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Chapter 1 Introduction
Table 1-2 lists the functional versions of the on-chip modules. 

1.3 System Clock Distribution

Figure 1-2. System Clock Distribution Diagram

Some of the modules inside the MCU have clock source choices. Figure 1-2 shows a simplified clock 
connection diagram. The ICG supplies the clock sources: 

• ICGOUT is an output of the ICG module. It is one of the following: 

— The external crystal oscillator

— An external clock source

— The output of the digitally-controlled oscillator (DCO) in the frequency-locked loop 
sub-module

Table 1-2. Versions of On-Chip Modules

Module Version

Analog-to-Digital Converter (ADC) 1

Internal Clock Generator (ICG) 4

Inter-Integrated Circuit (IIC) 2

Keyboard Interrupt (KBI) 1

Serial Communications Interface (SCI) 4

Serial Peripheral Interface (SPI) 3

Timer Pulse-Width Modulator (TPM) 3

Central Processing Unit (CPU) 2

TPM1 TPM2 IIC1 SCI1 SCI2 SPI1 

BDCCPU ADC1 RAM FLASH

ICG

ICGOUT
³2 

FFE

SYSTEM

LOGIC

BUSCLK

ICGLCLK*

CONTROL

XCLK**

ICGERCLK

* ICGLCLK is the alternate BDC clock source for the MC9S08AC16 Series.
** XCLK is the fixed-frequency clock.

³2 

FLASH has frequency 
requirements for program
and erase operation.
See the Electricals 
appendix. 

ADC has min and max
frequency requirements.
See the Electricals appendix 
and the ADC chapter.

TPM3

COP

RTI 

1 kHz

TPMCLK
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Chapter 2 Pins and Connections
2.3 Recommended System Connections
Figure 2-5 shows pin connections that are common to almost all MC9S08AC16 Series application 
systems. 
MC9S08AC16 Series Data Sheet, Rev. 9
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Chapter 4 Memory
4.6.6 FLASH Command Register (FCMD)

Only five command codes are recognized in normal user modes as shown in Table 4-14. Refer to 
Section 4.4.3, “Program and Erase Command Execution” for a detailed discussion of FLASH 
programming and erase operations.

Table 4-12. FSTAT Register Field Descriptions

Field Description

7
FCBEF

FLASH Command Buffer Empty Flag — The FCBEF bit is used to launch commands. It also indicates that the 
command buffer is empty so that a new command sequence can be executed when performing burst 
programming. The FCBEF bit is cleared by writing a one to it or when a burst program command is transferred 
to the array for programming. Only burst program commands can be buffered.
0 Command buffer is full (not ready for additional commands).
1 A new burst program command may be written to the command buffer.

6
FCCF

FLASH Command Complete Flag — FCCF is set automatically when the command buffer is empty and no 
command is being processed. FCCF is cleared automatically when a new command is started (by writing 1 to 
FCBEF to register a command). Writing to FCCF has no meaning or effect.
0 Command in progress
1 All commands complete

5
FPVIOL

Protection Violation Flag — FPVIOL is set automatically when FCBEF is cleared to register a command that 
attempts to erase or program a location in a protected block (the erroneous command is ignored). FPVIOL is 
cleared by writing a 1 to FPVIOL.
0 No protection violation.
1 An attempt was made to erase or program a protected location.

4
FACCERR

Access Error Flag — FACCERR is set automatically when the proper command sequence is not obeyed exactly 
(the erroneous command is ignored), if a program or erase operation is attempted before the FCDIV register has 
been initialized, or if the MCU enters stop while a command was in progress. For a more detailed discussion of 
the exact actions that are considered access errors, see Section 4.4.5, “Access Errors.” FACCERR is cleared by 
writing a 1 to FACCERR. Writing a 0 to FACCERR has no meaning or effect.
0 No access error.
1 An access error has occurred.

2
FBLANK

FLASH Verified as All Blank (erased) Flag — FBLANK is set automatically at the conclusion of a blank check 
command if the entire FLASH array was verified to be erased. FBLANK is cleared by clearing FCBEF to write a 
new valid command. Writing to FBLANK has no meaning or effect.
0 After a blank check command is completed and FCCF = 1, FBLANK = 0 indicates the FLASH array is not 

completely erased.
1 After a blank check command is completed and FCCF = 1, FBLANK = 1 indicates the FLASH array is 

completely erased (all 0xFF).

