0 V ± 10%, PAD3V5V = 0	—	_	10	ns
				C _L = 50pF, V _{DD} = 5.0 V ± 10%, PAD3V5V = 0	—	_	20	
				C _L = 100pF, V _{DD} = 5.0 V ± 10%, PAD3V5V = 0	—		40	
				C _L = 25pF, V _{DD} = 3.3 V ± 10%, PAD3V5V = 1	—	_	12	
				C _L = 50pF, V _{DD} = 3.3 V ± 10%, PAD3V5V = 1	—	_	25	
				C _L = 100pF, V _{DD} = 3.3 V ± 10%, PAD3V5V = 1	—	—	40	-
W _{FRST}	SR	Ρ	RESET input filtered pulse	_	—	_	40	ns
W _{NFRST}	SR	Ρ	RESET input not filtered pulse	_	1000	—	-	ns
ll _{WPU} l	СС	Ρ	Weak pull-up current	V _{DD} = 3.3 V ± 10%, PAD3V5V = 1	10	—	150	μA
		D	absolute value	$V_{DD} = 5.0 V \pm 10\%$, PAD3V5V = 0	10		150	
		Ρ		$V_{DD} = 5.0 \text{ V} \pm 10\%, \text{ PAD3V5V} = 1^2$	10	_	250	

¹ $V_{DD} = 3.3 \text{ V} \pm 10\% / 5.0 \text{ V} \pm 10\%$, $T_A = -40$ to 125 °C, unless otherwise specified ² This transient configuration does not occurs when device is used in the $V_{DD} = 3.3 \text{ V} \pm 10\%$ range. ³ C_L includes device and package capacitance ($C_{PKG} < 5 \text{ pF}$).

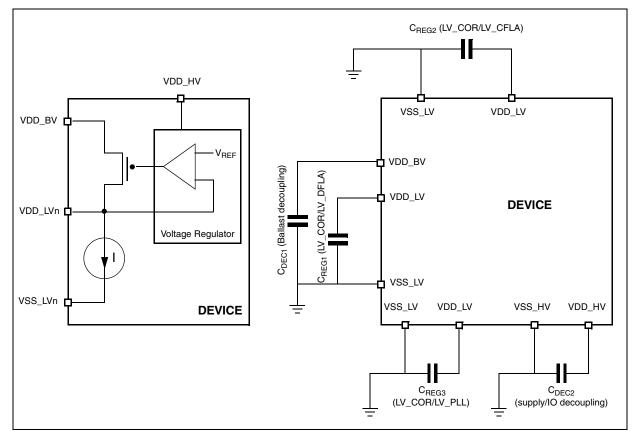


Figure 10. Voltage regulator capacitance connection

The internal voltage regulator requires external capacitance (C_{REGn}) to be connected to the device in order to provide a stable low voltage digital supply to the device. Capacitances should be placed on the board as near as possible to the associated pins. Care should also be taken to limit the serial inductance of the board to less than 5 nH.

Each decoupling capacitor must be placed between each of the three V_{DD_LV}/V_{SS_LV} supply pairs to ensure stable voltage (see 2.13, Recommended operating conditions).

The internal voltage regulator requires a controlled slew rate of both $V_{DD_{HV}}$ and $V_{DD_{BV}}$ as described in Figure 11.

Package pinouts and signal descriptions

Symbo	4	с	Parameter	Conditions		Value		Unit
Gymbe		Ŭ	rarameter	Conditions	Min	Тур	Max	Onic
P/E	СС		Number of program/erase cycles	16 KB blocks	100,000	—	—	cycles
			per block over the operating temperature range (T _{.1})	32 KB blocks	10,000	100,000	_	
				128 KB blocks	1,000	100,000	_	
Retention	СС		Minimum data retention at 85 °C average ambient temperature ¹	Blocks with 0–1,000 P/E cycles	20	—	_	years
				Blocks with 1,001–10,000 P/E cycles	10	—	_	
				Blocks with 10,001–100,000 P/E cycles	5	—	—	

Table 29. Flash module life

¹ Ambient temperature averaged over duration of application, not to exceed recommended product operating temperature range.

