E·XFL

NXP USA Inc. - SPC5603BF2VLL4 Datasheet

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	e200z0h
Core Size	32-Bit Single-Core
Speed	48MHz
Connectivity	CANbus, I ² C, LINbus, SCI, SPI
Peripherals	DMA, POR, PWM, WDT
Number of I/O	79
Program Memory Size	384KB (384K × 8)
Program Memory Type	FLASH
EEPROM Size	64K x 8
RAM Size	28K x 8
Voltage - Supply (Vcc/Vdd)	3V ~ 5.5V
Data Converters	A/D 28x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 105°C (TA)
Mounting Type	Surface Mount
Package / Case	100-LQFP
Supplier Device Package	100-LQFP (14x14)
Purchase URL	https://www.e-xfl.com/product-detail/nxp-semiconductors/spc5603bf2vll4

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

	Device															
Feature	MPC56 02BxLH	MPC56 02BxLL	MPC56 02BxLQ	MPC56 02CxLH	MPC56 02CxLL	MPC56 03BxLH	MPC56 03BxLL	MPC56 03BxLQ	MPC56 03CxLH	MPC56 03CxLL	MPC56 04BxLH	MPC56 04BxLL	MPC56 04BxLQ	MPC56 04CxLH	MPC56 04CxLL	MPC5604 BxMG
• PWM + IC/OC ⁴	10 ch	20 ch	40 ch	10 ch	20 ch	10 ch	20 ch	40 ch	10 ch	20 ch	10 ch	20 ch	40 ch	10 ch	20 ch	40 ch
 IC/OC⁴ 	_	3 ch	6 ch	_	3 ch	_	3 ch	6 ch	_	3 ch	_	3 ch	6 ch	_	3 ch	6 ch
SCI (LINFlex)	() 3 ⁵				1	1			1	4	1		1	1		
SPI (DSPI)	2		3	2	3	2		3			2	3				
CAN (FlexCAN)		2 ⁶		5	6		3 ⁷		5	6 3 ⁷		5		6		
l ² C				1	1	1			1	1	1			1		
32 kHz oscillator									Yes							
GPIO ⁸	45	79	123	45	79	45	79	123	45	79	45	79	123	45	79	123
Debug			1					JTAG			1	1			1	Nexus2+
Package	64 LQFP	100 LQFP	144 LQFP	64 LQFP	100 LQFP	64 LQFP	100 LQFP	144 LQFP	64 LQFP	100 LQFP	64 LQFP	100 LQFP	144 LQFP	64 LQFP	100 LQFP	208 MAPBGA ^S

Table 1. MPC5604B/C device comparison¹ (continued)

Feature set dependent on selected peripheral multiplexing—table shows example implementation.

² Based on 125 °C ambient operating temperature.

³ See the eMIOS section of the device reference manual for information on the channel configuration and functions.

⁴ IC – Input Capture; OC – Output Compare; PWM – Pulse Width Modulation; MC – Modulus counter.

⁵ SCI0, SCI1 and SCI2 are available. SCI3 is not available.

⁶ CAN0, CAN1 are available. CAN2, CAN3, CAN4 and CAN5 are not available.

⁷ CAN0, CAN3 and either CAN1 or CAN4 are available. CAN2, CAN5 and CAN6 are not available

⁸ I/O count based on multiplexing with peripherals.

⁹ 208 MAPBGA available only as development package for Nexus2+.

MPC5604B/C Microcontroller Data Sheet, Rev.

14

Introduction

Table 2 summarizes the functions of all blocks present in the MPC5604B/C series of microcontrollers. Please note that the presence and number of blocks vary by device and package.

Block	Function
Analog-to-digital converter (ADC)	Multi-channel, 10-bit analog-to-digital converter
Boot assist module (BAM)	A block of read-only memory containing VLE code which is executed according to the boot mode of the device
Clock monitor unit (CMU)	Monitors clock source (internal and external) integrity
Cross triggering unit (CTU)	Enables synchronization of ADC conversions with a timer event from the eMIOS or from the PIT
Deserial serial peripheral interface (DSPI)	Provides a synchronous serial interface for communication with external devices
Error Correction Status Module (ECSM)	Provides a myriad of miscellaneous control functions for the device including program-visible information about configuration and revision levels, a reset status register, wakeup control for exiting sleep modes, and optional features such as information on memory errors reported by error-correcting codes
Enhanced Direct Memory Access (eDMA)	Performs complex data transfers with minimal intervention from a host processor via " <i>n</i> " programmable channels.
Enhanced modular input output system (eMIOS)	Provides the functionality to generate or measure events
Flash memory	Provides non-volatile storage for program code, constants and variables
FlexCAN (controller area network)	Supports the standard CAN communications protocol
Frequency-modulated phase-locked loop (FMPLL)	Generates high-speed system clocks and supports programmable frequency modulation
Internal multiplexer (IMUX) SIU subblock	Allows flexible mapping of peripheral interface on the different pins of the device
Inter-integrated circuit (I ² C [™]) bus	A two wire bidirectional serial bus that provides a simple and efficient method of data exchange between devices
Interrupt controller (INTC)	Provides priority-based preemptive scheduling of interrupt requests
JTAG controller	Provides the means to test chip functionality and connectivity while remaining transparent to system logic when not in test mode
LINFlex controller	Manages a high number of LIN (Local Interconnect Network protocol) messages efficiently with a minimum of CPU load
Clock generation module (MC_CGM)	Provides logic and control required for the generation of system and peripheral clocks
Mode entry module (MC_ME)	Provides a mechanism for controlling the device operational mode and mode transition sequences in all functional states; also manages the power control unit, reset generation module and clock generation module, and holds the configuration, control and status registers accessible for applications
Power control unit (MC_PCU)	Reduces the overall power consumption by disconnecting parts of the device from the power supply via a power switching device; device components are grouped into sections called "power domains" which are controlled by the PCU
Reset generation module (MC_RGM)	Centralizes reset sources and manages the device reset sequence of the device