7 6 5 4 3 2 1 0

R 0 0 0 0 0 0 0 0

W FCMD7 FCMD6 FCMD5 FCMD4 FCMD3 FCMD2 FCMD1 FCMD0

Reset 0 0 0 0 0 0 0 0

Figure 4-10. FLASH Command Register (FCMD)
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Chapter 5  
Resets, Interrupts, and System Configuration

5.1 Introduction
This chapter discusses basic reset and interrupt mechanisms and the various sources of reset and interrupts 
in the MC9S08AC16 Series. Some interrupt sources from peripheral modules are discussed in greater 
detail within other chapters of this data manual. This chapter gathers basic information about all reset and 
interrupt sources in one place for easy reference. A few reset and interrupt sources, including the computer 
operating properly (COP) watchdog and real-time interrupt (RTI), are not part of on-chip peripheral 
systems with their own sections but are part of the system control logic.

5.2 Features
Reset and interrupt features include:

• Multiple sources of reset for flexible system configuration and reliable operation:

— Power-on detection (POR)

— Low voltage detection (LVD) with enable

— External RESET pin

— COP watchdog with enable and two timeout choices

— Illegal opcode

— Illegal address

— Serial command from a background debug host

• Reset status register (SRS) to indicate source of most recent reset

• Separate interrupt vectors for each module (reduces polling overhead) (see Table 5-11)

5.3 MCU Reset
Resetting the MCU provides a way to start processing from a known set of initial conditions. During reset, 
most control and status registers are forced to initial values and the program counter is loaded from the 
reset vector (0xFFFE:0xFFFF). On-chip peripheral modules are disabled and I/O pins are initially 
configured as general-purpose high-impedance inputs with pullup devices disabled. The I bit in the 
condition code register (CCR) is set to block maskable interrupts so the user program has a chance to 
initialize the stack pointer (SP) and system control settings. SP is forced to 0x00FF at reset.

The following sources of reset are available on the MC9S08AC16 Series:

• Power-on reset (POR)

• Low-voltage detect (LVD)
MC9S08AC16 Series Data Sheet, Rev. 9
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Chapter 6 Parallel Input/Output
6.7.7 Port D I/O Registers (PTDD and PTDDD)

Port D parallel I/O function is controlled by the registers listed below.

7 6 5 4 3 2 1 0

R
R R R R PTDD3 PTDD2 PTDD1 PTDD0

W

Reset 0 0 0 0 0 0 0 0

Figure 6-25. Port D Data Register (PTDD)1
1 Bits 7 through 4 are reserved bits that must always be written to 0.

Table 6-16.  PTDD Register Field Descriptions

Field Description

3:0
PTDD[3:0]

Port D Data Register Bits — For port D pins that are inputs, reads return the logic level on the pin. For port D 
pins that are configured as outputs, reads return the last value written to this register.
Writes are latched into all bits of this register. For port D pins that are configured as outputs, the logic level is 
driven out the corresponding MCU pin. 
Reset forces PTDD to all 0s, but these 0s are not driven out the corresponding pins because reset also configures 
all port pins as high-impedance inputs with pullups disabled.

7 6 5 4 3 2 1 0

R
R R R R PTDDD3 PTDDD2 PTDDD1 PTDDD0

W

Reset 0 0 0 0 0 0 0 0

Figure 6-26. Data Direction for Port D (PTDDD)1
1 Bits 7 through 4 are reserved bits that must always be written to 0.

Table 6-17. PTDDD Register Field Descriptions

Field Description

3:0
PTDDD[3:0]

Data Direction for Port D Bits — These read/write bits control the direction of port D pins and what is read for 
PTDD reads.
0 Input (output driver disabled) and reads return the pin value.
1 Output driver enabled for port D bit n and PTDD reads return the contents of PTDDn.
MC9S08AC16 Series Data Sheet, Rev. 9
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Chapter 7  
Central Processor Unit (S08CPUV2)

7.1 Introduction
This section provides summary information about the registers, addressing modes, and instruction set of 
the CPU of the HCS08 Family. For a more detailed discussion, refer to the HCS08 Family Reference 
Manual, volume 1.

The HCS08 CPU is fully source- and object-code-compatible with the M68HC08 CPU. Several 
instructions and enhanced addressing modes were added to improve C compiler efficiency and to support 
a new background debug system which replaces the monitor mode of earlier M68HC08 microcontrollers 
(MCU).

