

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Product Status	Active
Core Processor	e200z0h
Core Size	32-Bit Single-Core
Speed	48MHz
Connectivity	CANbus, I ² C, LINbus, SCI, SPI
Peripherals	DMA, POR, PWM, WDT
Number of I/O	45
Program Memory Size	384KB (384K x 8)
Program Memory Type	FLASH
EEPROM Size	64K x 8
RAM Size	28K x 8
Voltage - Supply (Vcc/Vdd)	3V ~ 5.5V
Data Converters	A/D 12x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 105°C (TA)
Mounting Type	Surface Mount
Package / Case	64-LQFP
Supplier Device Package	64-LQFP (10x10)
Purchase URL	https://www.e-xfl.com/pro/item?MUrl=&PartUrl=spc5603bf2vlh4

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

		Device														
Feature	MPC56 02BxLH	MPC56 02BxLL	MPC56 02BxLQ	MPC56 02CxLH	MPC56 02CxLL	MPC56 03BxLH	MPC56 03BxLL	MPC56 03BxLQ	MPC56 03CxLH	MPC56 03CxLL	MPC56 04BxLH	MPC56 04BxLL	MPC56 04BxLQ	MPC56 04CxLH	MPC56 04CxLL	MPC5604 BxMG
• PWM + IC/OC ⁴	10 ch	20 ch	40 ch	10 ch	20 ch	10 ch	20 ch	40 ch	10 ch	20 ch	10 ch	20 ch	40 ch	10 ch	20 ch	40 ch
 IC/OC⁴ 	_	3 ch	6 ch	_	3 ch	_	3 ch	6 ch	_	3 ch	_	3 ch	6 ch	_	3 ch	6 ch
SCI (LINFlex)) 3 ⁵				1	1			1	4	1		1	1		
SPI (DSPI)	2 3		3	2	3	2		3	2	3	2 3		2	3		
CAN (FlexCAN)	26			5	6		37		5	6		37		5		6
l ² C				1	1	1			1	1	1			1		
32 kHz oscillator									Yes							
GPIO ⁸	45	79	123	45	79	45	79	123	45	79	45	79	123	45	79	123
Debug			1					JTAG			1	1			1	Nexus2+
Package	64 LQFP	100 LQFP	144 LQFP	64 LQFP	100 LQFP	64 LQFP	100 LQFP	144 LQFP	64 LQFP	100 LQFP	64 LQFP	100 LQFP	144 LQFP	64 LQFP	100 LQFP	208 MAPBGA ^S

Table 1. MPC5604B/C device comparison¹ (continued)

Feature set dependent on selected peripheral multiplexing—table shows example implementation.

² Based on 125 °C ambient operating temperature.

³ See the eMIOS section of the device reference manual for information on the channel configuration and functions.

⁴ IC – Input Capture; OC – Output Compare; PWM – Pulse Width Modulation; MC – Modulus counter.

⁵ SCI0, SCI1 and SCI2 are available. SCI3 is not available.

⁶ CAN0, CAN1 are available. CAN2, CAN3, CAN4 and CAN5 are not available.

⁷ CAN0, CAN3 and either CAN1 or CAN4 are available. CAN2, CAN5 and CAN6 are not available

⁸ I/O count based on multiplexing with peripherals.

⁹ 208 MAPBGA available only as development package for Nexus2+.

MPC5604B/C Microcontroller Data Sheet, Rev.

