

Welcome to E-XFL.COM

Understanding <u>Embedded - DSP (Digital</u> <u>Signal Processors)</u>

Embedded - DSP (Digital Signal Processors) are specialized microprocessors designed to perform complex mathematical computations on digital signals in real-time. Unlike general-purpose processors, DSPs are optimized for high-speed numeric processing tasks, making them ideal for applications that require efficient and precise manipulation of digital data. These processors are fundamental in converting and processing signals in various forms, including audio, video, and communication signals, ensuring that data is accurately interpreted and utilized in embedded systems.

Applications of <u>Embedded - DSP (Digital</u> <u>Signal Processors)</u>

Details

E·XF

Product Status	Active
Туре	Sigma
Interface	I ² C, SPI
Clock Rate	294.912MHz
Non-Volatile Memory	ROM (64kB)
On-Chip RAM	192kB
Voltage - I/O	3.30V
Voltage - Core	1.20V
Operating Temperature	-40°C ~ 105°C (TA)
Mounting Type	Surface Mount
Package / Case	72-VFQFN Exposed Pad, CSP
Supplier Device Package	72-LFCSP-VQ (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/analog-devices/adau1462wbcpz300rl

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

REVISION HISTORY

3/2018—Rev. B to Rev. C
Changes to Table 14
Changes to Table 25
Changes to Table 36
Added Endnote 1, Table 69
Deleted Endnote 1, Table 911
Changes to S/PDIF Transmitter and Receiver Section and
Table 1011
Deleted S/PDIF Receiver Section and Table 11; Renumbered
Sequentially11
Added Table 11; Renumbered Sequentially12
Added I ² C Interface—Master Section13
Changes to Table 20
Changes to Table 21
Changes to SigmaDSP Core Section80
Changes to Ordering Guide

10/2017—Rev. A to Rev. B

Changes to Table 1	4
Changes to Table 2	5
Changes to Table 3	6

9
29
31
80
90
91
202

9/2017—Rev. 0 to Rev. A

Change to Supply Current Analog Current (AVDD) Parameter,
Table 24
Change to Supply Current PLL Current (PVDD) Parameter and
Supply Current Analog Current (AVDD) Parameter, Table 3 5
Added Endnote 2 to Ordering Guide201

8/2017—Revision 0: Initial Version

SPECIFICATIONS

 $AVDD = 3.3 V \pm 10\%$, $DVDD = 1.2 V \pm 5\%$, $PVDD = 3.3 V \pm 10\%$, IOVDD = 1.8 V - 5% to 3.3 V + 10%, $T_A = 25^{\circ}$ C, master clock input = 12.288 MHz, core clock (f_{CORE}) = 294.912 MHz, I/O pins set to low drive setting, unless otherwise noted.

Table 2. Parameter	Min	Тур	Max	Unit	Test Conditions/Comments
	MIN	тур	IVIdX	Unit	rest conditions/comments
POWER					
Supply Voltage	2.07	2.2	2.62		
Analog Voltage (AVDD)	2.97	3.3	3.63	V	Supply for analog circuitry, including auxiliary ADC
Digital Voltage (DVDD)	1.14	1.2	1.26	V	Supply for digital circuitry, including the DSP core, ASRCs, and signal routing
PLL Voltage (PVDD)	2.97	3.3	3.63	V	Supply for PLL circuitry
I/O Supply Voltage (IOVDD)	1.71	3.3	3.63	V	Supply for input/output circuitry, including pads and level shifters
Supply Current					
Analog Current (AVDD)	1.36	1.66	2	mA	
Idle State	1.00	1.10	40	μA	Power applied, chip not programmed
Reset State	1.00	1.10	40	μA	Power applied, RESET held low
PLL Current (PVDD)	8.3	10.1	12.9	mA	12.288 MHz MCLK with default PLL settings
Idle State	18.3	18.7	40	μA	Power applied, PLL not configured
Reset State	18.3	18.7	40	μΑ	Power applied, RESET held low
	10.5	10.7	40	μΛ	
I/O Current (IOVDD)					Dependent on the number of active serial ports, clock pins, and characteristics of external loads
Operation State		53		mA	IOVDD = 3.3 V; all serial ports are clock masters
		22		mA	IOVDD = 1.8 V; all serial ports are clock masters
Power-Down State		4.1	4.2	mA	IOVDD = 1.8 V – 5% to 3.3 V + 10%
Digital Current (DVDD)					
ADAU1466 Operation State					
Maximum Program		233	495	mA	
Typical Program		220		mA	Test program includes 16-channel I/O, 10-band equalizer (EQ) per channel, all ASRCs active
Minimal Program		213		mA	Test program includes 2-channel I/O, 10-band EQ per channel
ADAU1462 Operation State					
f _{CORE} = 294.912 MHz					
Maximum Program		233	495	mA	
Typical Program		220		mA	Test program includes 16-channel I/O, 10-band EQ per channe all ASRCs active
Minimal Program		213		mA	Test program includes 2-channel I/O, 10-band EQ per channel
$f_{CORE} = 147.456 \text{ MHz}$					
Maximum Program		170	455	mA	
Typical Program		135		mA	Test program includes 16-channel I/O, 10-band EQ per channe
Minimal Program		110		mA	Test program includes 2-channel I/O, 10-band EQ per channel
Idle State	18.3	18.7	19.9	mA	Power applied, DSP not enabled
Reset State	18.3	18.7	19.9	mA	Power applied, RESET held low
ASYNCHRONOUS SAMPLE RATE CONVERTERS	.0.5				
Dynamic Range		139		dB	A-weighted, 20 Hz to 20 kHz
I/O Sample Rate	6	132	192	kHz	
I/O Sample Rate Ratio	1:8		7.75:1	1112	
Total Harmonic Distortion + Noise (THD + N)	1.0		-120	dB	
CRYSTAL OSCILLATOR			120		
Transconductance	8.3	10.6	13.4	mS	
REGULATOR	0.5	10.0	т.э.т		
DVDD Voltage	1.14	1.2		v	Regulator maintains typical output voltage up to a maximum 800 mA load; IOVDD = $1.8 \text{ V} - 5\%$ to $3.3 \text{ V} + 10\%$