Table 2. MPC5604B/C series block summary

Note: Availability of port pin alternate functions depends on product selection.

Figure 5. LQFP 144-pin configuration

		1					uo		Pin	num	ber	
Port pin	РСК	Alternate function	Function	Peripheral	I/O direction ²	Pad type	RESET configurati	MPC560xB 64 LQFP	MPC560xC 64 LQFP	100 LQFP	144 LQFP	208 MAPBGA ³
PA[1]	PCR[1]	AF0 AF1 AF2 AF3 —	GPIO[1] E0UC[1] — NMI ⁵ WKPU[2] ⁴	SIUL eMIOS_0 — WKPU WKPU	I/O I/O — I I	S	Tristate	4	4	7	11	F3
PA[2]	PCR[2]	AF0 AF1 AF2 AF3 —	GPIO[2] E0UC[2] — — WKPU[3] ⁴	SIUL eMIOS_0 — WKPU	/O /O 	S	Tristate	3	3	5	9	F2
PA[3]	PCR[3]	AF0 AF1 AF2 AF3 —	GPIO[3] E0UC[3] — EIRQ[0]	SIUL eMIOS_0 — SIUL	/O /O 	S	Tristate	43	39	68	90	K15
PA[4]	PCR[4]	AF0 AF1 AF2 AF3 —	GPIO[4] E0UC[4] — — WKPU[9] ⁴	SIUL eMIOS_0 — WKPU	/O /O 	S	Tristate	20	20	29	43	N6
PA[5]	PCR[5]	AF0 AF1 AF2 AF3	GPIO[5] E0UC[5] —	SIUL eMIOS_0 —	I/O I/O —	М	Tristate	51	51	79	118	C11
PA[6]	PCR[6]	AF0 AF1 AF2 AF3 —	GPIO[6] E0UC[6] — EIRQ[1]	SIUL eMIOS_0 — SIUL	/O /O 	S	Tristate	52	52	80	119	D11
PA[7]	PCR[7]	AF0 AF1 AF2 AF3 —	GPIO[7] E0UC[7] LIN3TX — EIRQ[2]	SIUL eMIOS_0 LINFlex_3 SIUL	/O /O - 	S	Tristate	44	44	71	104	D16

Table 5. Functional port pin descriptions (continued)

		-					uo		Pin	num	ber	
Port pin	РСК	Alternate function	Function	Peripheral	I/O direction ²	Pad type	RESET configurati	MPC560xB 64 LQFP	MPC560xC 64 LQFP	100 LQFP	144 LQFP	208 MAPBGA ³
PB[15]	PCR[31]	AF0 AF1 AF2 AF3 —	GPIO[31] E0UC[7] — CS4_0 ANX[3]	SIUL eMIOS_0 — DSPI_0 ADC	I/O I/O — 0 I	J	Tristate	42	38	67	89	L13
PC[0] ⁹	PCR[32]	AF0 AF1 AF2 AF3	GPIO[32] — TDI —	SIUL — JTAGC —	I/O 	М	Input, weak pull-up	59	59	87	126	A8
PC[1] ⁹	PCR[33]	AF0 AF1 AF2 AF3	GPIO[33] — TDO ¹⁰ —	SIUL — JTAGC —	I/O 0 	М	Tristate	54	54	82	121	C9
PC[2]	PCR[34]	AF0 AF1 AF2 AF3 —	GPIO[34] SCK_1 CAN4TX ¹¹ — EIRQ[5]	SIUL DSPI_1 FlexCAN_4 — SIUL	I/O I/O O I	М	Tristate	50	50	78	117	A11
PC[3]	PCR[35]	AF0 AF1 AF2 AF3 — —	GPIO[35] CS0_1 — CAN1RX CAN4RX ¹¹ EIRQ[6]	SIUL DSPI_1 ADC — FlexCAN_1 FlexCAN_4 SIUL	I/O I/O O I I I I	S	Tristate	49	49	77	116	B11
PC[4]	PCR[36]	AF0 AF1 AF2 AF3 —	GPIO[36] — — SIN_1 CAN3RX ¹¹	SIUL — — DSPI_1 FlexCAN_3	I/O 	М	Tristate	62	62	92	131	B7
PC[5]	PCR[37]	AF0 AF1 AF2 AF3 —	GPIO[37] SOUT_1 CAN3TX ¹¹ — EIRQ[7]	SIUL DSPI1 FlexCAN_3 — SIUL	I/O O O I	М	Tristate	61	61	91	130	A7
PC[6]	PCR[38]	AF0 AF1 AF2 AF3	GPIO[38] LIN1TX — —	SIUL LINFlex_1 —	I/O O	S	Tristate	16	16	25	36	R2