14

		-					E Pin			ו number				
Port pin	PCR	Alternate function	Function	Peripheral	I/O direction ²	Pad type	RESET configurati	MPC560xB 64 LQFP	MPC560xC 64 LQFP	100 LQFP	144 LQFP	208 MAPBGA ³		
PC[15]	PCR[47]	AF0 AF1 AF2 AF3	GPIO[47] E0UC[15] CS0_2 —	SIUL eMIOS_0 DSPI_2 —	I/O I/O I/O	Μ	Tristate	_		4	4	D3		
PD[0]	PCR[48]	AF0 AF1 AF2 AF3 —	GPIO[48] — — GPI[4]	SIUL — — ADC	 - 	-	Tristate	_	_	41	63	P12		
PD[1]	PCR[49]	AF0 AF1 AF2 AF3 —	GPIO[49] — — — GPI[5]	SIUL — — ADC	 	I	Tristate	_	_	42	64	T12		
PD[2]	PCR[50]	AF0 AF1 AF2 AF3	GPIO[50] — — — GPI[6]	SIUL — — ADC	 	Ι	Tristate	_	_	43	65	R12		
PD[3]	PCR[51]	AF0 AF1 AF2 AF3 —	GPIO[51] — — — GPI[7]	SIUL — — — ADC	 	Ι	Tristate	_	_	44	66	P13		
PD[4]	PCR[52]	AF0 AF1 AF2 AF3 —	GPIO[52] — — — GPI[8]	SIUL — — — ADC	 - 	Ι	Tristate	_		45	67	R13		
PD[5]	PCR[53]	AF0 AF1 AF2 AF3 —	GPIO[53] — — — GPI[9]	SIUL — — — ADC	 - 	Ι	Tristate		—	46	68	T13		
PD[6]	PCR[54]	AF0 AF1 AF2 AF3 —	GPIO[54] — — — GPI[10]	SIUL — — — ADC	 	Ι	Tristate	—	—	47	69	T14		

Table 5. Functional port pin descriptions (continued)

		1					uo		Pin number			
Port pin	РСК	Alternate functior	Function	Peripheral	I/O direction ²	Pad type	RESET configurati	MPC560xB 64 LQFP	MPC560xC 64 LQFP	100 LQFP	144 LQFP	208 MAPBGA ³
PD[15]	PCR[63]	AF0 AF1 AF2 AF3 —	GPIO[63] CS2_1 E0UC[27] — ANS[7]	SIUL DSPI_1 eMIOS_0 — ADC	I/O O I/O I	J	Tristate		_	66	88	L14
PE[0]	PCR[64]	AF0 AF1 AF2 AF3 —	GPIO[64] E0UC[16] — CAN5RX ¹¹ WKPU[6] ⁴	SIUL eMIOS_0 FlexCAN_5 WKPU	/O /O 	S	Tristate		_	6	10	F1
PE[1]	PCR[65]	AF0 AF1 AF2 AF3	GPIO[65] E0UC[17] CAN5TX ¹¹ —	SIUL eMIOS_0 FlexCAN_5 —	I/O I/O O	М	Tristate	—	_	8	12	F4
PE[2]	PCR[66]	AF0 AF1 AF2 AF3 —	GPIO[66] E0UC[18] — SIN_1	SIUL eMIOS_0 — DSPI_1	/O /O 	М	Tristate	_	_	89	128	D7
PE[3]	PCR[67]	AF0 AF1 AF2 AF3	GPIO[67] E0UC[19] SOUT_1 —	SIUL eMIOS_0 DSPI_1 —	I/O I/O O	М	Tristate		_	90	129	C7
PE[4]	PCR[68]	AF0 AF1 AF2 AF3 —	GPIO[68] E0UC[20] SCK_1 — EIRQ[9]	SIUL eMIOS_0 DSPI_1 — SIUL	I/O I/O I/O I	Μ	Tristate			93	132	D6
PE[5]	PCR[69]	AF0 AF1 AF2 AF3	GPIO[69] E0UC[21] CS0_1 MA[2]	SIUL eMIOS_0 DSPI_1 ADC	I/O I/O I/O O	М	Tristate	_	_	94	133	C6
PE[6]	PCR[70]	AF0 AF1 AF2 AF3	GPIO[70] E0UC[22] CS3_0 MA[1]	SIUL eMIOS_0 DSPI_0 ADC	I/O I/O O O	М	Tristate			95	139	B5
PE[7]	PCR[71]	AF0 AF1 AF2 AF3	GPIO[71] E0UC[23] CS2_0 MA[0]	SIUL eMIOS_0 DSPI_0 ADC	I/O I/O O	М	Tristate			96	140	C4