ECC circuitry provides correction of single bit faults and is used to improve further automotive reliability results. Some units will experience single bit corrections throughout the life of the product with no impact to product reliability.

Table 30. Flash read access timing

Symb	ool	С	Parameter	Conditions ¹	Max	Unit
f _{READ}	CC	Ρ	Maximum frequency for Flash reading	2 wait states	64	MHz
		С		1 wait state	40	
		С		0 wait states	20	

 1 V_{DD} = 3.3 V \pm 10% / 5.0 V \pm 10%, T_A = –40 to 125 °C, unless otherwise specified

2.19.2 Flash power supply DC characteristics

Table 31 shows the power supply DC characteristics on external supply.

Table 31. Flash memory power supply DC electrical characteristics

Symbo	Symbol		Parameter	Conditions ¹			Unit	
Cymb	01	С				Тур	Max	onn
I _{FREAD} ²	СС	D	Sum of the current consumption on VDD_HV and VDD_BV on read access	Code flash memory module read $f_{CPU} = 64 \text{ MHz}^3$		15	33	mA
				Data flash memory module read f _{CPU} = 64 MHz ³		15	33	

Package pinouts and signal descriptions

2.26 ADC electrical characteristics

2.26.1 Introduction

The device provides a 10-bit Successive Approximation Register (SAR) analog-to-digital converter.

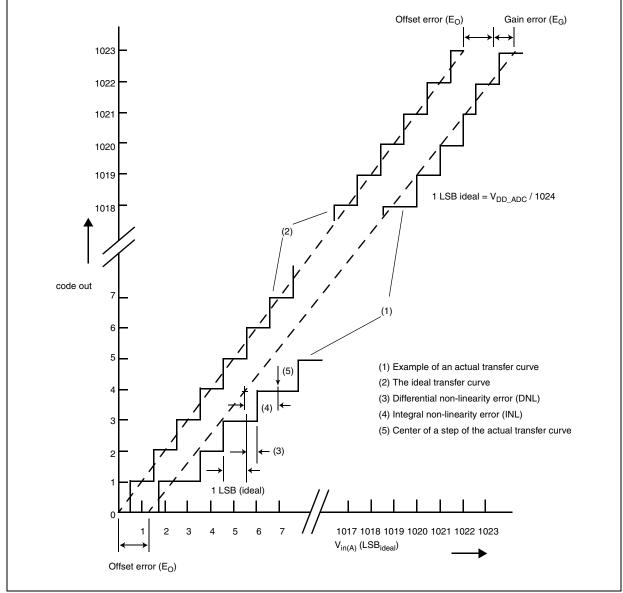


Figure 19. ADC characteristic and error definitions

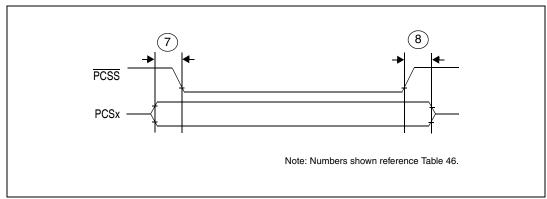
2.26.2 Input impedance and ADC accuracy

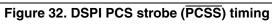
In the following analysis, the input circuit corresponding to the precise channels is considered.

