
NXP USA Inc. - S9S08AW16AE0VFT Datasheet

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated
circuits designed to perform specific tasks within larger
systems. These microcontrollers are essentially compact
computers on a single chip, containing a processor core,
memory, and programmable input/output peripherals.
They are called "embedded" because they are embedded
within electronic devices to control various functions,
rather than serving as standalone computers.
Microcontrollers are crucial in modern electronics,
providing the intelligence and control needed for a wide
range of applications.

Applications of "Embedded -
Microcontrollers"

Embedded microcontrollers are used in virtually every
sector of electronics, providing the necessary control and
processing power for a multitude of applications. In
consumer electronics, they manage the operations of
smartphones, home appliances, and wearable devices. In
automotive systems, microcontrollers control engine
functions, safety features, and infotainment systems.
Industrial applications rely on microcontrollers for
automation, robotics, and process control. Additionally,
microcontrollers are integral in medical devices, handling
functions such as monitoring, diagnostics, and control of
therapeutic equipment. Their versatility and
programmability make them essential components in
creating efficient, responsive, and intelligent electronic
systems.

Common Subcategories of "Embedded -
Microcontrollers"

Embedded microcontrollers can be categorized based on
their architecture, performance, and application focus.
Common subcategories include 8-bit, 16-bit, and 32-bit
microcontrollers, differentiated by their processing power
and memory capacity. 8-bit microcontrollers are typically
used in simple applications like basic control systems and
small devices. 16-bit microcontrollers offer a balance
between performance and complexity, suitable for
medium-scale applications like industrial automation. 32-
bit microcontrollers provide high performance and are
used in complex applications requiring advanced
processing, such as automotive systems and sophisticated
consumer electronics. Each subcategory serves a specific
range of applications, providing tailored solutions for
different performance and complexity needs.

Types of "Embedded - Microcontrollers"

There are various types of embedded microcontrollers,
each designed to meet specific application requirements.
General-purpose microcontrollers are versatile and used in
a wide range of applications, offering a balance of
performance, memory, and peripheral options. Special-
purpose microcontrollers are tailored for specific tasks,
such as automotive controllers, which include features like
built-in motor control peripherals and automotive-grade

Details

Product Status Active

Core Processor S08

Core Size 8-Bit

Speed 40MHz

Connectivity I²C, SCI, SPI

Peripherals LVD, POR, PWM, WDT

Number of I/O 38

Program Memory Size 16KB (16K x 8)

Program Memory Type FLASH

EEPROM Size -

RAM Size 1K x 8

Voltage - Supply (Vcc/Vdd) 2.7V ~ 5.5V

Data Converters A/D 8x10b

Oscillator Type Internal

Operating Temperature -40°C ~ 105°C (TA)

Mounting Type Surface Mount

Package / Case 48-VFQFN Exposed Pad

Supplier Device Package 48-QFN-EP (7x7)

Purchase URL https://www.e-xfl.com/product-detail/nxp-semiconductors/s9s08aw16ae0vft

Email: info@E-XFL.COM Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

https://www.e-xfl.com/product/pdf/s9s08aw16ae0vft-4419791
https://www.e-xfl.com
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers

Chapter 7 Central Processor Unit (S08CPUV2)
7.4.1 Reset Sequence

Reset can be caused by a power-on-reset (POR) event, internal conditions such as the COP (computer
operating properly) watchdog, or by assertion of an external active-low reset pin. When a reset event
occurs, the CPU immediately stops whatever it is doing (the MCU does not wait for an instruction
boundary before responding to a reset event). For a more detailed discussion about how the MCU
recognizes resets and determines the source, refer to the Resets, Interrupts, and System Configuration
chapter.

The reset event is considered concluded when the sequence to determine whether the reset came from an
internal source is done and when the reset pin is no longer asserted. At the conclusion of a reset event, the
CPU performs a 6-cycle sequence to fetch the reset vector from 0xFFFE and 0xFFFF and to fill the
instruction queue in preparation for execution of the first program instruction.

7.4.2 Interrupt Sequence

When an interrupt is requested, the CPU completes the current instruction before responding to the
interrupt. At this point, the program counter is pointing at the start of the next instruction, which is where
the CPU should return after servicing the interrupt. The CPU responds to an interrupt by performing the
same sequence of operations as for a software interrupt (SWI) instruction, except the address used for the
vector fetch is determined by the highest priority interrupt that is pending when the interrupt sequence
started.

The CPU sequence for an interrupt is:

1. Store the contents of PCL, PCH, X, A, and CCR on the stack, in that order.

2. Set the I bit in the CCR.

3. Fetch the high-order half of the interrupt vector.

4. Fetch the low-order half of the interrupt vector.

5. Delay for one free bus cycle.

6. Fetch three bytes of program information starting at the address indicated by the interrupt vector
to fill the instruction queue in preparation for execution of the first instruction in the interrupt
service routine.

After the CCR contents are pushed onto the stack, the I bit in the CCR is set to prevent other interrupts
while in the interrupt service routine. Although it is possible to clear the I bit with an instruction in the
interrupt service routine, this would allow nesting of interrupts (which is not recommended because it
leads to programs that are difficult to debug and maintain).