		-					uo		Pin	num	ber	
Port pin	PCR	Alternate function	Function	Peripheral	I/O direction ²	Pad type	RESET configurati	MPC560xB 64 LQFP	MPC560xC 64 LQFP	100 LQFP	144 LQFP	208 MAPBGA ³
PE[8]	PCR[72]	AF0 AF1 AF2 AF3	GPIO[72] CAN2TX ¹² E0UC[22] CAN3TX ¹¹	SIUL FlexCAN_2 eMIOS_0 FlexCAN_3	I/O O I/O O	М	Tristate		_	9	13	G2
PE[9]	PCR[73]	AF0 AF1 AF2 AF3 — —	GPIO[73] E0UC[23] WKPU[7] ⁴ CAN2RX ¹² CAN3RX ¹¹	SIUL eMIOS_0 WKPU FlexCAN_2 FlexCAN_3	I/O /O - 	S	Tristate			10	14	G1
PE[10]	PCR[74]	AF0 AF1 AF2 AF3 —	GPIO[74] LIN3TX CS3_1 EIRQ[10]	SIUL LINFlex_3 DSPI_1 — SIUL	I/O O O I	S	Tristate			11	15	G3
PE[11]	PCR[75]	AF0 AF1 AF2 AF3 —	GPIO[75] — CS4_1 — LIN3RX WKPU[14] ⁴	SIUL — DSPI_1 — LINFlex_3 WKPU	I/O O I 	S	Tristate			13	17	H2
PE[12]	PCR[76]	AF0 AF1 AF2 AF3 —	GPIO[76] — E1UC[19] ¹³ — SIN_2 EIRQ[11]	SIUL — eMIOS_1 — DSPI_2 SIUL	I/O /O 	S	Tristate			76	109	C14
PE[13]	PCR[77]	AF0 AF1 AF2 AF3	GPIO[77] SOUT2 E1UC[20] —	SIUL DSPI_2 eMIOS_1 —	I/O O I/O —	S	Tristate	_			103	D15
PE[14]	PCR[78]	AF0 AF1 AF2 AF3 —	GPIO[78] SCK_2 E1UC[21] — EIRQ[12]	SIUL DSPI_2 eMIOS_1 — SIUL	I/O I/O I/O I	S	Tristate	_			112	C13
PE[15]	PCR[79]	AF0 AF1 AF2 AF3	GPIO[79] CS0_2 E1UC[22] —	SIUL DSPI_2 eMIOS_1 —	I/O I/O I/O	М	Tristate	_	_		113	A13

		1					uo		Pin number			
Port pin	РСК	Alternate function	Function	Peripheral	I/O direction ²	Pad type	RESET configurati	MPC560xB 64 LQFP	MPC560xC 64 LQFP	100 LQFP	144 LQFP	208 MAPBGA ³
PF[0]	PCR[80]	AF0 AF1 AF2 AF3 —	GPIO[80] E0UC[10] CS3_1 — ANS[8]	SIUL eMIOS_0 DSPI_1 — ADC	I/O I/O O I	J	Tristate				55	N10
PF[1]	PCR[81]	AF0 AF1 AF2 AF3 —	GPIO[81] E0UC[11] CS4_1 — ANS[9]	SIUL eMIOS_0 DSPI_1 — I	/O /O - 	J	Tristate	_	_	_	56	P10
PF[2]	PCR[82]	AF0 AF1 AF2 AF3 —	GPIO[82] E0UC[12] CS0_2 — ANS[10]	SIUL eMIOS_0 DSPI_2 — ADC	/O /O /O 	J	Tristate	_	_		57	T10
PF[3]	PCR[83]	AF0 AF1 AF2 AF3 —	GPIO[83] E0UC[13] CS1_2 — ANS[11]	SIUL eMIOS_0 DSPI_2 — ADC	/O /O 0 	J	Tristate				58	R10
PF[4]	PCR[84]	AF0 AF1 AF2 AF3 —	GPIO[84] E0UC[14] CS2_2 — ANS[12]	SIUL eMIOS_0 DSPI_2 — ADC	/O /O 0 	J	Tristate		_	_	59	N11
PF[5]	PCR[85]	AF0 AF1 AF2 AF3 —	GPIO[85] E0UC[22] CS3_2 — ANS[13]	SIUL eMIOS_0 DSPI_2 — ADC	/O /O 	J	Tristate	_	_		60	P11
PF[6]	PCR[86]	AF0 AF1 AF2 AF3 —	GPIO[86] E0UC[23] — ANS[14]	SIUL eMIOS_0 — ADC	/O /O 	J	Tristate	_	_		61	T11
PF[7]	PCR[87]	AF0 AF1 AF2 AF3 —	GPIO[87] — — ANS[15]	SIUL — — ADC	I/O — — — I	J	Tristate	—	_	_	62	R11