To preserve the accuracy of the A/D converter, it is necessary that analog input pins have low AC impedance. Placing a capacitor with good high frequency characteristics at the input pin of the device can

2.26.3 ADC electrical characteristics

Sym	bol	0	Parameter		Conditions		Value		Unit
J	1001	Ŭ	i arameter		Conditions	Min	Тур	Мах	onne
I _{LKG}	СС	D	Input leakage current	$T_A = -40 \ ^\circ C$	No current injection on adjacent pin		1	70	nA
		D		T _A = 25 °C			1	70	
		D		T _A = 85 °C			3	100	
		D		T _A = 105 °C			8	200	
		Ρ		T _A = 125 °C		_	45	400	


Table 43. ADC input leakage current


Table 44. ADC conversion characteristics

Symbol		С	Devenator	Conditions ¹	Value			
		C	Parameter	Conditions	Min	Тур	Max	Unit
V _{SS_ADC}	SR	_	Voltage on VSS_HV_ADC (ADC reference) pin with respect to ground (V _{SS}) ²	_	-0.1		0.1	V
V _{DD_ADC}	SR		Voltage on VDD_HV_ADC pin (ADC reference) with respect to ground (V _{SS})	_	V _{DD} -0.1	_	V _{DD} +0.1	V
V _{AINx}	SR	—	Analog input voltage ³	—	V _{SS_ADC} -0.1	_	V _{DD_ADC} +0.1	V
f _{ADC}	SR	—	ADC analog frequency	—	6		32 + 4%	MHz
Δ_{ADC_SYS}	SR	_	ADC digital clock duty cycle (ipg_clk)	ADCLKSEL = 1 ⁴	45		55	%
IADCPWD	SR	—	ADC0 consumption in power down mode	_	_		50	μA
IADCRUN	SR	—	ADC0 consumption in running mode	_	_	_	4	mA
t _{ADC_PU}	SR	—	ADC power up delay	_	—	_	1.5	μs
t _s	СС	Т	Sampling time ⁵	f _{ADC} = 32 MHz, INPSAMP = 17	0.5	_		μs
				f _{ADC} = 6 MHz, INPSAMP = 255	—		42	
t _c	СС	Ρ	Conversion time ⁶	f _{ADC} = 32 MHz, INPCMP = 2	0.625			μs
C _S	СС	D	ADC input sampling capacitance	_	_	—	3	pF
C _{P1}	СС	D	ADC input pin capacitance 1	_			3	pF
C _{P2}	СС	D	ADC input pin capacitance 2	_	_	—	1	pF

Package pinouts and signal descriptions

- ³ Maximum value is reached when CSn pad is configured as MEDIUM pad while SCK pad is configured as SLOW. A positive value means that CSn is deasserted before SCK. DSPI0 and DSPI1 have only MEDIUM SCK available.
- ⁴ The t_{CSC} delay value is configurable through a register. When configuring t_{CSC} (using PCSSCK and CSSCK fields in DSPI_CTARx registers), delay between internal CS and internal SCK must be higher than Δt_{CSC} to ensure positive t_{CSCext}.
- ⁵ The t_{ASC} delay value is configurable through a register. When configuring t_{ASC} (using PASC and ASC fields in DSPI_CTARx registers), delay between internal CS and internal SCK must be higher than Δt_{ASC} to ensure positive t_{ASCext} .
- ⁶ This delay value corresponds to SMPL_PT = 00b which is bit field 9 and 8 of the DSPI_MCR.
- ⁷ SCK and SOUT configured as MEDIUM pad

2.27.3 Nexus characteristics

No.	Symbol		с	Parameter		Value		
NO.			C	Parameter	Min	Тур	Max	Unit
1	t _{TCYC}	CC	D	TCK cycle time	64	—	—	ns
2	t _{MCYC}	CC	D	MCKO cycle time	32	—	_	ns
3	t _{MDOV}	CC	D	MCKO low to MDO data valid	—	—	8	ns
4	t _{MSEOV}	CC	D	MCKO low to MSEO_b data valid	—	—	8	ns
5	t _{EVTOV}	CC	D	MCKO low to EVTO data valid	—	—	8	ns
10	t _{NTDIS}	CC	D	TDI data setup time	15	—	—	ns
	t _{NTMSS}	CC	D	TMS data setup time	15	—	—	ns
11	t _{NTDIH}	CC	D	TDI data hold time	5	—	—	ns
	t _{NTMSH}	CC	D	TMS data hold time	5	—	—	ns
12	t _{TDOV}	CC	D	TCK low to TDO data valid	35	—	—	ns
13	t _{TDOI}	CC	D	TCK low to TDO data invalid	6	—	—	ns