Table 5. Functional port pin descriptions (continued)

							uo		Pin	num	ber	
Port pin	РСК	Alternate function	Function	Peripheral	I/O direction ²	Pad type	RESET configurati	MPC560xB 64 LQFP	MPC560xC 64 LQFP	100 LQFP	144 LQFP	208 MAPBGA ³
PG[0]	PCR[96]	AF0 AF1 AF2 AF3	GPIO[96] CAN5TX ¹¹ E1UC[23] —	SIUL FlexCAN_5 eMIOS_1 —	I/O O I/O —	Μ	Tristate		41		98	E14
PG[1]	PCR[97]	AF0 AF1 AF2 AF3 —	GPIO[97] — E1UC[24] — CAN5RX ¹¹ EIRQ[14]	SIUL eMIOS_1 FlexCAN_5 SIUL	/O /O 	S	Tristate		40		97	E13
PG[2]	PCR[98]	AF0 AF1 AF2 AF3	GPIO[98] E1UC[11] — —	SIUL eMIOS_1 —	I/O I/O 	М	Tristate	—	_		8	E4
PG[3]	PCR[99]	AF0 AF1 AF2 AF3 —	GPIO[99] E1UC[12] — WKPU[17] ⁴	SIUL eMIOS_1 — WKPU	I/O I/O — I	S	Tristate		_	_	7	E3
PG[4]	PCR[100]	AF0 AF1 AF2 AF3	GPIO[100] E1UC[13] — —	SIUL eMIOS_1 —	I/O I/O 	М	Tristate				6	E1
PG[5]	PCR[101]	AF0 AF1 AF2 AF3 —	GPIO[101] E1UC[14] — — WKPU[18] ⁴	SIUL eMIOS_1 — WKPU	/O /O 	S	Tristate	_	_		5	E2
PG[6]	PCR[102]	AF0 AF1 AF2 AF3	GPIO[102] E1UC[15] —	SIUL eMIOS_1 —	I/O I/O 	М	Tristate	_		_	30	M2
PG[7]	PCR[103]	AF0 AF1 AF2 AF3	GPIO[103] E1UC[16] — —	SIUL eMIOS_1 —	I/O I/O —	М	Tristate	_	_		29	M1
PG[8]	PCR[104]	AF0 AF1 AF2 AF3 —	GPIO[104] E1UC[17] — CS0_2 EIRQ[15]	SIUL eMIOS_1 DSPI_2 SIUL	I/O I/O I/O I	S	Tristate				26	L2

- ¹ Alternate functions are chosen by setting the values of the PCR.PA bitfields inside the SIUL module. PCR.PA = 00 → AF0; PCR.PA = 01 → AF1; PCR.PA = 10 → AF2; PCR.PA = 11 → AF3. This is intended to select the output functions; to use one of the input functions, the PCR.IBE bit must be written to '1', regardless of the values selected in the PCR.PA bitfields. For this reason, the value corresponding to an input only function is reported as "—".
- ² Multiple inputs are routed to all respective modules internally. The input of some modules must be configured by setting the values of the PSMIO.PADSELx bitfields inside the SIUL module.
- ³ 208 MAPBGA available only as development package for Nexus2+
- ⁴ All WKPU pins also support external interrupt capability. See wakeup unit chapter for further details.
- ⁵ NMI has higher priority than alternate function. When NMI is selected, the PCR.AF field is ignored.
- ⁶ "Not applicable" because these functions are available only while the device is booting. Refer to BAM chapter of the reference manual for details.
- ⁷ Value of PCR.IBE bit must be 0
- ⁸ Be aware that this pad is used on the MPC5607B 100-pin and 144-pin to provide VDD_HV_ADC and VSS_HV_ADC1. Therefore, you should be careful in ensuring compatibility between MPC5604B/C and MPC5607B.
- ⁹ Out of reset all the functional pins except PC[0:1] and PH[9:10] are available to the user as GPIO. PC[0:1] are available as JTAG pins (TDI and TDO respectively).

PH[9:10] are available as JTAG pins (TCK and TMS respectively).