For compatibility with the earlier M68HC05 MCUs, the high-order half of the H:X index register pair (H)
is not saved on the stack as part of the interrupt sequence. The user must use a PSHH instruction at the
beginning of the service routine to save H and then use a PULH instruction just before the RTI that ends
the interrupt service routine. It is not necessary to save H if you are certain that the interrupt service routine
does not use any instructions or auto-increment addressing modes that might change the value of H.

The software interrupt (SWI) instruction is like a hardware interrupt except that it is not masked by the
global I bit in the CCR and it is associated with an instruction opcode within the program so it is not
asynchronous to program execution.
MC9S08AC16 Series Data Sheet, Rev. 9

Freescale Semiconductor 113

Chapter 7 Central Processor Unit (S08CPUV2)
Bit-Manipulation Branch Read-Modify-Write Control Register/Memory
9E60 6

NEG
3 SP1

9ED0 5
SUB

4 SP2

9EE0 4
SUB

3 SP1
9E61 6

CBEQ
4 SP1

9ED1 5
CMP

4 SP2

9EE1 4
CMP

3 SP1
9ED2 5

SBC
4 SP2

9EE2 4
SBC

3 SP1
9E63 6

COM
3 SP1

9ED3 5
CPX

4 SP2

9EE3 4
CPX

3 SP1

9EF3 6
CPHX

3 SP1
9E64 6

LSR
3 SP1

9ED4 5
AND

4 SP2

9EE4 4
AND

3 SP1
9ED5 5

BIT
4 SP2

9EE5 4
BIT

3 SP1
9E66 6

ROR
3 SP1

9ED6 5
LDA

4 SP2

9EE6 4
LDA

3 SP1
9E67 6

ASR
3 SP1

9ED7 5
STA

4 SP2

9EE7 4
STA

3 SP1
9E68 6

LSL
3 SP1

9ED8 5
EOR

4 SP2

9EE8 4
EOR

3 SP1
9E69 6

ROL
3 SP1

9ED9 5
ADC

4 SP2

9EE9 4
ADC

3 SP1
9E6A 6

DEC
3 SP1

9EDA 5
ORA

4 SP2

9EEA 4
ORA

3 SP1
9E6B 8

DBNZ
4 SP1

9EDB 5
ADD

4 SP2

9EEB 4
ADD

3 SP1
9E6C 6

INC
3 SP1
9E6D 5

TST
3 SP1

9EAE 5
LDHX

2 IX

9EBE 6
LDHX

4 IX2

9ECE 5
LDHX

3 IX1

9EDE 5
LDX

4 SP2

9EEE 4
LDX

3 SP1

9EFE 5
LDHX

3 SP1
9E6F 6

CLR
3 SP1

9EDF 5
STX

4 SP2

9EEF 4
STX

3 SP1

9EFF 5
STHX

3 SP1

INH Inherent REL Relative SP1 Stack Pointer, 8-Bit Offset
IMM Immediate IX Indexed, No Offset SP2 Stack Pointer, 16-Bit Offset
DIR Direct IX1 Indexed, 8-Bit Offset IX+ Indexed, No Offset with
EXT Extended IX2 Indexed, 16-Bit Offset Post Increment
DD DIR to DIR IMD IMM to DIR IX1+ Indexed, 1-Byte Offset with
IX+D IX+ to DIR DIX+ DIR to IX+ Post Increment

Note: All Sheet 2 Opcodes are Preceded by the Page 2 Prebyte (9E) Prebyte (9E) and Opcode in
Hexadecimal

Number of Bytes

9E60 6
NEG

3 SP1

HCS08 Cycles
Instruction Mnemonic
Addressing Mode

Table 7-3. Opcode Map (Sheet 2 of 2)
MC9S08AC16 Series Data Sheet, Rev. 9

Freescale Semiconductor 125

Internal Clock Generator (S08ICGV4)
8.3.2 ICG Control Register 2 (ICGC2)

7 6 5 4 3 2 1 0

R
LOLRE MFD LOCRE RFD

W

Reset 0 0 0 0 0 0 0 0

Figure 8-7. ICG Control Register 2 (ICGC2)

Table 8-2. ICGC2 Register Field Descriptions

Field Description

7
LOLRE

Loss of Lock Reset Enable — The LOLRE bit determines what type of request is made by the ICG following a
loss of lock indication. The LOLRE bit only has an effect when LOLS is set.
0 Generate an interrupt request on loss of lock.
1 Generate a reset request on loss of lock.

6:4
MFD

Multiplication Factor — The MFD bits control the programmable multiplication factor in the FLL loop. The value
specified by the MFD bits establishes the multiplication factor (N) applied to the reference frequency. Writes to
the MFD bits will not take effect if a previous write is not complete. Select a low enough value for N such that
fICGDCLK does not exceed its maximum specified value.
000 Multiplication factor = 4
001 Multiplication factor = 6
010 Multiplication factor = 8
011 Multiplication factor = 10
100 Multiplication factor = 12
101 Multiplication factor = 14
110 Multiplication factor = 16
111 Multiplication factor = 18

3
LOCRE

Loss of Clock Reset Enable — The LOCRE bit determines how the system manages a loss of clock condition.
0 Generate an interrupt request on loss of clock.
1 Generate a reset request on loss of clock.