Pin		Internal Pull	
No.	Mnemonic	Resistor	Description
51	BCLK_OUT3	Configurable	Bit Clock, Serial Output Port 3. This pin is bidirectional, with the direction depending on whether Serial Output Port 3 is a master or slave. Disconnect this pin when not in use.
52	SDATA_OUT3	Configurable	Serial Data Output Port 3 (Channel 40 to Channel 47). Capable of 2-channel, 4-channel, 8-channel, 8-channel, and flexible TDM modes. Disconnect this pin when not in use.
53	DVDD	None	Digital Supply. Must be $1.2 V \pm 5\%$. This pin can be supplied externally or by using the internal regulator and external pass transistor. Bypass Pin 53 with decoupling capacitors to Pin 54 (DGND). See the Power Supply Bypass Capacitors and Grounding sections.
54	DGND	None	Digital and I/O Ground Reference. Tie all DGND, AGND, and PGND pins directly together in a common ground plane. See the Power Supply Bypass Capacitors and Grounding sections.
55	DGND	None	Digital and I/O Ground Reference. Tie all DGND, AGND, and PGND pins directly together in a common ground plane. See the Power Supply Bypass Capacitors and Grounding sections.
56	IOVDD	None	Input/Output Supply, 1.8 V – 5% to 3.3 V + 10%. Bypass this pin with decoupling capacitors to Pin 55 (DGND). See the Power Supply Bypass Capacitors and Grounding sections.
57	BCLK_IN0	Configurable	Bit Clock, Serial Input Port 0. This pin is bidirectional, with the direction depending on whether Serial Input Port 0 is a master or slave. Disconnect this pin when not in use.
58	LRCLK_IN0/ MP10	Configurable	Frame Clock, Serial Input Port 0 (LRCLK_IN0)/Multipurpose, General-Purpose Input/Output (MP10). This pin is bidirectional, with the direction depending on whether Serial Input Port 0 is a master or slave. Disconnect this pin when not in use.
59	SDATA_IN0	Configurable	Serial Data Input Port 0 (Channel 0 to Channel 15). Capable of 2-channel, 4-channel, 8-channel, or 16-channel mode. Disconnect this pin when not in use.
60	BCLK_IN1	Configurable	Bit Clock, Serial Input Port 1. This pin is bidirectional, with the direction depending on whether the Serial Input Port 1 is a master or slave. Disconnect this pin when not in use.
61	LRCLK_IN1/ MP11	Configurable	Frame Clock, Serial Input Port 1 (LRCLK_IN1)/Multipurpose, General-Purpose Input/Output (MP11). This pin is bidirectional, with the direction depending on whether the Serial Input Port 1 is a master or slave. Disconnect this pin when not in use.
62	SDATA_IN1	Configurable	Serial Data Input Port 1 (Channels 16 to Channel 31). Capable of 2-channel, 4-channel, 8-channel, or 16-channel mode. Disconnect this pin when not in use.
63	THD_M	None	Thermal Diode Negative (–) Input. Connect this pin to the D– pin of an external temperature sensor IC. Disconnect this pin when not in use.
64	THD_P	None	Thermal Diode Positive (+) Input. Connect this pin to the D+ pin of an external temperature sensor IC. Disconnect this pin when not in use.
65	BCLK_IN2	Configurable	Bit Clock, Serial Input Port 2. This pin is bidirectional, with the direction depending on whether the Serial Input Port 2 is a master or slave. Disconnect this pin when not in use.
66	LRCLK_IN2/ MP12	Configurable	Frame Clock, Input Serial Port 2 (LRCLK_IN2)/Multipurpose, General-Purpose Input/Output (MP12). This pin is bidirectional, with the direction depending on whether Serial Input Port 2 is a master or slave. Disconnect this pin when not in use.
67	SDATA_IN2	Configurable	Serial Data Input Port 2 (Channel 32 to Channel 39). Capable of 2-channel, 4-channel, 8-channel, or flexible TDM mode. Disconnect this pin when not in use.
68	BCLK_IN3	Configurable	Bit Clock, Input Serial Port 3. This pin is bidirectional, with the direction depending on whether Input Serial Port 3 is a master or slave. Disconnect this pin when not in use.
69	LRCLK_IN3/ MP13	Configurable	Frame Clock, Serial Input Port 3 (LRCLK_IN3)/Multipurpose, General-Purpose Input/Output (MP13). This pin is bidirectional, with the direction depending on whether Serial Input Port 3 is a master or slave. Disconnect this pin when not in use.
70	SDATA_IN3	Configurable	Serial Data Input Port 3 (Channel 40 to Channel 47). Capable of 2-channel, 4-channel, 8-channel, or flexible TDM mode. Disconnect this pin when not in use.
71	DVDD	None	Digital Supply. Must be $1.2 V \pm 5\%$. This pin can be supplied externally or by using the internal regulator and external pass transistor. Bypass with decoupling capacitors to Pin 72 (DGND).
72	DGND	None	Digital and I/O Ground Reference. Tie all DGND, AGND, and PGND pins directly together in a common ground plane. See the Power Supply Bypass Capacitors and Grounding sections.
EP	Exposed Pad	None	The exposed pad must be grounded by soldering it to a copper square of equivalent size on the PCB. Identical copper squares must exist on all layers of the board, connected by vias, and they must be connected to a dedicated copper ground layer within the PCB. See Exposed Pad PCB Design, Figure 87, and Figure 88.