If the user configures these JTAG pins in GPIO mode the device is no longer compliant with IEEE 1149.1-2001.

- ¹⁰ The TDO pad has been moved into the STANDBY domain in order to allow low-power debug handshaking in STANDBY mode. However, no pull-resistor is active on the TDO pad while in STANDBY mode. At this time the pad is configured as an input. When no debugger is connected the TDO pad is floating causing additional current consumption. To avoid the extra consumption TDO must be connected. An external pull-up resistor in the range of $47-100 \text{ k}\Omega$ should be added between the TDO pin and VDD_HV. Only in case the TDO pin is used as application pin and a pull-up cannot be used then a pull-down resistor with the same value should be used between TDO pin and GND instead.
- ¹¹ Available only on MPC560xC versions, MPC5603B 64 LQFP, MPC5604B 64 LQFP and MPC5604B 208 MAPBGA devices
- ¹² Not available on MPC5602B devices
- ¹³ Not available in 100 LQFP package
- ¹⁴ Available only on MPC5604B 208 MAPBGA devices
- ¹⁵ Not available on MPC5603B 144-pin devices

2.7 Nexus 2+ pins

In the 208 MAPBGA package, eight additional debug pins are available (see Table 6).

		1/0		Function	Pin number					
Debug pin	Function	direction	Pad type	after reset	100 LQFP	144 LQFP	208 MAP BGA			
МСКО	Message clock out	0	F	—		_	T4			
MDO0	Message data out 0	0	М	—		_	H15			
MDO1	Message data out 1	0	М	—	_	_	H16			
MDO2	Message data out 2	0	М	—		_	H14			
MDO3	Message data out 3	0	М	—	_		H13			

 Table 6. Nexus 2+ pin descriptions

Figure 8. Start-up reset requirements

Figure 9. Noise filtering on reset signal

Table 24. Reset electrical characteristics

Symb	ol	C	Parameter	Conditions ¹	Value				
Symbol		Ŭ	i didiliotor	Conditione	Min	Тур	Max	0.111	
V _{IH}	SR	Ρ	Input High Level CMOS (Schmitt Trigger)	_	0.65V _{DD}	_	V _{DD} +0.4	V	

Symbol		<u> </u>	Paramatar	Conditional		Value		Unit
Symp	OI	C	Parameter	Conditions	Min	Тур	Max	Unit
V _{IL}	SR	Ρ	Input low Level CMOS (Schmitt Trigger)	_	-0.4		0.35V _{DD}	V
V _{HYS}	СС	С	Input hysteresis CMOS (Schmitt Trigger)	_	0.1V _{DD}	—	—	V
V _{OL}	СС	Ρ	Output low level	Dutput low levelPush Pull, $I_{OL} = 2mA$, $V_{DD} = 5.0 V \pm 10\%$, PAD3V5V = 0 (recommended)				V
		С		Push Pull, I_{OL} = 1mA, V _{DD} = 5.0 V ± 10%, PAD3V5V = 1 ²	_	—	0.1V _{DD}	
		С		_	_	0.5		
t _{tr}	СС	D	Output transition time output pin ³	C _L = 25pF, V _{DD} = 5.0 V ± 10%, PAD3V5V = 0	_	—	10	ns
				C _L = 50pF, V _{DD} = 5.0 V ± 10%, PAD3V5V = 0	_	—	20	
				$C_L = 100 \text{pF},$ $V_{DD} = 5.0 \text{ V} \pm 10\%, \text{ PAD3V5V} = 0$	_	—	40	
				C _L = 25pF, V _{DD} = 3.3 V ± 10%, PAD3V5V = 1	_	—	12	
				C _L = 50pF, V _{DD} = 3.3 V ± 10%, PAD3V5V = 1	_	—	25	
				C _L = 100pF, V _{DD} = 3.3 V ± 10%, PAD3V5V = 1	_		40	
W _{FRST}	SR	Ρ	RESET input filtered pulse	_	_	—	40	ns
W _{NFRST}	SR	Ρ	RESET input not filtered pulse	_	1000	_	—	ns
I _{WPU}	СС	Ρ	Weak pull-up current	$V_{DD} = 3.3 \text{ V} \pm 10\%, \text{ PAD3V5V} = 1$	10	—	150	μA
		D	adsolute value	$V_{DD} = 5.0 V \pm 10\%, PAD3V5V = 0$	10	_	150	
		Ρ		$V_{DD} = 5.0 \text{ V} \pm 10\%, \text{ PAD3V5V} = 1^2$	10	—	250	

¹ $V_{DD} = 3.3 \text{ V} \pm 10\% / 5.0 \text{ V} \pm 10\%$, $T_A = -40$ to 125 °C, unless otherwise specified ² This transient configuration does not occurs when device is used in the $V_{DD} = 3.3 \text{ V} \pm 10\%$ range. ³ C_L includes device and package capacitance ($C_{PKG} < 5 \text{ pF}$).