2:0
RFD

Reduced Frequency Divider — The RFD bits control the value of the divider following the clock select circuitry.
The value specified by the RFD bits establishes the division factor (R) applied to the selected output clock source.
Writes to the RFD bits will not take effect if a previous write is not complete.
000 Division factor = 1
001 Division factor = 2
010 Division factor = 4
011 Division factor = 8
100 Division factor = 16
101 Division factor = 32
110 Division factor = 64
111 Division factor = 128
MC9S08AC16 Series Data Sheet, Rev. 9

134 Freescale Semiconductor

Internal Clock Generator (S08ICGV4)
8.5.4 Example #3: No External Crystal Connection, 5.4 MHz Bus
Frequency

In this example, the FLL will be used (in FEI mode) to multiply the internal 243 kHz (approximate)
reference clock up to 10.8 MHz to achieve 5.4 MHz bus frequency. This system will also use the trim
function to fine tune the frequency based on an external reference signal.

After the MCU is released from reset, the ICG is in self-clocked mode (SCM) and supplies approximately
8 MHz on ICGOUT which corresponds to a 4 MHz bus frequency (fBus).

The clock scheme will be FLL engaged, internal (FEI). So

fICGOUT = (fIRG / 7) * P * N / R ; P = 64, fIRG = 243 kHz Eqn. 8-5

Solving for N / R gives:

N / R = 10.8 MHz /(243/7 kHz * 64) = 4.86 ; We can choose N = 10 and R = 2. Eqn. 8-6

A trim procedure will be required to hone the frequency to exactly 5.4 MHz. An example of the trim
procedure is shown in example #4.

The values needed in each register to set up the desired operation are:

ICGC1 = $28 (%00101000)

Bit 7 HGO 0 Configures oscillator for low power
Bit 6 RANGE 0 Configures oscillator for low-frequency range; FLL prescale factor is 64
Bit 5 REFS 1 Oscillator using crystal or resonator requested (bit is really a don’t care)
Bits 4:3 CLKS 01 FLL engaged, internal reference clock mode
Bit 2 OSCSTEN 0 Disables the oscillator
Bit 1 LOCD 0 Loss-of-clock enabled
Bit 0 0 Unimplemented or reserved, always reads zero

ICGC2 = $31 (%00110001)

Bit 7 LOLRE 0 Generates an interrupt request on loss of lock
Bit 6:4 MFD 011 Sets the MFD multiplication factor to 10
Bit 3 LOCRE 0 Generates an interrupt request on loss of clock
Bit 2:0 RFD 001 Sets the RFD division factor to 2

ICGS1 = $xx

This is read only except for clearing interrupt flag

ICGS2 = $xx

This is read only; good idea to read this before performing time critical operations

ICGFLTLU/L = $xx

Not used in this example
MC9S08AC16 Series Data Sheet, Rev. 9

150 Freescale Semiconductor

Timer/PWM Module (S08TPMV3)
Figure 10-2. TPM Block Diagram

PRESCALE AND SELECT

16-BIT COMPARATOR

PS2:PS1:PS0

TOF

TOIE

INTER-16-BIT COUNTER

RUPT
LOGIC

16-BIT COMPARATOR

16-BIT LATCH

ELS0B ELS0A PORTCHANNEL 0

CH0IE

CH0F

LOGIC

INTER-
RUPT
LOGIC

CPWMS

MS0B MS0A

COUNTER RESET

CLKSB:CLKSA

³1, 2, 4, 8, 16, 32, 64,

BUS CLOCK

FIXED SYSTEM CLOCK

EXTERNAL CLOCK
SYNC

16-BIT COMPARATOR

16-BIT LATCH

CHANNEL 1 ELS1B ELS1A

CH1IE

CH1F

IN
T

E
R

N
A

L
B

U
S PORT

LOGIC

INTER-
RUPT
LOGIC

MS1B MS1A

16-BIT COMPARATOR

16-BIT LATCH

CHANNEL 7 ELS7B ELS7A

CH7IE

CH7F

PORT
LOGIC

INTER-
RUPT
LOGIC

MS7B MS7A

Up to 8 channels

CLOCK SOURCE
SELECT

OFF, BUS, FIXED
SYSTEM CLOCK, EXT

or ³128

TPMxMODH:TPMxMODL

TPMxC0VH:TPMxC0VL

TPMxC1VH:TPMxC1VL

TPMxCH0

TPMxCH1

TPMxC7VH:TPMxC7VL

TPMxCH7
MC9S08AC16 Series Data Sheet, Rev. 9

166 Freescale Semiconductor

Timer/PWM Module (S08TPMV3)
10.5 Register Definition
This section consists of register descriptions in address order. A typical MCU system may contain multiple
TPMs, and each TPM may have one to eight channels, so register names include placeholder characters to
identify which TPM and which channel is being referenced. For example, TPMxCnSC refers to timer
(TPM) x, channel n. TPM1C2SC would be the status and control register for channel 2 of timer 1.