Table 5. Functional port pin descriptions (continued)

Symbol		C	Parameter		Conditions ¹		Value		Unit
Sym	1001	C	Farameter		Conditions	Min	Тур	Max	onn
V _{OH}	СС	Ρ	Output high level SLOW configuration	Push Pull	$I_{OH} = -2 \text{ mA},$ $V_{DD} = 5.0 \text{ V} \pm 10\%, \text{ PAD3V5V} = 0$ (recommended)	0.8V _{DD}		_	V
		С			I _{OH} = -2 mA, V _{DD} = 5.0 V ± 10%, PAD3V5V = 1 ²	0.8V _{DD}	_	_	
		С			$I_{OH} = -1 \text{ mA},$ $V_{DD} = 3.3 \text{ V} \pm 10\%, \text{ PAD3V5V} = 1$ (recommended)	V _{DD} -0.8	_	_	
V _{OL}	СС	Ρ	Output low level SLOW configuration	Push Pull	$I_{OL} = 2 \text{ mA},$ $V_{DD} = 5.0 \text{ V} \pm 10\%, \text{ PAD3V5V} = 0$ (recommended)	_	_	0.1V _{DD}	V
		С			$I_{OL} = 2 \text{ mA},$ $V_{DD} = 5.0 \text{ V} \pm 10\%, \text{ PAD3V5V} = 1^2$	_	_	0.1V _{DD}	
		С			I_{OL} = 1 mA, V_{DD} = 3.3 V ± 10%, PAD3V5V = 1 (recommended)	_	_	0.5	

 Table 17. SLOW configuration output buffer electrical characteristics

 $^1~V_{DD}$ = 3.3 V \pm 10% / 5.0 V \pm 10%, T_A = –40 to 125 °C, unless otherwise specified

² The configuration PAD3V5 = 1 when V_{DD} = 5 V is only a transient configuration during power-up. All pads but RESET and Nexus output (MDOx, EVTO, MCKO) are configured in input or in high impedance state.

Table [·]	18.	MEDIUM	configura	ation out	put buffer	electrical	characteristics
14010			•••····ga.		p	0.000.000	

Sym	Symbol	C	Parameter			Unit			
C yn	1001	Ŭ	i urumeter		Conditions	Min	Тур	Max	onn
V _{OH}	СС	С	Output high level MEDIUM configuration	Push Pull	I _{OH} = -3.8 mA, V _{DD} = 5.0 V ± 10%, PAD3V5V = 0	0.8V _{DD}		_	V
		Ρ			$I_{OH} = -2 \text{ mA},$ $V_{DD} = 5.0 \text{ V} \pm 10\%, \text{ PAD3V5V} = 0$ (recommended)	0.8V _{DD}	_		
		С			$I_{OH} = -1 \text{ mA},$ $V_{DD} = 5.0 \text{ V} \pm 10\%, \text{ PAD3V5V} = 1^2$	0.8V _{DD}	_	_	
		С			$I_{OH} = -1$ mA, $V_{DD} = 3.3$ V ± 10%, PAD3V5V = 1 (recommended)	V _{DD} -0.8			
		С			I _{OH} = −100 μA, V _{DD} = 5.0 V ± 10%, PAD3V5V = 0	0.8V _{DD}	_		