Table 47.	Nexus	characteristics
-----------	-------	-----------------

Package characteristics

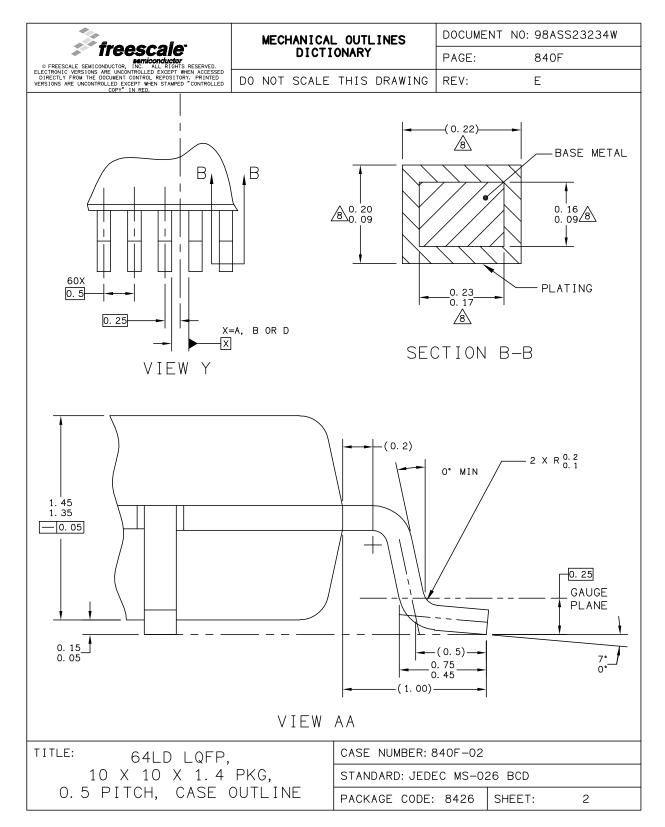
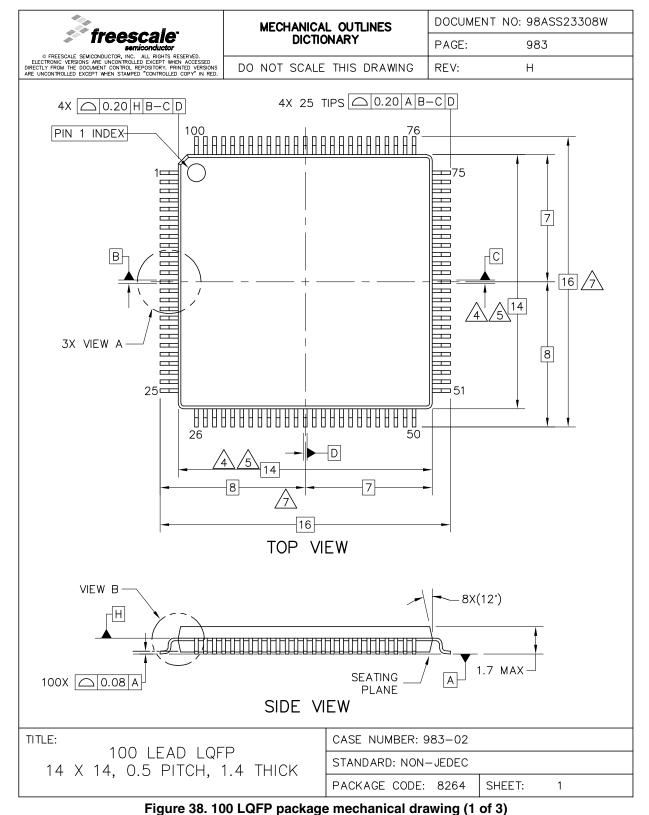