10.5.1 TPM Status and Control Register (TPMxSC)

TPMxSC contains the overflow status flag and control bits used to configure the interrupt enable, TPM
configuration, clock source, and prescale factor. These controls relate to all channels within this timer
module.

7 6 5 4 3 2 1 0

R TOF
TOIE CPWMS CLKSB CLKSA PS2 PS1 PS0

W 0

Reset 0 0 0 0 0 0 0 0

Figure 10-7. TPM Status and Control Register (TPMxSC)

Table 10-4. TPMxSC Field Descriptions

Field Description

7
TOF

Timer overflow flag. This read/write flag is set when the TPM counter resets to 0x0000 after reaching the modulo
value programmed in the TPM counter modulo registers. Clear TOF by reading the TPM status and control
register when TOF is set and then writing a logic 0 to TOF. If another TPM overflow occurs before the clearing
sequence is complete, the sequence is reset so TOF would remain set after the clear sequence was completed
for the earlier TOF. This is done so a TOF interrupt request cannot be lost during the clearing sequence for a
previous TOF. Reset clears TOF. Writing a logic 1 to TOF has no effect.
0 TPM counter has not reached modulo value or overflow
1 TPM counter has overflowed

6
TOIE

Timer overflow interrupt enable. This read/write bit enables TPM overflow interrupts. If TOIE is set, an interrupt is
generated when TOF equals one. Reset clears TOIE.
0 TOF interrupts inhibited (use for software polling)
1 TOF interrupts enabled

5
CPWMS

Center-aligned PWM select. When present, this read/write bit selects CPWM operating mode. By default, the TPM
operates in up-counting mode for input capture, output compare, and edge-aligned PWM functions. Setting
CPWMS reconfigures the TPM to operate in up/down counting mode for CPWM functions. Reset clears CPWMS.
0 All channels operate as input capture, output compare, or edge-aligned PWM mode as selected by the

MSnB:MSnA control bits in each channel’s status and control register.
1 All channels operate in center-aligned PWM mode.
MC9S08AC16 Series Data Sheet, Rev. 9

Freescale Semiconductor 171

Timer/PWM Module (S08TPMV3)
Reset clears the TPM counter registers. Writing any value to TPMxCNTH or TPMxCNTL also clears the
TPM counter (TPMxCNTH:TPMxCNTL) and resets the coherency mechanism, regardless of the data
involved in the write.

When BDM is active, the timer counter is frozen (this is the value that will be read by user); the coherency
mechanism is frozen such that the buffer latches remain in the state they were in when the BDM became
active, even if one or both counter halves are read while BDM is active. This assures that if the user was
in the middle of reading a 16-bit register when BDM became active, it will read the appropriate value from
the other half of the 16-bit value after returning to normal execution.

In BDM mode, writing any value to TPMxSC, TPMxCNTH or TPMxCNTL registers resets the read
coherency mechanism of the TPMxCNTH:L registers, regardless of the data involved in the write.

10.5.3 TPM Counter Modulo Registers (TPMxMODH:TPMxMODL)

The read/write TPM modulo registers contain the modulo value for the TPM counter. After the TPM
counter reaches the modulo value, the TPM counter resumes counting from 0x0000 at the next clock, and
the overflow flag (TOF) becomes set. Writing to TPMxMODH or TPMxMODL inhibits the TOF bit and
overflow interrupts until the other byte is written. Reset sets the TPM counter modulo registers to 0x0000
which results in a free running timer counter (modulo disabled).

Writing to either byte (TPMxMODH or TPMxMODL) latches the value into a buffer and the registers are
updated with the value of their write buffer according to the value of CLKSB:CLKSA bits, so:

• If (CLKSB:CLKSA = 0:0), then the registers are updated when the second byte is written

• If (CLKSB:CLKSA not = 0:0), then the registers are updated after both bytes were written, and the
TPM counter changes from (TPMxMODH:TPMxMODL - 1) to (TPMxMODH:TPMxMODL). If
the TPM counter is a free-running counter, the update is made when the TPM counter changes from
0xFFFE to 0xFFFF

The latching mechanism may be manually reset by writing to the TPMxSC address (whether BDM is
active or not).

7 6 5 4 3 2 1 0

R Bit 15 14 13 12 11 10 9 Bit 8

W Any write to TPMxCNTH clears the 16-bit counter

Reset 0 0 0 0 0 0 0 0

Figure 10-8. TPM Counter Register High (TPMxCNTH)

7 6 5 4 3 2 1 0

R Bit 7 6 5 4 3 2 1 Bit 0

W Any write to TPMxCNTL clears the 16-bit counter

Reset 0 0 0 0 0 0 0 0

Figure 10-9. TPM Counter Register Low (TPMxCNTL)
MC9S08AC16 Series Data Sheet, Rev. 9

Freescale Semiconductor 173

Serial Communications Interface (S08SCIV4)
11.3.5.2 Stop Mode Operation

During all stop modes, clocks to the SCI module are halted.