2.15.4 Output pin transition times

Symbol	<u>ر</u>	Parameter		Conditions ¹		Value	e	Unit	
Jy		C	Falameter		Conditions	Min	Тур	Max	Unit
t _{tr}	CC	D	Output transition time output	C _L = 25 pF	$V_{DD} = 5.0 V \pm 10\%$, PAD3V5V = 0	—	—	50	ns
		Т	pin ² SLOW configuration	C _L = 50 pF				100	
		D	Ū	C _L = 100 pF			—	125	
		D		C _L = 25 pF	V _{DD} = 3.3 V ± 10%, PAD3V5V = 1	—	—	50	
		Т		C _L = 50 pF			—	100	
		D		C _L = 100 pF			—	125	
t _{tr}	CC	D	Output transition time output	C _L = 25 pF	$V_{DD} = 5.0 \text{ V} \pm 10\%, \text{ PAD3V5V} = 0$	—	—	10	ns
		Т	pin ² MEDIUM configuration	C _L = 50 pF	SIUL.PCRX.SRC = 1		—	20	
		D	U U	C _L = 100 pF		_		40	
		D		C _L = 25 pF	$V_{DD} = 3.3 \text{ V} \pm 10\%, \text{ PAD3V5V} = 1$	_		12	
		Т		C _L = 50 pF	SIUL.PCRx.SRC = 1	—	—	25	
		D		C _L = 100 pF		_		40	
t _{tr}	CC	D	Output transition time output	C _L = 25 pF	$V_{DD} = 5.0 \text{ V} \pm 10\%, \text{ PAD3V5V} = 0$	—	—	4	ns
			PIN ² FAST configuration	C _L = 50 pF			—	6	
			C C	C _L = 100 pF			—	12	
				C _L = 25 pF	V _{DD} = 3.3 V ± 10%, PAD3V5V = 1	—	—	4	
				C _L = 50 pF		—	—	7	
				C _L = 100 pF		—	—	12	

Table 20. Output pin transition times

 1 V_{DD} = 3.3 V \pm 10% / 5.0 V \pm 10%, T_A = –40 to 125 °C, unless otherwise specified

 2 C_L includes device and package capacitances (C_{PKG} < 5 pF).

2.15.5 I/O pad current specification

The I/O pads are distributed across the I/O supply segment. Each I/O supply segment is associated to a V_{DD}/V_{SS} supply pair as described in Table 21.

Table 21. I/O	supply	segment
---------------	--------	---------

Package	Supply segment								
	1	2	3	4	5	6			
208 MAPBGA ¹	Equivale	ent to 144 LQFP	МСКО	MDOn/MSEO					
144 LQFP	pin20–pin49	pin51–pin99	pin100-pin122	pin 123-pin19	—	—			
100 LQFP	pin16–pin35	pin37–pin69	pin70–pin83	pin 84–pin15	—	—			
64 LQFP	pin8–pin26	pin28–pin55	pin56–pin7	—	—	—			

Figure 11. V_{DD_HV} and V_{DD_BV} maximum slope

When STANDBY mode is used, further constraints are applied to the both $V_{DD_{HV}}$ and $V_{DD_{BV}}$ in order to guarantee correct regulator function during STANDBY exit. This is described on Figure 12.

STANDBY regulator constraints should normally be guaranteed by implementing equivalent of CSTDBY capacitance on application board (capacitance and ESR typical values), but would actually depend on exact characteristics of application external regulator.

Figure 12. V_{DD_HV} and V_{DD_BV} supply constraints during STANDBY mode exit

2.18 Power consumption

Table 27 provides DC electrical characteristics for significant application modes. These values are indicative values; actual consumption depends on the application.

Symbol		~	Deveneter	Conditions ¹		Value			Unit						
Symbol		C	Farameter	Conditions			Тур	Max	Unit						
I _{DDMAX} ²	СС	D	RUN mode maximum average current	_		_	115	140 ³	mA						
I _{DDRUN} 4	СС	Т	RUN mode typical average	f _{CPU} = 8 MHz			7		mA						
		Т	current	f _{CPU} = 16 MHz			18	_							
		Т		f _{CPU} = 32 MHz		_	29	_							
		Ρ		f _{CPU} = 48 MHz			40	100							
		Ρ		f _{CPU} = 64 MHz			51	125							
IDDHALT	СС	С	HALT mode current ⁶	Slow internal RC oscillator	T _A = 25 °C		8	15	mA						
		Ρ		(128 kHz) running	T _A = 125 °C		14	25							
IDDSTOP	СС	Ρ	STOP mode current ⁷	Slow internal RC oscillator	T _A = 25 °C		180	700 ⁸	μA						
								D	D	(128 kHz) running	T _A = 55 °C		500		
	D			T _A = 85 °C	_	1	6 ⁸	mA							
		D			T _A = 105 °C		2	9 ⁸							
		Ρ			T _A = 125 °C		4.5	12 ⁸							
I _{DDSTDBY2}	СС	Ρ	STANDBY2 mode current ⁹	Slow internal RC oscillator	T _A = 25 °C		30	100	μA						
		D		(128 KHZ) running	T _A = 55 °C	_	75	_							
		D			T _A = 85 °C	_	180	700							
		D			T _A = 105 °C	_	315	1000							
		Ρ			T _A = 125 °C	_	560	1700							
I _{DDSTDBY1}	DDSTDBY1 CC T STANDBY1 mode Slow inte		Slow internal RC oscillator	T _A = 25 °C	_	20	60	μA							
		D	current	(128 KHZ) running	T _A = 55 °C	_	45	_							
		D			T _A = 85 °C	_	100	350							
		D			T _A = 105 °C		165	500							
		D			T _A = 125 °C	_	280	900							