7.1.1 Features

Features of the HCS08 CPU include:

• Object code fully upward-compatible with M68HC05 and M68HC08 Families

• All registers and memory are mapped to a single 64-Kbyte address space

• 16-bit stack pointer (any size stack anywhere in 64-Kbyte address space)

• 16-bit index register (H:X) with powerful indexed addressing modes

• 8-bit accumulator (A)

• Many instructions treat X as a second general-purpose 8-bit register

• Seven addressing modes:

— Inherent — Operands in internal registers

— Relative — 8-bit signed offset to branch destination

— Immediate — Operand in next object code byte(s)

— Direct — Operand in memory at 0x0000–0x00FF

— Extended — Operand anywhere in 64-Kbyte address space

— Indexed relative to H:X — Five submodes including auto increment

— Indexed relative to SP — Improves C efficiency dramatically

• Memory-to-memory data move instructions with four address mode combinations

• Overflow, half-carry, negative, zero, and carry condition codes support conditional branching on 
the results of signed, unsigned, and binary-coded decimal (BCD) operations

• Efficient bit manipulation instructions

• Fast 8-bit by 8-bit multiply and 16-bit by 8-bit divide instructions

• STOP and WAIT instructions to invoke low-power operating modes
MC9S08AC16 Series Data Sheet, Rev. 9
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Chapter 7 Central Processor Unit (S08CPUV2)
7.4.3 Wait Mode Operation

The WAIT instruction enables interrupts by clearing the I bit in the CCR. It then halts the clocks to the 
CPU to reduce overall power consumption while the CPU is waiting for the interrupt or reset event that 
will wake the CPU from wait mode. When an interrupt or reset event occurs, the CPU clocks will resume 
and the interrupt or reset event will be processed normally.

If a serial BACKGROUND command is issued to the MCU through the background debug interface while 
the CPU is in wait mode, CPU clocks will resume and the CPU will enter active background mode where 
other serial background commands can be processed. This ensures that a host development system can still 
gain access to a target MCU even if it is in wait mode.

7.4.4 Stop Mode Operation

Usually, all system clocks, including the crystal oscillator (when used), are halted during stop mode to 
minimize power consumption. In such systems, external circuitry is needed to control the time spent in 
stop mode and to issue a signal to wake up the target MCU when it is time to resume processing. Unlike 
the earlier M68HC05 and M68HC08 MCUs, the HCS08 can be configured to keep a minimum set of 
clocks running in stop mode. This optionally allows an internal periodic signal to wake the target MCU 
from stop mode.

When a host debug system is connected to the background debug pin (BKGD) and the ENBDM control 
bit has been set by a serial command through the background interface (or because the MCU was reset into 
active background mode), the oscillator is forced to remain active when the MCU enters stop mode. In this 
case, if a serial BACKGROUND command is issued to the MCU through the background debug interface 
while the CPU is in stop mode, CPU clocks will resume and the CPU will enter active background mode 
where other serial background commands can be processed. This ensures that a host development system 
can still gain access to a target MCU even if it is in stop mode.

Recovery from stop mode depends on the particular HCS08 and whether the oscillator was stopped in stop 
mode. Refer to the Modes of Operation chapter for more details.

7.4.5 BGND Instruction

The BGND instruction is new to the HCS08 compared to the M68HC08. BGND would not be used in 
normal user programs because it forces the CPU to stop processing user instructions and enter the active 
background mode. The only way to resume execution of the user program is through reset or by a host 
debug system issuing a GO, TRACE1, or TAGGO serial command through the background debug 
interface. 

Software-based breakpoints can be set by replacing an opcode at the desired breakpoint address with the 
BGND opcode. When the program reaches this breakpoint address, the CPU is forced to active 
background mode rather than continuing the user program. 
MC9S08AC16 Series Data Sheet, Rev. 9
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Chapter 7 Central Processor Unit (S08CPUV2)
7.5 HCS08 Instruction Set Summary
Table 7-2 provides a summary of the HCS08 instruction set in all possible addressing modes. The table 
shows operand construction, execution time in internal bus clock cycles, and cycle-by-cycle details for 
each addressing mode variation of each instruction.