In stop1 and stop2 modes, all SCI register data is lost and must be re-initialized upon recovery from these
two stop modes. No SCI module registers are affected in stop3 mode.

The receive input active edge detect circuit is still active in stop3 mode, but not in stop2.. An active edge
on the receive input brings the CPU out of stop3 mode if the interrupt is not masked (RXEDGIE = 1).

Note, because the clocks are halted, the SCI module will resume operation upon exit from stop (only in
stop3 mode). Software should ensure stop mode is not entered while there is a character being transmitted
out of or received into the SCI module.

11.3.5.3 Loop Mode

When LOOPS = 1, the RSRC bit in the same register chooses between loop mode (RSRC = 0) or
single-wire mode (RSRC = 1). Loop mode is sometimes used to check software, independent of
connections in the external system, to help isolate system problems. In this mode, the transmitter output is
internally connected to the receiver input and the RxD pin is not used by the SCI, so it reverts to a
general-purpose port I/O pin.

11.3.5.4 Single-Wire Operation

When LOOPS = 1, the RSRC bit in the same register chooses between loop mode (RSRC = 0) or
single-wire mode (RSRC = 1). Single-wire mode is used to implement a half-duplex serial connection.
The receiver is internally connected to the transmitter output and to the TxD pin. The RxD pin is not used
and reverts to a general-purpose port I/O pin.

In single-wire mode, the TXDIR bit in SCIxC3 controls the direction of serial data on the TxD pin. When
TXDIR = 0, the TxD pin is an input to the SCI receiver and the transmitter is temporarily disconnected
from the TxD pin so an external device can send serial data to the receiver. When TXDIR = 1, the TxD pin
is an output driven by the transmitter. In single-wire mode, the internal loop back connection from the
transmitter to the receiver causes the receiver to receive characters that are sent out by the transmitter.
MC9S08AC16 Series Data Sheet, Rev. 9

Freescale Semiconductor 207

Serial Communications Interface (S08SCIV4)
MC9S08AC16 Series Data Sheet, Rev. 9

208 Freescale Semiconductor

Chapter 12
Serial Peripheral Interface (S08SPIV3)

12.1 Introduction
The MC9S08AC16 Series has one serial peripheral interface (SPI) module. The four pins associated with
SPI functionality are shared with port E pins 4–7. See Appendix A, “Electrical Characteristics and Timing
Specifications,” for SPI electrical parametric information.

NOTE
Ignore any references to stop1 low-power mode in this chapter, because the
MC9S08AC16 Series does not support it.
MC9S08AC16 Series Data Sheet, Rev. 9

Freescale Semiconductor 209

Inter-Integrated Circuit (S08IICV2)
Freescale-provided equate or header file is used to translate these names into the appropriate absolute
addresses.

13.3.1 IIC Address Register (IIC1A)

13.3.2 IIC Frequency Divider Register (IIC1F)

7 6 5 4 3 2 1 0

R
AD7 AD6 AD5 AD4 AD3 AD2 AD1

0

W

Reset 0 0 0 0 0 0 0 0

= Unimplemented or Reserved

Figure 13-3. IIC Address Register (IIC1A)

Table 13-1. IIC1A Field Descriptions

Field Description

7–1
AD[7:1]

Slave Address. The AD[7:1] field contains the slave address to be used by the IIC module. This field is used on
the 7-bit address scheme and the lower seven bits of the 10-bit address scheme.

7 6 5 4 3 2 1 0

R
MULT ICR

W

Reset 0 0 0 0 0 0 0 0

Figure 13-4. IIC Frequency Divider Register (IIC1F)
MC9S08AC16 Series Data Sheet, Rev. 9

Freescale Semiconductor 229

Inter-Integrated Circuit (S08IICV2)
Table 13-4. IIC Divider and Hold Values

ICR
(hex)

SCL
Divider

SDA Hold
Value

SCL Hold
(Start)
Value

SDA Hold
(Stop)
Value

ICR
(hex)