System Initialization Sequence

Before the IC can process the audio in the DSP, the following initialization sequence must be completed.

- 1. If possible, apply the required voltage to all four power supply domains (IOVDD, AVDD, PVDD, and DVDD) simultaneously. If simultaneous application is not possible, supply IOVDD first to prevent damage or reduced operating lifetime. If using the on-board regulator, AVDD and PVDD can be supplied in any order, and DVDD is then generated automatically. If not using the on-board regulator, AVDD, PVDD, and DVDD can be supplied in any order following IOVDD.
- 2. Start providing a master clock signal to the XTALIN/MCLK pin, or, if using the crystal oscillator, let the crystal oscillator start generating a master clock signal. The master clock signal must be valid when the DVDD supply stabilizes.
- 3. If the SELFBOOT pin is pulled high, a self boot sequence initiates on the master control port. Wait until the self boot operation is complete.
- 4. If SPI slave control mode is desired, toggle the SS/ADDR0 pin three times. Ensure that each toggle lasts at least the duration of one cycle of the master clock being input to the XTALIN/MCLK pin. When the SS/ADDR0 line rises for the third time, the slave control port is then in SPI mode.
- 5. Execute the register and memory write sequence that is required to configure the device in the proper operating mode.

Table 19 contains an example series of register writes used to configure the system at startup. The contents of the data column may vary depending on the system configuration. The configuration that is listed in Table 19 represents the default initialization sequence for project files generated in SigmaStudio.

Recommended Program/Parameter Loading Procedure

When writing large amounts of data to the program or parameter RAM in direct write mode (such as when downloading the initial contents of the RAMs from an external memory), use the hibernate register (Address 0xF400) to disable the processor core, thus preventing unpleasant noises from appearing at the audio output. When small amounts of data are transmitted during real-time operation of the DSP (such as when updating individual parameters), the software safeload mechanism can be used (see the Software Safeload section).

Master Clock, PLL, and Clock Generators Registers

An overview of the registers related to the master clock, PLL, and clock generators is listed in Table 22. For a more detailed description, see the PLL Configuration Registers section and the Clock Generator Registers section.

Table 22. Master Clock, PLL, and Clock Generator Registers

Tuble 22. Muster Crock, TEE, und Crock Generator Registers					
Address	Register	Description			
0xF000	PLL_CTRL0	PLL feedback divider			
0xF001	PLL_CTRL1	PLL prescale divider			
0xF002	PLL_CLK_SRC	PLL clock source			
0xF003	PLL_ENABLE	PLL enable			
0xF004	PLL_LOCK	PLL lock			
0xF005	MCLK_OUT	CLKOUT control			
0xF006	PLL_WATCHDOG	Analog PLL watchdog control			
0xF020	CLK_GEN1_M	Denominator (M) for Clock Generator 1			
0xF021	CLK_GEN1_N	Numerator (N) for Clock Generator 1			
0xF022	CLK_GEN2_M	Denominator (M) for Clock Generator 2			
0xF023	CLK_GEN2_N	Numerator (N) for Clock Generator 2			
0xF024	CLK_GEN3_M	Denominator (M) for Clock Generator 3			
0xF025	CLK_GEN3_N	Numerator (N) for Clock Generator 3			
0xF026	CLK_GEN3_SRC	Input source for Clock Generator 3			
0xF027	CLK_GEN3_LOCK	Lock bit for Clock Generator 3 input reference			

POWER SUPPLIES, VOLTAGE REGULATOR, AND HARDWARE RESET

Power Supplies

The ADAU1462/ADAU1466 are supplied by four power supplies: IOVDD, DVDD, AVDD, and PVDD.

- IOVDD (input/output supply) sets the reference voltage for all digital input and output pins. It can be any value ranging from 1.8 V – 5% to 3.3 V + 10%. To use the I²C/SPI control ports or any of the digital input or output pins, the IOVDD supply must be present.
- DVDD (digital supply) powers the DSP core and supporting digital logic circuitry. It must be 1.2 V ± 5%.
- AVDD (analog supply) powers the analog auxiliary ADC circuitry. It must be supplied even if the auxiliary ADCs are not in use.
- PVDD (PLL supply) powers the PLL and acts as a reference for the voltage controlled oscillator (VCO). It must be supplied even if the PLL is not in use.

Supply	Voltage	Externally Supplied?	Description
IOVDD (Input/ Output)	1.8 V – 5% to 3.3 V + 10%	Yes	
DVDD (Digital)	1.2 V ± 5%	Optional	Can be derived from IOVDD using an internal LDO regulator
AVDD (Analog)	3.3 V ± 10%	Yes	
PVDD (PLL)	3.3 V ± 10%	Yes	

Table 23. Power Supply Details

Voltage Regulator

The ADAU1462/ADAU1466 include a linear regulator that can generate the 1.2 V supply required by the DSP core and other internal digital circuitry from an external supply. Source the linear regulator from the I/O supply (IOVDD), which can range from 1.8 V – 5% to 3.3 V + 10%. A simplified block diagram of the internal structure of the regulator is shown in Figure 22.

For proper operation, the linear regulator requires several external components. A PNP bipolar junction transistor, such as the ON Semiconductor NSS1C300ET4G, acts as an external pass device to bring the higher IOVDD voltage down to the lower DVDD voltage, thus externally dissipating the power of the IC package. Ensure that the current gain of the transistor (β) is 200 or greater and that the transistor is able to dissipate at least 1 W in the worst case. Place a 1 k Ω resistor between the transistor emitter and base to help stabilize the regulator for varying loads. This resistor placement also guarantees that current is always flowing into the VDRIVE pin, even for minimal regulator loads. Figure 21 shows the connection of the external components.