Figure 36. 64 LQFP package mechanical drawing (2 of 3)

MPC5604B/C Microcontroller Data Sheet, Rev. 14

Package characteristics

3.1.2 100 LQFP

igure 30. Too Lair Package mechanical drawing (1 of a

MPC5604B/C Microcontroller Data Sheet, Rev. 14

Revision	Date	Description of Changes
5	02-Nov-2009	 In the "MPC5604B/C series block summary" table, added a new row. In the "Absolute maximum ratings" table, changed max value of V_{DD_BV}, V_{DD_ADC}, and V_{IN}. In the "Recommended operating conditions (3.3 V)" table, deleted min value of TV_{DD}. In the "Recommended operating conditions (3.3 V)" table, deleted min value of TV_{DD}. In the "Reset electrical characteristics" table, changed footnotes 3 and 5. In the "Voltage regulator electrical characteristics" table: C_{REGn}: changed max value. C_{DEC1}: split into 2 rows. Updated voltage values in footnote 4 In the "Low voltage monitor electrical characteristics" table: Updated column Conditions. V_{LVDLVCORL}, V_{LVDLVBKPL}: changed min/max value. In the "Program and erase specifications" table, added initial max value of T_{dwprogram}. In the "Flash module life" table, changed min value for blocks with 100K P/E cycles In the "Flash power supply DC electrical characteristics" table: IFREAD, IFMOD: added typ value. Added footnote 1. Added footnote 1. Added "NVUSRO[WATCHDOG_EN] field description" section. Section 4.18: "ADC electrical characteristics" has been moved up in hierarchy (it was Section 4.18.5). In the "ADC conversion characteristics" table, changed initial max value of R_{AD}. In the "On-chip peripherals current consumption" table: Removed min/max from the heading. Changed unit of measurement and consequently rounded the values.

Table 49. Revision history (continued)

Revision	Date	Description of Changes
6	15-Mar-2010	In the "Introduction" section, relocated a note. In the "MPC5604B/C device comparison" table, added footnote regarding SCI and CAN. In the "Absolute maximum ratings" table, removed the min value of V _{IN} relative to V _{DD} . In the "Recommended operating conditions (3.3 V)" table: * T _A C-Grade Part, T _J C-Grade Part, T _A V-Grade Part, T _J V-Grade Part, T _A M-Grade Part, T _J M-Grade Part: added new rows. * TV _{DD} : made single row. In the "LQFP thermal characteristics" table, added more rows. Removed "208 MAPBGA thermal characteristics" table. In the "I/Q consumption" table: * Removed I _{DVNSEG} row. * Added "I/O weight" table. In the "Voltage regulator electrical characteristics" table: * Updated the values. * Removed I _{VREGREF} and I _{VREDLVD12} . * Added a note about I _{DD_BC} . In the "Low voltage monitor electrical characteristics" table: * Updated V _{PORH} values. * Updated V _{PORH} values. * Updated V _{DONCORL} value. Entirely updated the "Eash power supply DC electrical characteristics" table. In the "Crystal oscillator and resonator connection scheme" figure, relocated a note. In the "Crystal oscillator and resonator conscheme" figure, relocated a note. In the "Crystal oscillator and resonator conscheme" figure, relocated a note. In the "Crystal oscillator and resonator conscheme" figure, relocated a note. In the "Crystal oscillator (32 kHz) electrical characteristics" table: * Removed g _{MSXOSC} row. * Inserted values of I _{SXOSCEIAS} : Entirely updated the "Fast internal RC oscillator (16 MHz) electrical characteristics" table. In the "Orderable part number summary" table, modified some orderable part number. Updated the "Commercial product code structure" figure. Removed the note about the condition from "Flash read access timing" table Removed the notes that assert the values need to be confirmed before validation Exchanged the order of "LQFP 100-pin configuration" and "LQFP 144-pin configuration" Exchanged the order of "LQFP 100-pin configuration" and "LQFP 144-pin configur