SCL
Divider

SDA Hold
Value

SCL Hold
(Start)
Value

SCL Hold
(Stop)
Value

00 20 7 6 11 20 160 17 78 81

01 22 7 7 12 21 192 17 94 97

02 24 8 8 13 22 224 33 110 113

03 26 8 9 14 23 256 33 126 129

04 28 9 10 15 24 288 49 142 145

05 30 9 11 16 25 320 49 158 161

06 34 10 13 18 26 384 65 190 193

07 40 10 16 21 27 480 65 238 241

08 28 7 10 15 28 320 33 158 161

09 32 7 12 17 29 384 33 190 193

0A 36 9 14 19 2A 448 65 222 225

0B 40 9 16 21 2B 512 65 254 257

0C 44 11 18 23 2C 576 97 286 289

0D 48 11 20 25 2D 640 97 318 321

0E 56 13 24 29 2E 768 129 382 385

0F 68 13 30 35 2F 960 129 478 481

10 48 9 18 25 30 640 65 318 321

11 56 9 22 29 31 768 65 382 385

12 64 13 26 33 32 896 129 446 449

13 72 13 30 37 33 1024 129 510 513

14 80 17 34 41 34 1152 193 574 577

15 88 17 38 45 35 1280 193 638 641

16 104 21 46 53 36 1536 257 766 769

17 128 21 58 65 37 1920 257 958 961

18 80 9 38 41 38 1280 129 638 641

19 96 9 46 49 39 1536 129 766 769

1A 112 17 54 57 3A 1792 257 894 897

1B 128 17 62 65 3B 2048 257 1022 1025

1C 144 25 70 73 3C 2304 385 1150 1153

1D 160 25 78 81 3D 2560 385 1278 1281

1E 192 33 94 97 3E 3072 513 1534 1537

1F 240 33 118 121 3F 3840 513 1918 1921
MC9S08AC16 Series Data Sheet, Rev. 9

Freescale Semiconductor 231

Inter-Integrated Circuit (S08IICV2)
After a repeated start condition (Sr), all other slave devices also compare the first seven bits of the first
byte of the slave address with their own addresses and test the eighth (R/W) bit. However, none of them
are addressed because R/W = 1 (for 10-bit devices) or the 11110XX slave address (for 7-bit devices) does
not match.

After the master-receiver has sent the first byte of the 10-bit address, the slave-transmitter sees an IIC
interrupt. Software must ensure the contents of IICD are ignored and not treated as valid data for this
interrupt.

13.4.3 General Call Address

General calls can be requested in 7-bit address or 10-bit address. If the GCAEN bit is set, the IIC matches
the general call address as well as its own slave address. When the IIC responds to a general call, it acts as
a slave-receiver and the IAAS bit is set after the address cycle. Software must read the IICD register after
the first byte transfer to determine whether the address matches is its own slave address or a general call.
If the value is 00, the match is a general call. If the GCAEN bit is clear, the IIC ignores any data supplied
from a general call address by not issuing an acknowledgement.

13.5 Resets
The IIC is disabled after reset. The IIC cannot cause an MCU reset.

13.6 Interrupts
The IIC generates a single interrupt.

An interrupt from the IIC is generated when any of the events in Table 13-11 occur, provided the IICIE bit
is set. The interrupt is driven by bit IICIF (of the IIC status register) and masked with bit IICIE (of the IIC
control register). The IICIF bit must be cleared by software by writing a 1 to it in the interrupt routine. You
can determine the interrupt type by reading the status register.

13.6.1 Byte Transfer Interrupt

The TCF (transfer complete flag) bit is set at the falling edge of the ninth clock to indicate the completion
of byte transfer.

S

Slave Address
1st 7 bits

R/W
A1

Slave Address
2nd byte A2 Sr

Slave Address
1st 7 bits

R/W
A3 Data A ... Data A P

11110 + AD10 + AD9 0 AD[8:1] 11110 + AD10 + AD9 1

Table 13-10. Master-Receiver Addresses a Slave-Transmitter with a 10-bit Address

Table 13-11. Interrupt Summary

Interrupt Source Status Flag Local Enable

Complete 1-byte transfer TCF IICIF IICIE

Match of received calling address IAAS IICIF IICIE

Arbitration Lost ARBL IICIF IICIE
MC9S08AC16 Series Data Sheet, Rev. 9

Freescale Semiconductor 239

Analog-to-Digital Converter (S08ADC10V1)
result of the conversion is transferred to ADC1RH and ADC1RL upon completion of the conversion
algorithm.

If the bus frequency is less than the fADCK frequency, precise sample time for continuous conversions
cannot be guaranteed when short sample is enabled (ADLSMP=0). If the bus frequency is less than 1/11th
of the fADCK frequency, precise sample time for continuous conversions cannot be guaranteed when long
sample is enabled (ADLSMP=1).

The maximum total conversion time for different conditions is summarized in Table 14-12.

The maximum total conversion time is determined by the clock source chosen and the divide ratio selected.
The clock source is selectable by the ADICLK bits, and the divide ratio is specified by the ADIV bits. For
example, in 10-bit mode, with the bus clock selected as the input clock source, the input clock divide-by-1
ratio selected, and a bus frequency of 8 MHz, then the conversion time for a single conversion is:

NOTE
The ADCK frequency must be between fADCK minimum and fADCK
maximum to meet ADC specifications.