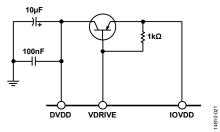


Figure 21. External Components Required for Voltage Regulator Circuit

If an external supply is provided to DVDD, ground the VDRIVE pin. The regulator continues to draw a small amount of current (approximately 100 μ A) from the IOVDD supply. Do not use the regulator to provide a voltage supply to external ICs. There are no control registers associated with the regulator.

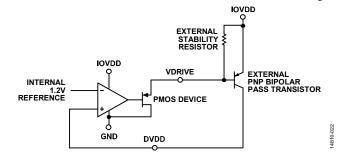


Figure 22. Simplified Block Diagram of Regulator Internal Structure, Including External Components

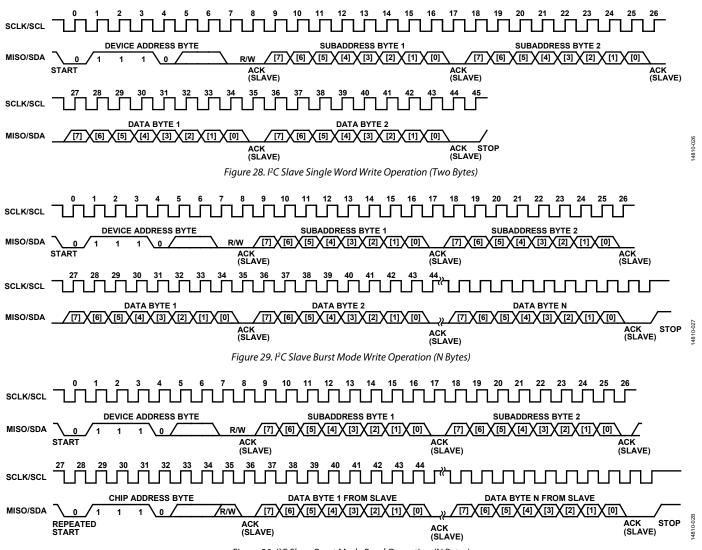


Figure 30. I²C Slave Burst Mode Read Operation (N Bytes)

I²C Read and Write Operations

Figure 31 shows the format of a single word write operation. Every ninth clock pulse, the ADAU1462/ADAU1466 issue an acknowledge by pulling SDA low.

Figure 32 shows the simplified format of a burst mode write sequence. This figure shows an example of a write to sequential single byte registers. The ADAU1462/ADAU1466 increment the subaddress register after every byte because the requested subaddress corresponds to a register or memory area with a 1-byte word length.

Figure 33 shows the format of a single word read operation. The first R/\overline{W} bit is 0, indicating a write operation. This is because the subaddress still needs to be written to set up the internal address. After the ADAU1462/ADAU1466 acknowledge the receipt of the subaddress, the master must issue a repeated start command followed by the chip address byte with the R/\overline{W} bit set to 1 (read). The start command causes the SDA pin of the device

to reverse and begin driving data back to the master. The master then responds every ninth pulse with an acknowledge pulse to the device.

Figure 34 shows the format of a burst mode read sequence. This figure shows an example of a read from sequential single byte registers. The ADAU1462/ADAU1466 increment the subaddress register after every byte because the requested subaddress corresponds to a register or memory area with a 1-byte word length. The ADAU1462/ADAU1466 always decode the subaddress and set the auto-increment circuit such that the address increments after the appropriate number of bytes.

Figure 31 to Figure 34 use the following abbreviations:

- S means start bit.
- P means stop bit.
- AM means acknowledge by master.
- AS means acknowledge by slave.

Serial Audio Inputs to DSP Core

The 48 serial input channels are mapped to four audio input cells in SigmaStudio. Each input cell corresponds to one of the serial input pins (see Table 32).

Depending on whether the serial port is configured in 2-channel, 4-channel, 8-channel, or 16-channel mode, the available channels in SigmaStudio change. The channel count for each serial port is configured in the SERIAL_BYTE_x_0 registers, Bits[2:0] (TDM_MODE), at Address 0xF200 to Address 0xF21C (in increments of 0x4).

Figure 44 shows how the input pins map to the input cells in SigmaStudio, including their graphical appearance in the software.

Table 32. Serial Input Pin Mapping to SigmaStudio Input Cells

Serial Input Pin	Channels in SigmaStudio
SDATA_IN0	0 to 15
SDATA_IN1	16 to 31
SDATA_IN2	32 to 39
SDATA_IN3	40 to 47