Table 27. Power consumption on VDD_BV and VDD_HV

 1 V_{DD} = 3.3 V \pm 10% / 5.0 V \pm 10%, T_A = –40 to 125 °C, unless otherwise specified

² I_{DDMAX} is drawn only from the V_{DD_BV} pin. Running consumption does not include I/Os toggling which is highly dependent on the application. The given value is thought to be a worst case value with all peripherals running, and code fetched from code flash while modify operation ongoing on data flash. Notice that this value can be significantly reduced by application: switch off not used peripherals (default), reduce peripheral frequency through internal prescaler, fetch from RAM most used functions, use low power mode when possible.

³ Higher current may be sinked by device during power-up and standby exit. Please refer to in rush current on Table 25.

⁴ I_{DDRUN} is drawn only from the V_{DD_BV} pin. RUN current measured with typical application with accesses on both flash and RAM.

Figure 15. Fast external crystal oscillator (4 to 16 MHz) timing diagram

- ² This is the recommended range of load capacitance at OSC32K_XTAL and OSC32K_EXTAL with respect to ground. It includes all the parasitics due to board traces, crystal and package.
- ³ Maximum ESR (R_m) of the crystal is 50 k Ω
- ⁴ C0 includes a parasitic capacitance of 2.0 pF between OSC32K_XTAL and OSC32K_EXTAL pins

Figure 18. Slow external crystal oscillator (32 kHz) timing diagram

Symbol		<u>ر</u>	Parameter	Conditions ¹		Unit		
		C	r ai ainetei	Conditions	Min	Тур	Max	
f _{SXOSC}	SR	—	Slow external crystal oscillator frequency	_	32	32.768	40	kHz
V _{SXOSC}	СС	Т	Oscillation amplitude	_	_	2.1	_	V
I _{SXOSCBIAS}	СС	Т	Oscillation bias current	—	_	2.5		μA
I _{SXOSC}	СС	Т	Slow external crystal oscillator consumption	_	_	—	8	μA
T _{SXOSCSU}	СС	Т	Slow external crystal oscillator start-up time	—		—	2 ²	S

Table 39. Slow external crystal oscillator (32 kHz) electrical characteristics

¹ $V_{DD} = 3.3 V \pm 10\% / 5.0 V \pm 10\%$, $T_A = -40$ to 125 °C, unless otherwise specified. Values are specified for no neighbor GPIO pin activity. If oscillator is enabled (OSC32K_XTAL and OSC32K_EXTAL pins), neighboring pins should not toggle.

² Start-up time has been measured with EPSON TOYOCOM MC306 crystal. Variation may be seen with other crystal.

2.23 FMPLL electrical characteristics

The device provides a frequency-modulated phase-locked loop (FMPLL) module to generate a fast system clock from the main oscillator driver.

2.26 ADC electrical characteristics

2.26.1 Introduction

The device provides a 10-bit Successive Approximation Register (SAR) analog-to-digital converter.

Figure 19. ADC characteristic and error definitions

2.26.2 Input impedance and ADC accuracy

In the following analysis, the input circuit corresponding to the precise channels is considered.

To preserve the accuracy of the A/D converter, it is necessary that analog input pins have low AC impedance. Placing a capacitor with good high frequency characteristics at the input pin of the device can

Figure 21. Input equivalent circuit (extended channels)

A second aspect involving the capacitance network shall be considered. Assuming the three capacitances C_F , C_{P1} and C_{P2} are initially charged at the source voltage V_A (refer to the equivalent circuit in Figure 20): A charge sharing phenomenon is installed when the sampling phase is started (A/D switch close).