Table 14-12. Total Conversion Time vs. Control Conditions

Conversion Type ADICLK ADLSMP Max Total Conversion Time

Single or first continuous 8-bit 0x, 10 0 20 ADCK cycles + 5 bus clock cycles

Single or first continuous 10-bit 0x, 10 0 23 ADCK cycles + 5 bus clock cycles

Single or first continuous 8-bit 0x, 10 1 40 ADCK cycles + 5 bus clock cycles

Single or first continuous 10-bit 0x, 10 1 43 ADCK cycles + 5 bus clock cycles

Single or first continuous 8-bit 11 0 5 s + 20 ADCK + 5 bus clock cycles

Single or first continuous 10-bit 11 0 5 s + 23 ADCK + 5 bus clock cycles

Single or first continuous 8-bit 11 1 5 s + 40 ADCK + 5 bus clock cycles

Single or first continuous 10-bit 11 1 5 s + 43 ADCK + 5 bus clock cycles

Subsequent continuous 8-bit;
fBUS fADCK

xx 0 17 ADCK cycles

Subsequent continuous 10-bit;
fBUS fADCK

xx 0 20 ADCK cycles

Subsequent continuous 8-bit;
fBUS  fADCK/11

xx 1 37 ADCK cycles

Subsequent continuous 10-bit;
fBUS  fADCK/11

xx 1 40 ADCK cycles

23 ADCK cyc
Conversion time = 8 MHz/1

Number of bus cycles = 3.5 s x 8 MHz = 28 cycles

5 bus cyc
8 MHz+ = 3.5 s
MC9S08AC16 Series Data Sheet, Rev. 9

Freescale Semiconductor 261

Analog-to-Digital Converter (S08ADC10V1)
14.5.5 Automatic Compare Function

The compare function can be configured to check for either an upper limit or lower limit. After the input
is sampled and converted, the result is added to the two’s complement of the compare value (ADC1CVH
and ADC1CVL). When comparing to an upper limit (ACFGT = 1), if the result is greater-than or equal-to
the compare value, COCO is set. When comparing to a lower limit (ACFGT = 0), if the result is less than
the compare value, COCO is set. The value generated by the addition of the conversion result and the two’s
complement of the compare value is transferred to ADC1RH and ADC1RL.

Upon completion of a conversion while the compare function is enabled, if the compare condition is not
true, COCO is not set and no data is transferred to the result registers. An ADC interrupt is generated upon
the setting of COCO if the ADC interrupt is enabled (AIEN = 1).

NOTE
The compare function can be used to monitor the voltage on a channel while
the MCU is in either wait or stop3 mode. The ADC interrupt will wake the
MCU when the compare condition is met.

14.5.6 MCU Wait Mode Operation

The WAIT instruction puts the MCU in a lower power-consumption standby mode from which recovery
is very fast because the clock sources remain active. If a conversion is in progress when the MCU enters
wait mode, it continues until completion. Conversions can be initiated while the MCU is in wait mode by
means of the hardware trigger or if continuous conversions are enabled.

The bus clock, bus clock divided by two, and ADACK are available as conversion clock sources while in
wait mode. The use of ALTCLK as the conversion clock source in wait is dependent on the definition of
ALTCLK for this MCU. Consult the module introduction for information on ALTCLK specific to this
MCU.

A conversion complete event sets the COCO and generates an ADC interrupt to wake the MCU from wait
mode if the ADC interrupt is enabled (AIEN = 1).

14.5.7 MCU Stop3 Mode Operation

The STOP instruction is used to put the MCU in a low power-consumption standby mode during which
most or all clock sources on the MCU are disabled.

14.5.7.1 Stop3 Mode With ADACK Disabled

If the asynchronous clock, ADACK, is not selected as the conversion clock, executing a STOP instruction
aborts the current conversion and places the ADC in its idle state. The contents of ADC1RH and ADC1RL
are unaffected by stop3 mode.After exiting from stop3 mode, a software or hardware trigger is required to
resume conversions.
MC9S08AC16 Series Data Sheet, Rev. 9

262 Freescale Semiconductor

Analog-to-Digital Converter (S08ADC10V1)
• Average the result by converting the analog input many times in succession and dividing the sum
of the results. Four samples are required to eliminate the effect of a 1LSB, one-time error.

• Reduce the effect of synchronous noise by operating off the asynchronous clock (ADACK) and
averaging. Noise that is synchronous to ADCK cannot be averaged out.

14.7.2.4 Code Width and Quantization Error

The ADC quantizes the ideal straight-line transfer function into 1024 steps (in 10-bit mode). Each step
ideally has the same height (1 code) and width. The width is defined as the delta between the transition
points to one code and the next. The ideal code width for an N bit converter (in this case N can be 8 or 10),
defined as 1LSB, is:

1LSB = (VREFH - VREFL) / 2N Eqn. 14-2

There is an inherent quantization error due to the digitization of the result. For 8-bit or 10-bit conversions
the code will transition when the voltage is at the midpoint between the points where the straight line
transfer function is exactly represented by the actual transfer function. Therefore, the quantization error
will be  1/2LSB in 8- or 10-bit mode. As a consequence, however, the code width of the first ($000)
conversion is only 1/2LSB and the code width of the last ($FF or $3FF) is 1.5LSB.

14.7.2.5 Linearity Errors

The ADC may also exhibit non-linearity of several forms. Every effort has been made to reduce these
errors but the system should be aware of them because they affect overall accuracy. These errors are:

• Zero-scale error (EZS) (sometimes called offset) — This error is defined as the difference between
the actual code width of the first conversion and the ideal code width (1/2LSB). Note, if the first
conversion is $001, then the difference between the actual $001 code width and its ideal (1LSB) is
used.

• Full-scale error (EFS) — This error is defined as the difference between the actual code width of
the last conversion and the ideal code width (1.5LSB). Note, if the last conversion is $3FE, then the
difference between the actual $3FE code width and its ideal (1LSB) is used.