	Position in I ² S	Position in	Position in	Position in	Input Channel in
Serial Input Pin	Stream (2-Channel)	TDM4 Stream	TDM8 Stream	TDM16 Stream	SigmaStudio
SDATA_IN0	Left	0	0	0	0
SDATA_IN0	Right	1	1	1	1
SDATA_IN0	Not applicable	2	2	2	2
SDATA_IN0	Not applicable	3	3	3	3
SDATA_IN0	Not applicable	Not applicable	4	4	4
SDATA_IN0	Not applicable	Not applicable	5	5	5
SDATA_IN0	Not applicable	Not applicable	6	6	6
SDATA_IN0	Not applicable	Not applicable	7	7	7
SDATA_IN0	Not applicable	Not applicable	Not applicable	8	8
SDATA_IN0	Not applicable	Not applicable	Not applicable	9	9
SDATA_IN0	Not applicable	Not applicable	Not applicable	10	10
SDATA_IN0	Not applicable	Not applicable	Not applicable	11	11
SDATA_IN0	Not applicable	Not applicable	Not applicable	12	12
SDATA_IN0	Not applicable	Not applicable	Not applicable	13	13
SDATA_IN0	Not applicable	Not applicable	Not applicable	14	14
SDATA_IN0	Not applicable	Not applicable	Not applicable	15	15
SDATA_IN1	Left	0	0	0	16
SDATA_IN1	Right	1	1	1	17
SDATA_IN1	Not applicable	2	2	2	18
SDATA_IN1	Not applicable	3	3	3	19
SDATA_IN1	Not applicable	Not applicable	4	4	20
SDATA_IN1	Not applicable	Not applicable	5	5	21
SDATA_IN1	Not applicable	Not applicable	6	6	22
SDATA_IN1	Not applicable	Not applicable	7	7	23
SDATA_IN1	Not applicable	Not applicable	Not applicable	8	24
SDATA_IN1	Not applicable	Not applicable	Not applicable	9	25
SDATA_IN1	Not applicable	Not applicable	Not applicable	10	26
SDATA_IN1	Not applicable	Not applicable	Not applicable	11	27
SDATA_IN1	Not applicable	Not applicable	Not applicable	12	28
SDATA_IN1	Not applicable	Not applicable	Not applicable	13	29
SDATA_IN1	Not applicable	Not applicable	Not applicable	14	30
SDATA_IN1	Not applicable	Not applicable	Not applicable	15	31
SDATA_IN2	Left	0	0	0	32
SDATA_IN2	Right	1	1	1	33
SDATA_IN2	Not applicable	2	2	2	34
SDATA_IN2	Not applicable	3	3	3	35
SDATA_IN2	Not applicable	Not applicable	4	4	36
SDATA_IN2	Not applicable	Not applicable	5	5	37
SDATA_IN2	Not applicable	Not applicable	6	6	38
SDATA_IN2	Not applicable	Not applicable	7	7	39

Table 33. Detailed Serial Input Mapping to SigmaStudio Input Channels

SERIAL DATA INPUT/OUTPUT

There are four serial data input pins (SDATA_IN3 to SDATA_IN0) and four serial data output pins (SDATA_OUT3 to SDATA_OUT0). Each pin is capable of 2-channel, 4-channel, or 8-channel mode. In addition, SDATA_IN0, SDATA_IN1, SDATA_OUT0, and SDATA_OUT1 are capable of 16-channel mode.

The serial ports have a very flexible configuration scheme that allows completely independent and orthogonal configuration of clock pin assignment, clock waveform type, clock polarity, channel count, position of the data bits within the stream, audio word length, slave or master operation, and sample rate. A detailed description of all possible serial port settings is included in the Serial Port Configuration Registers section.

The physical serial data input and output pins are connected to functional blocks called serial ports, which deal with handling the audio data and clocks as they pass in and out of the device. Table 39 describes this relationship.

Table 39. Relationship Between Hardware Serial Data Pins and Serial Input/Output Ports

Serial Data Pin	Serial Port
SDATA_IN0	Serial Input Port 0
SDATA_IN1	Serial Input Port 1
SDATA_IN2	Serial Input Port 2
SDATA_IN3	Serial Input Port 3
SDATA_OUT0	Serial Output Port 0
SDATA_OUT1	Serial Output Port 1
SDATA_OUT2	Serial Output Port 2
SDATA_OUT3	Serial Output Port 3

There are 48 channels of serial audio data inputs and 48 channels of serial audio data outputs. The 48 audio input channels and 48 audio output channels are distributed among the four serial data input pins and the four serial data output pins. This distribution is described in Table 40.

The maximum sample rate for the serial audio data on the serial ports is 192 kHz. The minimum sample rate is 6 kHz.

SDATA_IN2, SDATA_IN3, SDATA_OUT2, and SDATA_OUT3 are capable of operating in a special mode called flexible TDM mode, which allows custom byte addressable configuration, where the data for each channel is located in the serial data stream. Flexible TDM mode is not a standard audio interface. Use it only in cases where a customized serial data format is desired. See the Flexible TDM Interface section for more information.

Serial Audio Data Format

The serial data input and output ports are designed to work with audio data that is encoded in a linear PCM format, based on the common I²S standard. Audio data-words can be 16, 24, or 32 bits in length. The serial ports can handle TDM formats with channel counts ranging from two channels to 16 channels on a single data line.

Almost every aspect of the serial audio data format can be configured using the SERIAL_BYTE_x_0 and SERIAL_ BYTE_x_1 registers, and every setting can be configured independently. As a result, there are more than 70,000 valid configurations for each serial audio port.

Serial Audio Data Timing Diagrams

Because it is impractical to show timing diagrams for each possible combination, timing diagrams for the more common configurations are shown in Figure 61 to Figure 66. Explanatory text accompanies each figure.

Table 40. Relationship Between Data Pin, Audio Channels, Clock Pins, and TDM Options

Serial Data Pin	Channel Numbering	Corresponding Clock Pins in Master Mode	Maximum TDM Channels	Flexible TDM Mode
SDATA_IN0	Channel 0 to Channel 15	BCLK_IN0, LRCLK_IN0	16 channels	No
SDATA_IN1	Channel 16 to Channel 31	BCLK_IN1, LRCLK_IN1	16 channels	No
SDATA_IN2	Channel 32 to Channel 39	BCLK_IN2, LRCLK_IN2	8 channels	Yes
SDATA_IN3	Channel 40 to Channel 47	BCLK_IN3, LRCLK_IN3	8 channels	Yes
SDATA_OUT0	Channel 0 to Channel 15	BCLK_OUT0, LRCLK_OUT0	16 channels	No
SDATA_OUT1	Channel 16 to Channel 31	BCLK_OUT1, LRCLK_OUT1	16 channels	No
SDATA_OUT2	Channel 32 to Channel 39	BCLK_OUT2, LRCLK_OUT2	8 channels	Yes
SDATA_OUT3	Channel 40 to Channel 47	BCLK_OUT3, LRCLK_OUT3	8 channels	Yes