Table 7-2. . Instruction Set Summary (Sheet 1 of 9)

Source
Form Operation

A
d

d
re

ss
M

o
d

e

Object Code

C
yc

le
s

Cyc-by-Cyc 
Details

Affect
on CCR

V 1 1 H I N Z C

ADC  #opr8i
ADC  opr8a
ADC  opr16a
ADC  oprx16,X
ADC  oprx8,X
ADC   ,X
ADC  oprx16,SP
ADC  oprx8,SP

Add with Carry 
A  (A) + (M) + (C)

IMM
DIR
EXT
IX2
IX1
IX
SP2
SP1

A9
B9
C9
D9
E9
F9

9E D9
9E E9

ii
dd
hh ll
ee ff
ff

ee ff
ff

2
3
4
4
3
3
5
4

pp
rpp
prpp
prpp
rpp
rfp
pprpp
prpp

¦ 1  1 ¦ – ¦ ¦ ¦ 

ADD  #opr8i
ADD  opr8a
ADD  opr16a
ADD  oprx16,X
ADD  oprx8,X
ADD   ,X
ADD  oprx16,SP
ADD  oprx8,SP

Add without Carry
A  (A) + (M)

IMM
DIR
EXT
IX2
IX1
IX
SP2
SP1

AB
BB
CB
DB
EB
FB

9E DB
9E EB

ii
dd
hh ll
ee ff
ff

ee ff
ff

2
3
4
4
3
3
5
4

pp
rpp
prpp
prpp
rpp
rfp
pprpp
prpp

¦ 1  1 ¦ – ¦ ¦ ¦ 

AIS  #opr8i
Add Immediate Value (Signed) to 
Stack Pointer
SP  (SP) + (M)

IMM A7 ii 2 pp –  1  1  – –  –  –  –

AIX  #opr8i
Add Immediate Value (Signed) to 
Index Register (H:X)
H:X  (H:X) + (M)

IMM AF ii 2 pp –  1  1  – –  –  –  –

AND  #opr8i
AND  opr8a
AND  opr16a
AND  oprx16,X
AND  oprx8,X
AND   ,X
AND  oprx16,SP
AND  oprx8,SP

Logical AND 
A  (A) & (M)

IMM
DIR
EXT
IX2
IX1
IX
SP2
SP1

A4
B4
C4
D4
E4
F4

9E D4
9E E4

ii
dd
hh ll
ee ff
ff

ee ff
ff

2
3
4
4
3
3
5
4

pp
rpp
prpp
prpp
rpp
rfp
pprpp
prpp

0  1  1  – – ¦ ¦ –

ASL  opr8a
ASLA
ASLX
ASL  oprx8,X
ASL  ,X
ASL  oprx8,SP

Arithmetic Shift Left

(Same as LSL)

DIR
INH
INH
IX1
IX
SP1

38
48
58
68
78

9E 68

dd

ff

ff

5
1
1
5
4
6

rfwpp
p
p
rfwpp
rfwp
prfwpp

¦ 1  1  – – ¦ ¦ ¦ 

ASR  opr8a
ASRA
ASRX
ASR  oprx8,X
ASR  ,X
ASR  oprx8,SP

Arithmetic Shift Right
DIR
INH
INH
IX1
IX
SP1

37
47
57
67
77

9E 67

dd

ff

ff

5
1
1
5
4
6

rfwpp
p
p
rfwpp
rfwp
prfwpp

¦ 1  1  – – ¦ ¦ ¦ 

C

b0b7

0

b0b7

C
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Serial Communications Interface (S08SCIV4)
11.1.1 Features

Features of SCI module include:

• Full-duplex, standard non-return-to-zero (NRZ) format

• Double-buffered transmitter and receiver with separate enables

• Programmable baud rates (13-bit modulo divider)

• Interrupt-driven or polled operation:

— Transmit data register empty and transmission complete

— Receive data register full

— Receive overrun, parity error, framing error, and noise error

— Idle receiver detect

— Active edge on receive pin

— Break detect supporting LIN

• Hardware parity generation and checking

• Programmable 8-bit or 9-bit character length

• Receiver wakeup by idle-line or address-mark

• Optional 13-bit break character generation / 11-bit break character detection

• Selectable transmitter output polarity

11.1.2 Modes of Operation

See Section 11.3, “Functional Description,” For details concerning SCI operation in these modes:

• 8- and 9-bit data modes

• Stop mode operation

• Loop mode

• Single-wire mode
MC9S08AC16 Series Data Sheet, Rev. 9
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Serial Communications Interface (S08SCIV4) 
status flag is set. If RDRF was already set indicating the receive data register (buffer) was already full, the 
overrun (OR) status flag is set and the new data is lost. Because the SCI receiver is double-buffered, the 
program has one full character time after RDRF is set before the data in the receive data buffer must be 
read to avoid a receiver overrun.