Revision	Date	Description of Changes
9	16 June 2011	Formatting and minor editorial changes throughout
		Harmonized oscillator nomenclature
		Removed all instances of note "All 64 LQFP information is indicative and must be
		confirmed during silicon validation."
		Device comparison table: changed temperature value in footnote 2 from 105 °C to 125 °C MPC560xB LQFP 64-pin configuration and MPC560xC LQFP 64-pin configuration: renamed pin 6 from VPP_TEST to VSS_HV
		Removed "Pin Muxing" section; added sections "Pad configuration during reset phases", "Voltage supply pins", "Pad types", "System pins," "Functional ports", and "Nexus 2+ pins"
		Section "NVUSRO register": edited content to separate configuration into electrical parameters and digital functionality; updated footnote describing default value of '1' in field descriptions NVUSRO[PAD3V5V] and NVUSRO[OSCILLATOR_MARGIN]
		Added section "NVUSRO[WATCHDOG_EN] field description"
		Recommended operating conditions (3.3 V) and Recommended operating conditions (5.0 V): updated conditions for ambient and junction temperature characteristics I/O input DC electrical characteristics: updated I _{LKG} characteristics
		Section "I/O pad current specification": removed content referencing the I _{DYNSEG} maximum value
		I/O consumption: replaced instances of "Root medium square" with "Root mean square"
		I/O weight: replaced instances of bit "SRE" with "SRC"; added pads PH[9] and PH[10]; added supply segments; removed weight values in 64-pin LQFP for pads that do not exist in that package
		Reset electrical characteristics: updated parameter classification for II _{WPU} I Updated Voltage regulator electrical characteristics
		Section "Low voltage detector electrical characteristics": changed title (was "Voltage monitor electrical characteristics"); added event status flag names found in RGM chapter of device reference manual to POR module and LVD descriptions; replaced instances of "Low voltage monitor" with "Low voltage detector"; updated values for V _{LVDLVBKPL} and V _{LVDLVCORL} ; replaced "LVD_DIGBKP" with "LVDLVBKP" in note Updated section "Power consumption"
		Fast external crystal oscillator (4 to 16 MHz) electrical characteristics: updated parameter classification for V _{FXOSCOP}
		Crystal oscillator and resonator connection scheme: added footnote about possibility of adding a series resistor
		Slow external crystal oscillator (32 kHz) electrical characteristics: updated footnote 1
		FMPLL electrical characteristics: added short term jitter characteristics; inserted "" in empty min value cell of t _{lock} row
		Section "Input impedance and ADC accuracy": changed "V _A /V _{A2} " to "V _{A2} /V _A " in Equation 11
		ADC input leakage current: updated ILKG characteristics
		ADC conversion characteristics: updated symbols
		On-chip peripherals current consumption: changed "supply current on "V _{DD_HV_ADC} " to "supply current on" V _{DD_HV} " in I _{DD_HV(FLASH)} row; updated I _{DD_HV(PLL)} value—was 3 * f _{periph} , is 30 * f _{periph} ; updated footnotes DSPI deprocedurations added rows t
		DSPI characteristics: added rows t _{PCSC} and t _{PASC} Added DSPI PCS strobe (PCSS) timing diagram

Revision	Date	Description of Changes
13	19 Jan 2015	 In Table 1 (MPC5604B/C device comparison): changed the MPC5604BxLH entry for CAN (FlexCAN) from 3⁷ to 2⁶. updated tablenote 7. In Table 13 (Recommended operating conditions (5.0 V)), updated tablenote 5 to: "1 μF (electrolithic/tantalum) + 47 nF (ceramic) capacitance needs to be provided between V_{DD_ADC}/V_{SS_ADC} pair. Another ceramic cap of 10nF with low inductance package can be added". In Section 2.17.2, "Low voltage detector electrical characteristics, added a note on LVHVD5 detector. In Section 4, "Ordering information, added a note: "Not all options are available on all devices".
14	30 oct 2017	In Table 1 (MPC5604B/C device comparison) for MPC56 04BxLH changed the CAN from 2 to 3. In Table 12 (Recommended operating conditions (3.3 V)) added Min value for TV_{DD} In Table 13 (Recommended operating conditions (5.0 V)) added Min value for TV_{DD}

Table 49. Revisio	n history	(continued)
-------------------	-----------	-------------

Abbreviations

Appendix A Abbreviations

Table A-1 lists abbreviations used but not defined elsewhere in this document.