- ⁵ Only for the "P" classification: Data and Code Flash in Normal Power. Code fetched from RAM: Serial IPs CAN and LIN in loop back mode, DSPI as Master, PLL as system Clock (4 x Multiplier) peripherals on (eMIOS/CTU/ADC) and running at max frequency, periodic SW/WDG timer reset enabled.
- ⁶ Data Flash Power Down. Code Flash in Low Power. SIRC (128 kHz) and FIRC (16 MHz) on. 10 MHz XTAL clock. FlexCAN: instances: 0, 1, 2 ON (clocked but not reception or transmission), instances: 4, 5, 6 clock gated. LINFlex: instances: 0, 1, 2 ON (clocked but not reception or transmission), instance: 3 clock gated. eMIOS: instance: 0 ON (16 channels on PA[0]–PA[11] and PC[12]–PC[15]) with PWM 20 kHz, instance: 1 clock gated. DSPI: instance: 0 (clocked but no communication). RTC/API ON. PIT ON. STM ON. ADC ON but not conversion except 2 analog watchdog.
- ⁷ Only for the "P" classification: No clock, FIRC (16 MHz) off, SIRC (128 kHz) on, PLL off, HPvreg off, ULPVreg/LPVreg on. All possible peripherals off and clock gated. Flash in power down mode.
- ⁸ When going from RUN to STOP mode and the core consumption is > 6 mA, it is normal operation for the main regulator module to be kept on by the on-chip current monitoring circuit. This is most likely to occur with junction temperatures exceeding 125 °C and under these circumstances, it is possible for the current to initially exceed the maximum STOP specification by up to 2 mA. After entering stop, the application junction temperature will reduce to the ambient level and the main regulator will be automatically switched off when the load current is below 6 mA.
- ⁹ Only for the "P" classification: ULPreg on, HP/LPVreg off, 32 KB RAM on, device configured for minimum consumption, all possible modules switched off.
- ¹⁰ ULPreg on, HP/LPVreg off, 8 KB RAM on, device configured for minimum consumption, all possible modules switched off.

2.19 Flash memory electrical characteristics

2.19.1 **Program/Erase characteristics**

Table 28 shows the program and erase characteristics.

Symbol				Value						
		С	Parameter	Min	Typ ¹	Initial max ²	Max ³	Unit		
T _{dwprogram}	СС	С	Double word (64 bits) program time ⁴		22	50	500	μs		
T _{16Kpperase}			16 KB block preprogram and erase time	_	300	500	5000	ms		
T _{32Kpperase}			32 KB block preprogram and erase time	_	400	600	5000	ms		
T _{128Kpperase}			128 KB block preprogram and erase time	_	800	1300	7500	ms		
T _{esus}	СС	D	Erase suspend latency	_	_	30	30	μs		

Table 28. Program and erase specifications

¹ Typical program and erase times assume nominal supply values and operation at 25 °C.

² Initial factory condition: < 100 program/erase cycles, 25 °C, typical supply voltage.

³ The maximum program and erase times occur after the specified number of program/erase cycles. These maximum values are characterized but not guaranteed.

⁴ Actual hardware programming times. This does not include software overhead.

2.20.3.1 Electrostatic discharge (ESD)

Electrostatic discharges (a positive then a negative pulse separated by 1 second) are applied to the pins of each sample according to each pin combination. The sample size depends on the number of supply pins in the device (3 parts*(n+1) supply pin). This test conforms to the AEC-Q100-002/-003/-011 standard.

Symbo	Symbol C Ratings		Ratings	Conditions	Class	Max value	Unit
V _{ESD(HBM)}	CC	Т	Electrostatic discharge voltage (Human Body Model)	$T_A = 25 \degree C$ conforming to AEC-Q100-002	H1C	2000	V
V _{ESD(MM)}	СС	Т	Electrostatic discharge voltage (Machine Model)	$T_A = 25 \text{ °C}$ conforming to AEC-Q100-003	M2	200	
V _{ESD(CDM)}	СС	Т	Electrostatic discharge voltage	$T_A = 25 ^{\circ}C$	C3A	500	
			(Charged Device Model)	conforming to AEC-Q100-011		750 (corners)	

Table 34. ESD absolute maximum ratings^{1 2}

¹ All ESD testing is in conformity with CDF-AEC-Q100 Stress Test Qualification for Automotive Grade Integrated Circuits.

² A device will be defined as a failure if after exposure to ESD pulses the device no longer meets the device specification requirements. Complete DC parametric and functional testing shall be performed per applicable device specification at room temperature followed by hot temperature, unless specified otherwise in the device specification.

2.20.3.2 Static latch-up (LU)

Two complementary static tests are required on six parts to assess the latch-up performance:

- A supply overvoltage is applied to each power supply pin.
- A current injection is applied to each input, output and configurable I/O pin.

These tests are compliant with the EIA/JESD 78 IC latch-up standard.