When a program detects that the receive data register is full (RDRF = 1), it gets the data from the receive 
data register by reading SCIxD. The RDRF flag is cleared automatically by a 2-step sequence which is 
normally satisfied in the course of the user’s program that handles receive data. Refer to Section 11.3.4, 
“Interrupts and Status Flags” for more details about flag clearing.

11.3.3.1 Data Sampling Technique

The SCI receiver uses a 16 baud rate clock for sampling. The receiver starts by taking logic level samples 
at 16 times the baud rate to search for a falling edge on the RxD serial data input pin. A falling edge is 
defined as a logic 0 sample after three consecutive logic 1 samples. The 16 baud rate clock is used to 
divide the bit time into 16 segments labeled RT1 through RT16. When a falling edge is located, three more 
samples are taken at RT3, RT5, and RT7 to make sure this was a real start bit and not merely noise. If at 
least two of these three samples are 0, the receiver assumes it is synchronized to a receive character.

The receiver then samples each bit time, including the start and stop bits, at RT8, RT9, and RT10 to 
determine the logic level for that bit. The logic level is interpreted to be that of the majority of the samples 
taken during the bit time. In the case of the start bit, the bit is assumed to be 0 if at least two of the samples 
at RT3, RT5, and RT7 are 0 even if one or all of the samples taken at RT8, RT9, and RT10 are 1s. If any 
sample in any bit time (including the start and stop bits) in a character frame fails to agree with the logic 
level for that bit, the noise flag (NF) will be set when the received character is transferred to the receive 
data buffer.

The falling edge detection logic continuously looks for falling edges, and if an edge is detected, the sample 
clock is resynchronized to bit times. This improves the reliability of the receiver in the presence of noise 
or mismatched baud rates. It does not improve worst case analysis because some characters do not have 
any extra falling edges anywhere in the character frame.

In the case of a framing error, provided the received character was not a break character, the sampling logic 
that searches for a falling edge is filled with three logic 1 samples so that a new start bit can be detected 
almost immediately.

In the case of a framing error, the receiver is inhibited from receiving any new characters until the framing 
error flag is cleared. The receive shift register continues to function, but a complete character cannot 
transfer to the receive data buffer if FE is still set.

11.3.3.2 Receiver Wakeup Operation

Receiver wakeup is a hardware mechanism that allows an SCI receiver to ignore the characters in a 
message that is intended for a different SCI receiver. In such a system, all receivers evaluate the first 
character(s) of each message, and as soon as they determine the message is intended for a different 
receiver, they write logic 1 to the receiver wake up (RWU) control bit in SCIxC2. When RWU bit is set, 
the status flags associated with the receiver (with the exception of the idle bit, IDLE, when RWUID bit is 
set) are inhibited from setting, thus eliminating the software overhead for handling the unimportant 
MC9S08AC16 Series Data Sheet, Rev. 9
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Inter-Integrated Circuit (S08IICV2)
Table 13-4. IIC Divider and Hold Values

ICR
(hex)

SCL 
Divider

SDA Hold
Value

SCL Hold
(Start) 
Value

SDA Hold
(Stop) 
Value

ICR
(hex)