Figure 22. Transient behavior during sampling phase

In particular two different transient periods can be distinguished:

Figure 26. DSPI classic SPI timing – slave, CPHA = 0

Figure 27. DSPI classic SPI timing – slave, CPHA = 1

Figure 33. Nexus TDI, TMS, TDO timing

2.27.4 JTAG characteristics

Table 48. JTAG characteristics

No	No. Symbol		<u>د</u>	Parameter		Unit		
NO.					Min	Тур	Max	C.III
1	t _{JCYC}	CC	D	TCK cycle time	64	_	_	ns
2	t _{TDIS}	СС	D	TDI setup time	15	—	_	ns
3	t _{TDIH}	СС	D	TDI hold time	5		_	ns
4	t _{TMSS}	СС	D	TMS setup time	15		_	ns
5	t _{TMSH}	СС	D	TMS hold time	5	—	_	ns
6	t _{TDOV}	СС	D	TCK low to TDO valid	_		33	ns
7	t _{TDOI}	CC	D	TCK low to TDO invalid	6	_	_	ns

3.1.1 64 LQFP

Figure 35. 64 LQFP package mechanical drawing (1 of 3)

Figure 42. 144 LQFP package mechanical drawing (2 of 2)

Package characteristics

Figure 44. 208 MAPBGA package mechanical drawing (2 of 2)

Document revision history

Revision	Date	Description of Changes
10	15 Oct 2012	 Table 2 (Bolero 512K device comparison), added footnote for MPC5603BxLH and MPC5604BxLH about FlexCAN availability. Table 2 (MPC5604B/C series block summary), replaced "System watchdog timer" with "Software watchdog timer" and specified AUTOSAR (Automotive Open System Architecture) Table 5 (Functional port pin descriptions): replaced footnote "Available only on MPC560xC versions and MPC5604B 208 MAPBGA devices" with "Available only on MPC560xC versions, MPC5603B 64 LQFP, MPC5604B 64 LQFP and MPC5604B 208 MAPBGA devices", replaced VDD with VDD_HV Figure 10 (Voltage regulator capacitance connection), updated pin name appearance Renamed Figure 11 (V_{DD_HV} and V_{DD_BV} maximum slope) (was "VDD and VDD_BV maximum slope") Renamed Figure 12 (V_{DD_HV} and V_{DD_BV} supply constraints during STANDBY mode exit") Table 12 (Recommended operating conditions (3.3 V)), added minimum value of T_{VDD} and footnote about it. Table 13 (Recommended operating conditions (5.0 V)), added minimum value of T_{VDD} and footnote about it. Section 2.17.1, "Voltage regulator electrical characteristics: replaced "slew rate of V_{DD}/V_{D_BV}" with "slew rate of both V_{DD_HV} and V_{DD_BV} in order to guarantee correct regulator functionality during STANDBY exit." with "When STANDBY mode is used, further constraints applied to the both V_{DD_HV} and V_{DD_BV} in order to guarantee correct regulator function during STANDBY exit." Table 27 (Power consumption on VDD_BV and VDD_HV), updated footnotes of I_{DDMAX} and I_{DDRUN} stating that both currents are drawn only from the V_{DD_BV} pin. Table 45 (On-chip peripherals current consumption), in the parameter column replaced V_{DD_BV} and V_{DD_HV} respectively with VDD_BV and VDD_HV. Table 46 (DSPI characteristics), modified symbol for t_{PCSC} and t_{PASC}
11	14 Nov 2012	In the cover feature list: added "and ECC" at the end of "Up to 512 KB on-chip code flash supported with the flash controller" added "with ECC" at the end of "Up to 48 KB on-chip SRAM" Table 12 (Recommended operating conditions (3.3 V)), removed minimum value of T _{VDD} and relative footnote. Table 13 (Recommended operating conditions (5.0 V)), removed minimum value of T _{VDD} and relative footnote.
12	19 Mar 2014	Added "K=TSMC Fab" against the Fab and mask indicator in Figure 45 (Commercial product code structure).

Table 49. Revision history (continued)