Table 35. Latch-up results

Syr	Symbol C		Parameter	Conditions	Class
LU	CC	Т	Static latch-up class	$T_A = 125 \text{ °C}$ conforming to JESD 78	II level A

2.21 Fast external crystal oscillator (4 to 16 MHz) electrical characteristics

The device provides an oscillator/resonator driver. Figure 14 describes a simple model of the internal oscillator driver and provides an example of a connection for an oscillator or a resonator.

Table 36 provides the parameter description of 4 MHz to 16 MHz crystals used for the design simulations.

Symbol		<u>د</u>	Paramotor	Parameter Conditions ¹		Value			
Symbo		C	Falameter			Min Typ Max		Onne	
f _{PLLIN}	SR	_	FMPLL reference clock ²	—	4	—	64	MHz	
Δ_{PLLIN}	SR		- FMPLL reference clock duty		40	_	60	%	
f _{PLLOUT}	СС	D	FMPLL output clock frequency	—	16	—	64	MHz	
f _{VCO} 3	СС	Ρ	VCO frequency without — frequency modulation		256	—	512	MHz	
		С	VCO frequency with frequency modulation	_	245	—	533	-	
f _{CPU}	SR		System clock frequency	су —		—	64	MHz	
f _{FREE}	СС	Ρ	Free-running frequency	—	20	—	150	MHz	
t _{LOCK}	СС	Ρ	FMPLL lock time	PLL lock time Stable oscillator (f _{PLLIN} = 16 MHz)		40	100	μs	
Δt_{STJIT}	СС		FMPLL short term jitter ⁴ f _{sys} maximum		-4	—	4	%	
∆t _{LTJIT}	СС	_	FMPLL long term jitter	f _{PLLIN} = 16 MHz (resonator), f _{PLLCLK} @ 64 MHz, 4000 cycles	—	—	10	ns	
I _{PLL}	СС	С	FMPLL consumption	$T_A = 25 °C$	_	_	4	mA	

Table 40. FMPLL	. electrical	characteristics
-----------------	--------------	-----------------

 1 V_{DD} = 3.3 V \pm 10% / 5.0 V \pm 10%, T_A = –40 to 125 °C, unless otherwise specified.

² PLLIN clock retrieved directly from FXOSC clock. Input characteristics are granted when oscillator is used in functional mode. When bypass mode is used, oscillator input clock should verify f_{PLLIN} and Δ_{PLLIN} .

³ Frequency modulation is considered $\pm 4\%$

⁴ Short term jitter is measured on the clock rising edge at cycle n and n+4.

2.24 Fast internal RC oscillator (16 MHz) electrical characteristics

The device provides a 16 MHz fast internal RC oscillator. This is used as the default clock at the power-up of the device.

Symbol		C	Parameter	Conditions ¹	Value			Unit
		Ŭ	i arameter	Conditions	Min	Тур	Мах	0
f _{FIRC}	СС	Ρ	Fast internal RC oscillator high	$T_A = 25 \ ^\circ C$, trimmed	—	16	—	MHz
	SR	—	frequency	—	12		20	
I _{FIRCRUN} ^{2,}	СС	Т	Fast internal RC oscillator high frequency current in running mode	T _A = 25 °C, trimmed	—	—	200	μA
I _{FIRCPWD}	CC	D	Fast internal RC oscillator high frequency current in power down mode	T _A = 125 °C	—		10	μA

Table 41. Fast internal RC oscillator (16 MHz) electrical characteristics

Figure 21. Input equivalent circuit (extended channels)

A second aspect involving the capacitance network shall be considered. Assuming the three capacitances C_F , C_{P1} and C_{P2} are initially charged at the source voltage V_A (refer to the equivalent circuit in Figure 20): A charge sharing phenomenon is installed when the sampling phase is started (A/D switch close).

Figure 22. Transient behavior during sampling phase

In particular two different transient periods can be distinguished:

The two transients above are not influenced by the voltage source that, due to the presence of the R_FC_F filter, is not able to provide the extra charge to compensate the voltage drop on C_S with respect to the ideal source V_A ; the time constant R_FC_F of the filter is very high with respect to the sampling time (t_s). The filter is typically designed to act as anti-aliasing.

Figure 23. Spectral representation of input signal

Calling f_0 the bandwidth of the source signal (and as a consequence the cut-off frequency of the anti-aliasing filter, f_F), according to the Nyquist theorem the conversion rate f_C must be at least $2f_0$; it means that the constant time of the filter is greater than or at least equal to twice the conversion period (t_c). Again the conversion period t_c is longer than the sampling time t_s , which is just a portion of it, even when fixed channel continuous conversion mode is selected (fastest conversion rate at a specific channel): in conclusion it is evident that the time constant of the filter R_FC_F is definitively much higher than the sampling time t_s , so the charge level on C_S cannot be modified by the analog signal source during the time in which the sampling switch is closed.