SCL 
Divider

SDA Hold
Value

SCL Hold
(Start) 
Value

SCL Hold
(Stop) 
Value

00 20 7 6 11 20 160 17 78 81

01 22 7 7 12 21 192 17 94 97

02 24 8 8 13 22 224 33 110 113

03 26 8 9 14 23 256 33 126 129

04 28 9 10 15 24 288 49 142 145

05 30 9 11 16 25 320 49 158 161

06 34 10 13 18 26 384 65 190 193

07 40 10 16 21 27 480 65 238 241

08 28 7 10 15 28 320 33 158 161

09 32 7 12 17 29 384 33 190 193

0A 36 9 14 19 2A 448 65 222 225

0B 40 9 16 21 2B 512 65 254 257

0C 44 11 18 23 2C 576 97 286 289

0D 48 11 20 25 2D 640 97 318 321

0E 56 13 24 29 2E 768 129 382 385

0F 68 13 30 35 2F 960 129 478 481

10 48 9 18 25 30 640 65 318 321

11 56 9 22 29 31 768 65 382 385

12 64 13 26 33 32 896 129 446 449

13 72 13 30 37 33 1024 129 510 513

14 80 17 34 41 34 1152 193 574 577

15 88 17 38 45 35 1280 193 638 641

16 104 21 46 53 36 1536 257 766 769

17 128 21 58 65 37 1920 257 958 961

18 80 9 38 41 38 1280 129 638 641

19 96 9 46 49 39 1536 129 766 769

1A 112 17 54 57 3A 1792 257 894 897

1B 128 17 62 65 3B 2048 257 1022 1025

1C 144 25 70 73 3C 2304 385 1150 1153

1D 160 25 78 81 3D 2560 385 1278 1281

1E 192 33 94 97 3E 3072 513 1534 1537

1F 240 33 118 121 3F 3840 513 1918 1921
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Inter-Integrated Circuit (S08IICV2) 
NOTE
When transitioning out of master receive mode, the IIC mode should be 
switched before reading the IIC1D register to prevent an inadvertent 
initiation of a master receive data transfer.

In slave mode, the same functions are available after an address match has occurred. 

The TX bit in IIC1C must correctly reflect the desired direction of transfer in master and slave modes for 
the transmission to begin. For instance, if the IIC is configured for master transmit but a master receive is 
desired, reading the IIC1D does not initiate the receive.

Reading the IIC1D returns the last byte received while the IIC is configured in master receive or slave 
receive modes. The IIC1D does not reflect every byte transmitted on the IIC bus, nor can software verify 
that a byte has been written to the IIC1D correctly by reading it back.

In master transmit mode, the first byte of data written to IIC1D following assertion of MST is used for the 
address transfer and should comprise of the calling address (in bit 7 to bit 1) concatenated with the required 
R/W bit (in position bit 0).

13.3.6 IIC Control Register 2 (IIC1C2)

Table 13-7. IIC1D Field Descriptions

Field Description

7–0
DATA

Data — In master transmit mode, when data is written to the IIC1D, a data transfer is initiated. The most 
significant bit is sent first. In master receive mode, reading this register initiates receiving of the next byte of data. 

7 6 5 4 3 2 1 0

R
GCAEN ADEXT

0 0 0
AD10 AD9 AD8

W

Reset 0 0 0 0 0 0 0 0

= Unimplemented or Reserved

Figure 13-8. IIC Control Register (IIC1C2)

Table 13-8. IIC1C2 Field Descriptions

Field Description

7
GCAEN

General Call Address Enable. The GCAEN bit enables or disables general call address.
0 General call address is disabled
1 General call address is enabled

6
ADEXT

Address Extension. The ADEXT bit controls the number of bits used for the slave address.
0 7-bit address scheme
1 10-bit address scheme

2–0
AD[10:8]

Slave Address. The AD[10:8] field contains the upper three bits of the slave address in the 10-bit address 
scheme. This field is only valid when the ADEXT bit is set.
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Inter-Integrated Circuit (S08IICV2) 
13.4.1.2 Slave Address Transmission

The first byte of data transferred immediately after the start signal is the slave address transmitted by the 
master. This is a seven-bit calling address followed by a R/W bit. The R/W bit tells the slave the desired 
direction of data transfer.

1 = Read transfer, the slave transmits data to the master.
0 = Write transfer, the master transmits data to the slave.

Only the slave with a calling address that matches the one transmitted by the master responds by sending 
back an acknowledge bit. This is done by pulling the SDA low at the ninth clock (see Figure 13-9).

No two slaves in the system may have the same address. If the IIC module is the master, it must not 
transmit an address equal to its own slave address. The IIC cannot be master and slave at the same time. 
However, if arbitration is lost during an address cycle, the IIC reverts to slave mode and operates correctly 
even if it is being addressed by another master.

13.4.1.3 Data Transfer

Before successful slave addressing is achieved, the data transfer can proceed byte-by-byte in a direction 
specified by the R/W bit sent by the calling master.

All transfers that come after an address cycle are referred to as data transfers, even if they carry sub-address 
information for the slave device

Each data byte is 8 bits long. Data may be changed only while SCL is low and must be held stable while 
SCL is high as shown in Figure 13-9. There is one clock pulse on SCL for each data bit, the msb being 
transferred first. Each data byte is followed by a 9th (acknowledge) bit, which is signalled from the 
receiving device. An acknowledge is signalled by pulling the SDA low at the ninth clock. In summary, one 
complete data transfer needs nine clock pulses.