Table A-1. Abbreviations

Abbreviation	Meaning
CMOS	Complementary metal-oxide-semiconductor
СРНА	Clock phase
CPOL	Clock polarity
CS	Peripheral chip select
EVTO	Event out
МСКО	Message clock out
MDO	Message data out
MSEO	Message start/end out
MTFE	Modified timing format enable
SCK	Serial communications clock
SOUT	Serial data out
TBD	To be defined
ТСК	Test clock input
TDI	Test data input
TDO	Test data output
TMS	Test mode select

How to Reach Us: Home Page: nxp.com Web Support: nxp.com/support

Information in this document is provided solely to enable system and software implementers to use NXP products. There are no express or implied copyright licenses granted hereunder to design or fabricate any integrated circuits based on the information in this document. NXP reserves the right to make changes without further notice to any products herein.

NXP makes no warranty, representation, or guarantee regarding the suitability of its products for any particular purpose, nor does NXP assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. "Typical" parameters that may be provided in NXP data sheets and/or specifications can and do vary in different applications, and actual performance may vary over time. All operating parameters, including "typicals," must bevalidated for each customer application by customer's technical experts. NXP does not convey any license under its patent rights nor the rights of others. NXP sells products pursuant to standard terms and conditions of sale, which can befound at the following address: nxp.com/SalesTermsandConditions.

NXP, the NXP logo, NXP SECURE CONNECTIONS FOR A SMARTER WORLD, COOLFLUX, EMBRACE, GREENCHIP, HITAG, I2C BUS, ICODE, JCOP, LIFE VIBES, MIFARE, MIFARE CLASSIC, MIFARE DESFire, MIFARE PLUS, MIFARE FLEX, MANTIS, MIFARE ULTRALIGHT, MIFARE4MOBILE, MIGLO, NTAG, ROADLINK, SMARTLX, SMARTMX, STARPLUG, TOPFET, TRENCHMOS, UCODE, Freescale, the Freescale logo, AltiVec, C.5, CodeTEST, CodeWarrior, ColdFire, ColdFire+, C.Ware, the Energy Efficient Solutions logo, Kinetis, Layerscape, MagniV, mobileGT, PEG, PowerQUICC, Processor Expert, QorIQ, QorIQ Qonverge, Ready Play, SafeAssure, the SafeAssure logo, StarCore, Symphony, VortiQa, Vybrid, Airfast, BeeKit, BeeStack, CoreNet, Flexis, MXC, Platform in a Package, QUICC Engine, SMARTMOS, Tower, TurboLink, and UMEMS are trademarks of NXP B.V. All other product or service names are the property of their respective owners. Arm, AMBA, Arm Powered, Artisan, Cortex, Jazelle, Keil, SecurCore, Thumb, TrustZone, and ÏVision are registered trademarks of Arm Limited (or its subsidiaries) in the EU and/or elsewhere. Arm7, Arm9, Arm11, big.LITTLE, CoreLink, CoreSight, DesignStart, Mali, Mbed, NEON, POP, Sensinode, Socrates, ULINK and Versatile are trademarks of Arm Limited (or its subsidiaries) in the EU and/or elsewhere. All rights reserved. Oracle and Java are registered trademarks of Oracle and/or its affiliates. The Power Architecture and Power.org word marks and the Power and Power.org logos and related marks are trademarks and service marks licensed by Power.org.

© 2017 NXP B.V.

Document Number: MPC5604BC Rev. 14 11/2017