The considerations above lead to impose new constraints on the external circuit, to reduce the accuracy error due to the voltage drop on C_S ; from the two charge balance equations above, it is simple to derive Equation 11 between the ideal and real sampled voltage on C_S :

Eqn. 11

$$\frac{V_{A2}}{V_A} = \frac{C_{P1} + C_{P2} + C_F}{C_{P1} + C_{P2} + C_F + C_S}$$

From this formula, in the worst case (when V_A is maximum, that is for instance 5 V), assuming to accept a maximum error of half a count, a constraint is evident on C_F value:

Eqn. 12

$$C_F > 2048 \bullet C_S$$

2.27.3 Nexus characteristics

No	o Symbol		Symbol		Symbol		c	C Parameter		Value			
NO.	Jynnov	Symbol C Parameter		Min	Тур	Max	Cint						
1	t _{TCYC}	CC	D	TCK cycle time	64	_		ns					
2	t _{MCYC}	CC	D	MCKO cycle time	32	_	_	ns					
3	t _{MDOV}	CC	D	MCKO low to MDO data valid	_	_	8	ns					
4	t _{MSEOV}	CC	D	MCKO low to MSEO_b data valid	_		8	ns					
5	t _{EVTOV}	CC	D	MCKO low to EVTO data valid	_	_	8	ns					
10	t _{NTDIS}	CC	D	TDI data setup time	15		_	ns					
	t _{NTMSS}	CC	D	TMS data setup time	15		_	ns					
11	t _{NTDIH}	CC	D	TDI data hold time	5		_	ns					
	t _{NTMSH}	CC	D	TMS data hold time	5	_		ns					
12	t _{TDOV}	CC	D	TCK low to TDO data valid	35		_	ns					
13	t _{TDOI}	CC	D	TCK low to TDO data invalid	6		_	ns					

Table 47.	Nexus	charact	eristics
-----------	-------	---------	----------

Figure 34. Timing diagram – JTAG boundary scan

3 Package characteristics

3.1 Package mechanical data

Document revision history

Revision	Date	Description of Changes
2 (cont.)	06-Mar-2009	Updated Table 15, Table 16, Table 17, Table 18 and Table 19 Added 2.15.4, Output pin transition times Updated Table 22 Updated Figure 8 Updated Table 24 2.17.1, Voltage regulator electrical characteristics: Amended description of LV_PLL Figure 10: Exchanged position of symbols C _{DEC1} and C _{DEC2} Updated Table 25 Added Figure 13 Updated Table 26 and Table 27 Updated Table 26 and Table 27 Updated 2.19, Flash memory electrical characteristics Added 2.20, Electromagnetic compatibility (EMC) characteristics Updated 2.21, Fast external crystal oscillator (4 to 16 MHz) electrical characteristics Updated 2.22, Slow external crystal oscillator (32 kHz) electrical characteristics Updated Table 40, Table 41 and Table 42 Added 2.27, On-chip peripherals Added Table 43 Updated Table 44 Updated Table 47 Added Appendix A, Abbreviations
4	06-Aug-2009	Updated Figure 6 Table 11 • V_{DD_ADC} : changed min value for "relative to V_{DD} " condition • V_{IN} : changed min value for "relative to V_{DD} " condition • I_{CORELV} : added new row Table 13 • $T_A C-Grade Part, T_J C-Grade Part, T_A V-Grade Part, T_J V-Grade Part, T_A M-Grade Part, T_J M-Grade Part: added new rows • Changed capacitance value in footnote Table 20 • MEDIUM configuration: added condition for PAD3V5V = 0 Updated Figure 10 Table 25 • C_{DEC1}: changed min value• I_{MREG}: changed max value• I_{DD_BV}: added max value• I_{DD_BV}: added max value• V_{LVDHV3H}: changed max value• V_{LVDHV3H}: changed max value• V_{LVDHV3H}: added max value footnote• Table 39• V_{SXOSC}: changed typ value• T_{SXOSC}: added max value footnote• Table 40• A_{LTJH}: added max value• Updated Figure 38$