If the slave receiver does not acknowledge the master in the ninth bit time, the SDA line must be left high 
by the slave. The master interprets the failed acknowledge as an unsuccessful data transfer.

If the master receiver does not acknowledge the slave transmitter after a data byte transmission, the slave 
interprets this as an end of data transfer and releases the SDA line. 

In either case, the data transfer is aborted and the master does one of two things:

• Relinquishes the bus by generating a stop signal.

• Commences a new calling by generating a repeated start signal.

13.4.1.4 Stop Signal

The master can terminate the communication by generating a stop signal to free the bus. However, the 
master may generate a start signal followed by a calling command without generating a stop signal first. 
This is called repeated start. A stop signal is defined as a low-to-high transition of SDA while SCL at 
logical 1 (see Figure 13-9).

The master can generate a stop even if the slave has generated an acknowledge at which point the slave 
must release the bus.
MC9S08AC16 Series Data Sheet, Rev. 9

236 Freescale Semiconductor
 



Inter-Integrated Circuit (S08IICV2)
13.7 Initialization/Application Information

Figure 13-11. IIC Module Quick Start

Module Initialization (Slave)
1. Write: IICC2

— to enable or disable general call

— to select 10-bit or 7-bit addressing mode

2. Write: IICA

— to set the slave address

3. Write: IICC1

— to enable IIC and interrupts

4. Initialize RAM variables (IICEN = 1 and IICIE = 1) for transmit data

5. Initialize RAM variables used to achieve the routine shown in Figure 13-12

Module Initialization (Master)
1. Write: IICF

— to set the IIC baud rate (example provided in this chapter)

2. Write: IICC1

— to enable IIC and interrupts

3. Initialize RAM variables (IICEN = 1 and IICIE = 1) for transmit data

4. Initialize RAM variables used to achieve the routine shown in Figure 13-12

5. Write: IICC1

— to enable TX

0

IICF

IICA

Baud rate = BUSCLK / (2 x MULT x (SCL DIVIDER))

TX TXAK RSTA 0 0IICC1 IICEN IICIE MST

Module configuration

ARBL 0 SRW IICIF RXAKIICS TCF IAAS BUSY

Module status flags

Register Model

AD[7:1]

When addressed as a slave (in slave mode), the module responds to this address

MULT ICR

IICD DATA

Data register; Write to transmit IIC data read to read IIC data

0 AD10 AD9 AD8IICC2 GCAEN ADEXT

Address configuration

00
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Analog-to-Digital Converter (S08ADC10V1) 
• Average the result by converting the analog input many times in succession and dividing the sum 
of the results. Four samples are required to eliminate the effect of a 1LSB, one-time error.

• Reduce the effect of synchronous noise by operating off the asynchronous clock (ADACK) and 
averaging. Noise that is synchronous to ADCK cannot be averaged out.

14.7.2.4 Code Width and Quantization Error

The ADC quantizes the ideal straight-line transfer function into 1024 steps (in 10-bit mode). Each step 
ideally has the same height (1 code) and width. The width is defined as the delta between the transition 
points to one code and the next. The ideal code width for an N bit converter (in this case N can be 8 or 10), 
defined as 1LSB, is:

1LSB = (VREFH - VREFL) / 2N Eqn. 14-2

There is an inherent quantization error due to the digitization of the result. For 8-bit or 10-bit conversions 
the code will transition when the voltage is at the midpoint between the points where the straight line 
transfer function is exactly represented by the actual transfer function. Therefore, the quantization error 
will be  1/2LSB in 8- or 10-bit mode. As a consequence, however, the code width of the first ($000) 
conversion is only 1/2LSB and the code width of the last ($FF or $3FF) is 1.5LSB.

14.7.2.5 Linearity Errors

The ADC may also exhibit non-linearity of several forms. Every effort has been made to reduce these 
errors but the system should be aware of them because they affect overall accuracy. These errors are:

• Zero-scale error (EZS) (sometimes called offset) — This error is defined as the difference between 
the actual code width of the first conversion and the ideal code width (1/2LSB). Note, if the first 
conversion is $001, then the difference between the actual $001 code width and its ideal (1LSB) is 
used.

• Full-scale error (EFS) — This error is defined as the difference between the actual code width of 
the last conversion and the ideal code width (1.5LSB). Note, if the last conversion is $3FE, then the 
difference between the actual $3FE code width and its ideal (1LSB) is used.