Serial Clock Domains

There are four input clock domains and four output clock domains. A clock domain consists of a pair of LRCLK_OUTx and LRCLK_INx (frame clock) and BCLK_OUTx and BCLK_INx (bit clock) pins, which are used to synchronize the transmission of audio data to and from the device. There are eight total clock domains. Four of them are input domains and four of them are output domains. In master mode (refer to the SERIAL_BYTE_x_0 registers, Register 0xF200 to Register 0xF21C, Bits[15:13] (LRCLK_ SRC) = 0b100 and Bits[12:10] (BCLK_SRC) = 0b100), each clock domain corresponds to exactly one serial data pin, one frame clock pin, and one bit clock pin. Any serial data input can be clocked by any input clock domains when it is configured in slave mode (refer to the SERIAL_BYTE_x_0 registers, Bits[15:13] (LRCLK_ SRC), which can be set to 0b000, 0b001, 0b010, or 0b011; and Bits[12:10] (BCLK_SRC), which can be set to 0b000, 0b001, 0b010, or 0b011). Any serial data output can be clocked by any output clock domain when it is configured in slave mode (see the SERIAL_BYTE_x_0 registers, Bits[15:13] (LRCLK_SRC), which can be set to 0b000, 0b001, 0b010, or 0b011; and Bits[12:10] (BCLK_SRC), which can be set to 0b000, 0b001, 0b010, or 0b011).

Table 41. Relationship Between Serial Data Pins and Clock Pins in Master or Slave M	lode
---	------

Serial Data Pin	Corresponding Clock Pins in Master Mode	Corresponding Clock Pins in Slave Mode
SDATA_IN0	BCLK_IN0, LRCLK_IN0 (LRCLK_IN0/MP10)	BCLK_IN0, LRCLK_IN0 or
		BCLK_IN1, LRCLK_IN1 or
		BCLK_IN2, LRCLK_IN2 or
		BCLK_IN3, LRCLK_IN3
SDATA_IN1	BCLK_IN1, LRCLK_IN1 (LRCLK_IN1/MP11)	BCLK_IN0, LRCLK_IN0 or
		BCLK_IN1, LRCLK_IN1 or
		BCLK_IN2, LRCLK_IN2 or
		BCLK_IN3, LRCLK_IN3
SDATA_IN2	BCLK_IN2, LRCLK_IN2 (LRCLK_IN2/MP12)	BCLK_IN0, LRCLK_IN0 or
		BCLK_IN1, LRCLK_IN1 or
		BCLK_IN2, LRCLK_IN2 or
		BCLK_IN3, LRCLK_IN3
SDATA_IN3	BCLK_IN3, LRCLK_IN3 (LRCLK_IN3/MP13)	BCLK_IN0, LRCLK_IN0 or
		BCLK_IN1, LRCLK_IN1 or
		BCLK_IN2, LRCLK_IN2 or
		BCLK_IN3, LRCLK_IN3
SDATA_OUT0	BCLK_OUT0, LRCLK_OUT0 (LRCLK_OUT0/MP4)	BCLK_OUT0, LRCLK_OUT0 or
		BCLK_OUT1, LRCLK_OUT1 or
		BCLK_OUT2, LRCLK_OUT2 or
		BCLK_OUT3, LRCLK_OUT3
SDATA_OUT1	BCLK_OUT1, LRCLK_OUT1 (LRCLK_OUT1/MP5)	BCLK_OUT0, LRCLK_OUT0 or
		BCLK_OUT1, LRCLK_OUT1 or
		BCLK_OUT2, LRCLK_OUT2 or
		BCLK_OUT3, LRCLK_OUT3
SDATA_OUT2	BCLK_OUT2, LRCLK_OUT2 (LRCLK_OUT2/MP8)	BCLK_OUT0, LRCLK_OUT0 or
		BCLK_OUT1, LRCLK_OUT1 or
		BCLK_OUT2, LRCLK_OUT2 or
		BCLK_OUT3, LRCLK_OUT3
SDATA_OUT3	BCLK_OUT3, LRCLK_OUT3 (LRCLK_OUT3/MP9)	BCLK_OUT0, LRCLK_OUT0 or
		BCLK_OUT1, LRCLK_OUT1 or
		BCLK_OUT2, LRCLK_OUT2 or
		BCLK_OUT3, LRCLK_OUT3

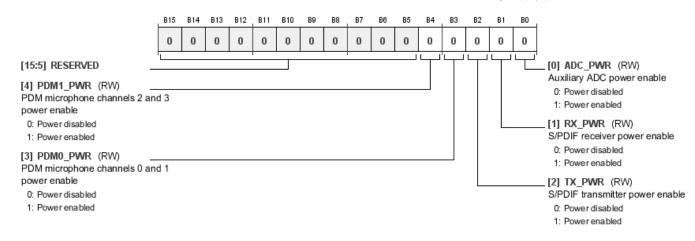
Flexible TDM Registers

An overview of the registers related to the flexible TDM interface is shown in Table 45. For a more detailed description, see the Flexible TDM Interface Registers section.