Document revision history

Revision	Date	Description of Changes
9	16 June 2011	Formatting and minor editorial changes throughout Harmonized oscillator nomenclature Removed all instances of note "All 64 LQFP information is indicative and must be confirmed during silicon validation."
		Device comparison table: changed temperature value in footnote 2 from 105 °C to 125 °C MPC560xB LQFP 64-pin configuration and MPC560xC LQFP 64-pin configuration: renamed pin 6 from VPP_TEST to VSS_HV Removed "Pin Muxing" section; added sections "Pad configuration during reset phases", "Voltage supply pins", "Pad types", "System pins," "Functional ports", and "Nexus 2+
		pins" Section "NVUSRO register": edited content to separate configuration into electrical parameters and digital functionality; updated footnote describing default value of '1' in field descriptions NVUSRO[PAD3V5V] and NVUSRO[OSCILLATOR_MARGIN] Added section "NVUSRO[WATCHDOG_EN] field description"
		Recommended operating conditions (3.3 V) and Recommended operating conditions (5.0 V): updated conditions for ambient and junction temperature characteristics I/O input DC electrical characteristics: updated I _{LKG} characteristics Section "I/O pad current specification": removed content referencing the I _{DYNSEG} maximum value
		 I/O consumption: replaced instances of "Root medium square" with "Root mean square" I/O weight: replaced instances of bit "SRE" with "SRC"; added pads PH[9] and PH[10]; added supply segments; removed weight values in 64-pin LQFP for pads that do not exist in that package
		Reset electrical characteristics: updated parameter classification for II _{WPU} I Updated Voltage regulator electrical characteristics Section "Low voltage detector electrical characteristics": changed title (was "Voltage monitor electrical characteristics"); added event status flag names found in RGM chapter of device reference manual to POR module and LVD descriptions; replaced instances of "Low voltage monitor" with "Low voltage detector"; updated values for V _{LVDLVBKPL} and V _{LVDLVCORL} ; replaced "LVD_DIGBKP" with "LVDLVBKP" in note Updated section "Power consumption"
		 Fast external crystal oscillator (4 to 16 MHz) electrical characteristics: updated parameter classification for V_{FXOSCOP} Crystal oscillator and resonator connection scheme: added footnote about possibility of adding a series resistor Slow external crystal oscillator (32 kHz) electrical characteristics: updated footnote 1 FMPLL electrical characteristics: added short term jitter characteristics; inserted "—" in empty min value cell of the prove
		Section "Input impedance and ADC accuracy": changed "V _A /V _{A2} " to "V _{A2} /V _A " in Equation 11 ADC input leakage current: updated I _{LKG} characteristics ADC conversion characteristics: updated symbols On-chip peripherals current consumption: changed "supply current on "V _{DD_HV_ADC} " to "supply current on" V _{DD_HV} " in I _{DD_HV(FLASH)} row; updated I _{DD_HV(PLL)} value—was 3 * f _{periph} , is 30 * f _{periph} ; updated footnotes DSPI characteristics: added rows t _{PCSC} and t _{PASC} Added DSPI PCS strobe (PCSS) timing diagram

Document revision history

Revision	Date	Description of Changes
10	15 Oct 2012	 Table 2 (Bolero 512K device comparison), added footnote for MPC5603BxLH and MPC5604BxLH about FlexCAN availability. Table 2 (MPC5604B/C series block summary), replaced "System watchdog timer" with "Software watchdog timer" and specified AUTOSAR (Automotive Open System Architecture) Table 5 (Functional port pin descriptions): replaced footnote "Available only on MPC560xC versions and MPC5604B 208 MAPBGA devices" with "Available only on MPC560xC versions and MPC5604B 208 MAPBGA devices" with "Available only on MPC560xC versions and MPC5603B 64 LQFP, MPC5604B 64 LQFP and MPC5604B 208 MAPBGA devices", replaced VDD with VDD_HV Figure 10 (Voltage regulator capacitance connection), updated pin name appearance Renamed Figure 11 (V_{DD_HV} and V_{DD_BV} maximum slope) (was "VDD and VDD_BV maximum slope") Renamed Figure 12 (V_{DD_HV} and V_{DD_BV} supply constraints during STANDBY mode exit") Table 12 (Recommended operating conditions (3.3 V)), added minimum value of T_{VDD} and footnote about it. Table 13 (Recommended operating conditions (5.0 V)), added minimum value of T_{VDD} and footnote about it. Section 2.17.1, "Voltage regulator electrical characteristics: replaced "slew rate of V_{DD}/V_{D_BV}" with "slew rate of both V_{DD_HV} and V_{DD_BV} in order to guarantee correct regulator functionality during STANDBY exit." with "When STANDBY mode is used, further constraints applied to the both V_{DD_HV} and V_{DD_BV} in order to guarantee correct regulator function during STANDBY exit." Table 27 (Power consumption on VDD_BV and VDD_HV), updated footnotes of I_{DDMAX} and I_{DDHW} stating that both currents are drawn only from the V_{DD_BV} pin. Table 31 (Flash memory power supply DC electrical characteristics), in the parameter column replaced V_{DD_BV} and V_{DD_HV} respectively with VDD_BV and VDD_HV. Table 27 (Power consumption on VDD_BV and VDD_HV. Table 31 (Flash memory power supply DC electrical characteristics),
11	14 Nov 2012	In the cover feature list: added "and ECC" at the end of "Up to 512 KB on-chip code flash supported with the flash controller" added "with ECC" at the end of "Up to 48 KB on-chip SRAM" Table 12 (Recommended operating conditions (3.3 V)), removed minimum value of T _{VDD} and relative footnote. Table 13 (Recommended operating conditions (5.0 V)), removed minimum value of T _{VDD} and relative footnote.
12	19 Mar 2014	Added "K=TSMC Fab" against the Fab and mask indicator in Figure 45 (Commercial product code structure).

Table 49. Revision history (continued)