• Differential non-linearity (DNL) — This error is defined as the worst-case difference between the 
actual code width and the ideal code width for all conversions.

• Integral non-linearity (INL) — This error is defined as the highest-value the (absolute value of the) 
running sum of DNL achieves. More simply, this is the worst-case difference of the actual 
transition voltage to a given code and its corresponding ideal transition voltage, for all codes.

• Total unadjusted error (TUE) — This error is defined as the difference between the actual transfer 
function and the ideal straight-line transfer function, and therefore includes all forms of error.

14.7.2.6 Code Jitter, Non-Monotonicity and Missing Codes

Analog-to-digital converters are susceptible to three special forms of error. These are code jitter, 
non-monotonicity, and missing codes.

Code jitter is when, at certain points, a given input voltage converts to one of two values when sampled 
repeatedly. Ideally, when the input voltage is infinitesimally smaller than the transition voltage, the 
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15.2.3 BDC Commands

BDC commands are sent serially from a host computer to the BKGD pin of the target HCS08 MCU. All 
commands and data are sent MSB-first using a custom BDC communications protocol. Active background 
mode commands require that the target MCU is currently in the active background mode while 
non-intrusive commands may be issued at any time whether the target MCU is in active background mode 
or running a user application program.

Table 15-1 shows all HCS08 BDC commands, a shorthand description of their coding structure, and the 
meaning of each command.

Coding Structure Nomenclature

This nomenclature is used in Table 15-1 to describe the coding structure of the BDC commands.

Commands begin with an 8-bit hexadecimal command code in the host-to-target 
direction (most significant bit first)

/  = separates parts of the command
d = delay 16 target BDC clock cycles

AAAA = a 16-bit address in the host-to-target direction
RD = 8 bits of read data in the target-to-host direction

WD = 8 bits of write data in the host-to-target direction
RD16 = 16 bits of read data in the target-to-host direction

WD16 = 16 bits of write data in the host-to-target direction
SS = the contents of BDCSCR in the target-to-host direction (STATUS)
CC = 8 bits of write data for BDCSCR in the host-to-target direction (CONTROL)

RBKP = 16 bits of read data in the target-to-host direction (from BDCBKPT breakpoint 
register)

WBKP = 16 bits of write data in the host-to-target direction (for BDCBKPT breakpoint register)
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Development Support 
15.4.3.9 Debug Status Register (DBGS)

This is a read-only status register.

 7 6 5 4 3 2 1 0

R AF BF ARMF 0 CNT3 CNT2 CNT1 CNT0

W

Reset 0 0 0 0 0 0 0 0

= Unimplemented or Reserved

Figure 15-9. Debug Status Register (DBGS)

Table 15-6. DBGS Register Field Descriptions

Field Description

7
AF

Trigger Match A Flag — AF is cleared at the start of a debug run and indicates whether a trigger match A 
condition was met since arming.
0 Comparator A has not matched
1 Comparator A match

6
BF

Trigger Match B Flag — BF is cleared at the start of a debug run and indicates whether a trigger match B 
condition was met since arming.
0 Comparator B has not matched
1 Comparator B match

5
ARMF

Arm Flag — While DBGEN = 1, this status bit is a read-only image of ARM in DBGC. This bit is set by writing 1 
to the ARM control bit in DBGC (while DBGEN = 1) and is automatically cleared at the end of a debug run. A 
debug run is completed when the FIFO is full (begin trace) or when a trigger event is detected (end trace). A 
debug run can also be ended manually by writing 0 to ARM or DBGEN in DBGC.
0 Debugger not armed
1 Debugger armed

3:0
CNT[3:0]

FIFO Valid Count — These bits are cleared at the start of a debug run and indicate the number of words of valid 
data in the FIFO at the end of a debug run. The value in CNT does not decrement as data is read out of the FIFO. 
The external debug host is responsible for keeping track of the count as information is read out of the FIFO. 
0000 Number of valid words in FIFO = No valid data
0001 Number of valid words in FIFO = 1
0010 Number of valid words in FIFO = 2
0011 Number of valid words in FIFO = 3
0100 Number of valid words in FIFO = 4
0101 Number of valid words in FIFO = 5
0110 Number of valid words in FIFO = 6
0111 Number of valid words in FIFO = 7
1000 Number of valid words in FIFO = 8
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