Table 45. Fl	exible TDM Regist	ters
Address	Register	Description
0xF300	FTDM_IN0	FTDM mapping for the serial inputs (Channel 32, Bits[31:24])
0xF301	FTDM_IN1	FTDM mapping for the serial inputs (Channel 32, Bits[23:16])
0xF302	FTDM_IN2	FTDM mapping for the serial inputs (Channel 32, Bits[15:8])
0xF303	FTDM_IN3	FTDM mapping for the serial inputs (Channel 32, Bits[7:0])
0xF304	FTDM_IN4	FTDM mapping for the serial inputs (Channel 33, Bits[31:24])
0xF305	FTDM_IN5	FTDM mapping for the serial inputs (Channel 33, Bits[23:16])
0xF306	FTDM_IN6	FTDM mapping for the serial inputs (Channel 33, Bits[15:8])
0xF307	FTDM_IN7	FTDM mapping for the serial inputs Channel 33, Bits[7:0])
0xF308	FTDM_IN8	FTDM mapping for the serial inputs (Channel 34, Bits[31:24])
0xF309	FTDM_IN9	FTDM mapping for the serial inputs (Channel 34, Bits[23:16])
0xF30A	FTDM_IN10	FTDM mapping for the serial inputs (Channel 34, Bits[15:8])
0xF30B	FTDM_IN11	FTDM mapping for the serial inputs (Channel 34, Bits[7:0])
0xF30C	FTDM_IN12	FTDM mapping for the serial inputs (Channel 35, Bits[31:24])
0xF30D	FTDM_IN13	FTDM mapping for the serial inputs (Channel 35, Bits[23:16])
0xF30E	FTDM_IN14	FTDM mapping for the serial inputs (Channel 35, Bits[15:8])
0xF30F	FTDM_IN15	FTDM mapping for the serial inputs (Channel 35, Bits[7:0])
0xF310	FTDM_IN16	FTDM mapping for the serial inputs (Channel 36, Bits[31:24])
0xF311	FTDM_IN17	FTDM mapping for the serial inputs (Channel 36, Bits[23:16])
0xF312	FTDM_IN18	FTDM mapping for the serial inputs (Channel 36, Bits[15:8])
0xF313	FTDM_IN19	FTDM mapping for the serial inputs (Channel 36, Bits[7:0])
0xF314	FTDM_IN20	FTDM mapping for the serial inputs (Channel 37, Bits[31:24])
0xF315	FTDM_IN21	FTDM mapping for the serial inputs (Channel 37, Bits[23:16])
0xF316	FTDM_IN22	FTDM mapping for the serial inputs (Channel 37, Bits[15:8])
0xF317	FTDM_IN23	FTDM mapping for the serial inputs (Channel 37, Bits[7:0])
0xF318	FTDM_IN24	FTDM mapping for the serial inputs (Channel 38, Bits[31:24])
0xF319	FTDM_IN25	FTDM mapping for the serial inputs (Channel 38, Bits[23:16])
0xF31A	FTDM_IN26	FTDM mapping for the serial inputs (Channel 38, Bits[15:8])
0xF31B	FTDM_IN27	FTDM mapping for the serial inputs (Channel 38, Bits[7:0])
0xF31C	FTDM_IN28	FTDM mapping for the serial inputs (Channel 39, Bits[31:24])
0xF31D	FTDM_IN29	FTDM mapping for the serial inputs (Channel 39, Bits[23:16])
0xF31E	FTDM_IN30	FTDM mapping for the serial inputs (Channel 39, Bits[15:8])
0xF31F	FTDM_IN31	FTDM mapping for the serial inputs (Channel 39, Bits[7:0])
0xF320	FTDM_IN32	FTDM mapping for the serial inputs (Channel 40, Bits[31:24])
0xF321	FTDM_IN33	FTDM mapping for the serial inputs (Channel 40, Bits[23:16])
0xF322	FTDM_IN34	FTDM mapping for the serial inputs (Channel 40, Bits[15:8])
0xF323	FTDM_IN35	FTDM mapping for the serial inputs (Channel 40, Bits[7:0])
0xF324	FTDM_IN36	FTDM mapping for the serial inputs (Channel 41, Bits[31:24])
0xF325	FTDM_IN37	FTDM mapping for the serial inputs (Channel 41, Bits[23:16])
0xF326	FTDM_IN38	FTDM mapping for the serial inputs (Channel 41, Bits[15:8])
0xF327	FTDM_IN39	FTDM mapping for the serial inputs (Channel 41, Bits[7:0])
0xF328	FTDM_IN40	FTDM mapping for the serial inputs (Channel 42, Bits[31:24])
0xF329	FTDM_IN41	FTDM mapping for the serial inputs (Channel 42, Bits[23:16])
0xF32A	FTDM_IN42	FTDM mapping for the serial inputs (Channel 42, Bits[15:8])
0xF32B	FTDM_IN43	FTDM mapping for the serial inputs (Channel 42, Bits[7:0])
0xF32C	FTDM_IN44	FTDM mapping for the serial inputs (Channel 43, Bits[31:24])
0xF32D	FTDM_IN45	FTDM mapping for the serial inputs (Channel 43, Bits[23:16])
0xF32E	FTDM_IN46	FTDM mapping for the serial inputs (Channel 43, Bits[15:8])
0xF32F	FTDM_IN47	FTDM mapping for the serial inputs (Channel 43, Bits[7:0])