• Differential non-linearity (DNL) — This error is defined as the worst-case difference between the
actual code width and the ideal code width for all conversions.

• Integral non-linearity (INL) — This error is defined as the highest-value the (absolute value of the)
running sum of DNL achieves. More simply, this is the worst-case difference of the actual
transition voltage to a given code and its corresponding ideal transition voltage, for all codes.

• Total unadjusted error (TUE) — This error is defined as the difference between the actual transfer
function and the ideal straight-line transfer function, and therefore includes all forms of error.

14.7.2.6 Code Jitter, Non-Monotonicity and Missing Codes

Analog-to-digital converters are susceptible to three special forms of error. These are code jitter,
non-monotonicity, and missing codes.

Code jitter is when, at certain points, a given input voltage converts to one of two values when sampled
repeatedly. Ideally, when the input voltage is infinitesimally smaller than the transition voltage, the
MC9S08AC16 Series Data Sheet, Rev. 9

268 Freescale Semiconductor

Development Support
15.4.3.7 Debug Control Register (DBGC)

This register can be read or written at any time.

 7 6 5 4 3 2 1 0

R
DBGEN ARM TAG BRKEN RWA RWAEN RWB RWBEN

W

Reset 0 0 0 0 0 0 0 0

Figure 15-7. Debug Control Register (DBGC)

Table 15-4. DBGC Register Field Descriptions

Field Description

7
DBGEN

Debug Module Enable — Used to enable the debug module. DBGEN cannot be set to 1 if the MCU is secure.
0 DBG disabled
1 DBG enabled

6
ARM

Arm Control — Controls whether the debugger is comparing and storing information in the FIFO. A write is used
to set this bit (and ARMF) and completion of a debug run automatically clears it. Any debug run can be manually
stopped by writing 0 to ARM or to DBGEN.
0 Debugger not armed
1 Debugger armed

5
TAG

Tag/Force Select — Controls whether break requests to the CPU will be tag or force type requests. If
BRKEN = 0, this bit has no meaning or effect.
0 CPU breaks requested as force type requests
1 CPU breaks requested as tag type requests

4
BRKEN

Break Enable — Controls whether a trigger event will generate a break request to the CPU. Trigger events can
cause information to be stored in the FIFO without generating a break request to the CPU. For an end trace, CPU
break requests are issued to the CPU when the comparator(s) and R/W meet the trigger requirements. For a
begin trace, CPU break requests are issued when the FIFO becomes full. TRGSEL does not affect the timing of
CPU break requests.
0 CPU break requests not enabled
1 Triggers cause a break request to the CPU

3
RWA

R/W Comparison Value for Comparator A — When RWAEN = 1, this bit determines whether a read or a write
access qualifies comparator A. When RWAEN = 0, RWA and the R/W signal do not affect comparator A.
0 Comparator A can only match on a write cycle
1 Comparator A can only match on a read cycle

2
RWAEN

Enable R/W for Comparator A — Controls whether the level of R/W is considered for a comparator A match.
0 R/W is not used in comparison A
1 R/W is used in comparison A

1
RWB

R/W Comparison Value for Comparator B — When RWBEN = 1, this bit determines whether a read or a write
access qualifies comparator B. When RWBEN = 0, RWB and the R/W signal do not affect comparator B.
0 Comparator B can match only on a write cycle
1 Comparator B can match only on a read cycle

0
RWBEN

Enable R/W for Comparator B — Controls whether the level of R/W is considered for a comparator B match.
0 R/W is not used in comparison B
1 R/W is used in comparison B
MC9S08AC16 Series Data Sheet, Rev. 9

290 Freescale Semiconductor

Appendix A Electrical Characteristics and Timing Specifications
Figure A-15. SPI Master Timing (CPHA = 0)

Figure A-16. SPI Master Timing (CPHA = 1)

SCK

(OUTPUT)

SCK

(OUTPUT)

MISO
(INPUT)

MOSI
(OUTPUT)

SS1

(OUTPUT)

MSB IN2

BIT 6 . . . 1

LSB IN

MSB OUT2 LSB OUT

BIT 6 . . . 1

(CPOL = 0)

(CPOL = 1)

NOTES:

2. LSBF = 0. For LSBF = 1, bit order is LSB, bit 1, ..., bit 6, MSB.
1. SS output mode (MODFEN = 1, SSOE = 1).

12 3

5

6 7

10 11

5

10

4

4

SCK

(OUTPUT)

SCK

(OUTPUT)

MISO
(INPUT)

MOSI
(OUTPUT)

MSB IN(2)

BIT 6 . . . 1

LSB IN

 MSB OUT(2) LSB OUT

BIT 6 . . . 1

(CPOL = 0)

(CPOL = 1)

SS(1)

(OUTPUT)

1. SS output mode (MODFEN = 1, SSOE = 1).
2. LSBF = 0. For LSBF = 1, bit order is LSB, bit 1, ..., bit 6, MSB.

NOTES:

2

1

3

4
5

6 7

10 11

5
4

MC9S08AC16 Series Data Sheet, Rev. 9

Freescale Semiconductor 315