Address	Register	Description
0xF330	FTDM_IN48	FTDM mapping for the serial inputs (Channel 44, Bits[31:24])
0xF331	FTDM_IN49	FTDM mapping for the serial inputs (Channel 44, Bits[23:16])
0xF332	FTDM_IN50	FTDM mapping for the serial inputs (Channel 44, Bits[15:8])
0xF333	FTDM_IN51	FTDM mapping for the serial inputs (Channel 44, Bits[7:0])
0xF334	FTDM_IN52	FTDM mapping for the serial inputs (Channel 45, Bits[31:24])
0xF335	FTDM_IN53	FTDM mapping for the serial inputs (Channel 45, Bits[23:16])
0xF336	FTDM_IN54	FTDM mapping for the serial inputs (Channel 45, Bits[15:8])
0xF337	FTDM_IN55	FTDM mapping for the serial inputs (Channel 45, Bits[7:0])
0xF338	FTDM_IN56	FTDM mapping for the serial inputs (Channel 46, Bits[31:24])
0xF339	FTDM_IN57	FTDM mapping for the serial inputs (Channel 46, Bits[23:16])
0xF33A	FTDM_IN58	FTDM mapping for the serial inputs (Channel 46, Bits[15:8])
0xF33B	FTDM_IN59	FTDM mapping for the serial inputs (Channel 46, Bits[7:0])
0xF33C	FTDM_IN60	FTDM mapping for the serial inputs (Channel 47, Bits[31:24])
0xF33D	FTDM_IN61	FTDM mapping for the serial inputs (Channel 47, Bits[23:16])
0xF33E	FTDM_IN62	FTDM mapping for the serial inputs (Channel 47, Bits[15:8])
0xF33F	FTDM_IN63	FTDM mapping for the serial inputs (Channel 47, Bits[7:0])
0xF380	FTDM_OUT0	FTDM mapping for the serial outputs (Port 2, Channel 0, Bits[31:24])
0xF381	FTDM_OUT1	FTDM mapping for the serial outputs (Port 2, Channel 0, Bits[23:16])
0xF382	FTDM_OUT2	FTDM mapping for the serial outputs (Port 2, Channel 0, Bits[15:8])
0xF383	FTDM_OUT3	FTDM mapping for the serial outputs (Port 2, Channel 0, Bits[7:0])
0xF384	FTDM_OUT4	FTDM mapping for the serial outputs (Port 2, Channel 1, Bits[31:24])
0xF385	FTDM_OUT5	FTDM mapping for the serial outputs (Port 2, Channel 1, Bits[23:16])
0xF386	FTDM_OUT6	FTDM mapping for the serial outputs (Port 2, Channel 1, Bits[15:8])
0xF387	FTDM_OUT7	FTDM mapping for the serial outputs (Port 2, Channel 1, Bits[7:0])
0xF388	FTDM_OUT8	FTDM mapping for the serial outputs (Port 2, Channel 2, Bits[31:24])
0xF389	FTDM_OUT9	FTDM mapping for the serial outputs (Port 2, Channel 2, Bits[23:16])
0xF38A	FTDM_OUT10	FTDM mapping for the serial outputs (Port 2, Channel 2, Bits[15:8])
0xF38B	FTDM_OUT11	FTDM mapping for the serial outputs (Port 2, Channel 2, Bits[7:0])
0xF38C	FTDM_OUT12	FTDM mapping for the serial outputs (Port 2, Channel 3, Bits[31:24])
0xF38D	FTDM_OUT13	FTDM mapping for the serial outputs (Port 2, Channel 3, Bits[23:16])
0xF38E	FTDM_OUT14	FTDM mapping for the serial outputs (Port 2, Channel 3, Bits[15:8])
0xF38F	FTDM_OUT15	FTDM mapping for the serial outputs (Port 2, Channel 3, Bits[7:0])
0xF390	FTDM_OUT16	FTDM mapping for the serial outputs (Port 2, Channel 4, Bits[31:24])
0xF391	FTDM_OUT17	FTDM mapping for the serial outputs (Port 2, Channel 4, Bits[23:16])
0xF392	FTDM_OUT18	FTDM mapping for the serial outputs (Port 2, Channel 4, Bits[15:8])
0xF393	FTDM_OUT19	FTDM mapping for the serial outputs (Port 2, Channel 4, Bits[7:0])
0xF394	FTDM_OUT20	FTDM mapping for the serial outputs (Port 2, Channel 5, Bits[31:24])
0xF395	FTDM_OUT21	FTDM mapping for the serial outputs (Port 2, Channel 5, Bits[23:16])
0xF396	FTDM_OUT22	FTDM mapping for the serial outputs (Port 2, Channel 5, Bits[15:8])
0xF397	FTDM_OUT23	FTDM mapping for the serial outputs (Port 2, Channel 5, Bits[7:0])
0xF398	FTDM_OUT24	FTDM mapping for the serial outputs (Port 2, Channel 6, Bits[31:24])
0xF399	FTDM_OUT25	FTDM mapping for the serial outputs (Port 2, Channel 6, Bits[23:16])
0xF39A	FTDM_OUT26	FTDM mapping for the serial outputs (Port 2, Channel 6, Bits[15:8])
0xF39B	FTDM_OUT27	FTDM mapping for the serial outputs (Port 2, Channel 6, Bits[7:0])
0xF39C	FTDM_OUT28	FTDM mapping for the serial outputs (Port 2, Channel 7, Bits[31:24])
0xF39D	FTDM_OUT29	FTDM mapping for the serial outputs (Port 2, Channel 7, Bits[23:16])
0xF39E	FTDM_OUT30	FTDM mapping for the serial outputs (Port 2, Channel 7, Bits[15:8])
0xF39F	FTDM_OUT31	FTDM mapping for the serial outputs (Port 2, Channel 7, Bits[7:0])
0xF3A0	FTDM_OUT32	FTDM mapping for the serial outputs (Port 3, Channel 0, Bits[31:24])
0xF3A1	FTDM_OUT33	FTDM mapping for the serial outputs (Port 3, Channel 0, Bits[23:16])
0xF3A2	FTDM_OUT34	FTDM mapping for the serial outputs (Port 3, Channel 0, Bits[15:8])
0xF3A3	FTDM_OUT35	FTDM mapping for the serial outputs (Port 3, Channel 0, Bits[7:0])
0xF3A4	FTDM_OUT36	FTDM mapping for the serial outputs (Port 3, Channel 1, Bits[31:24])

Data Sheet

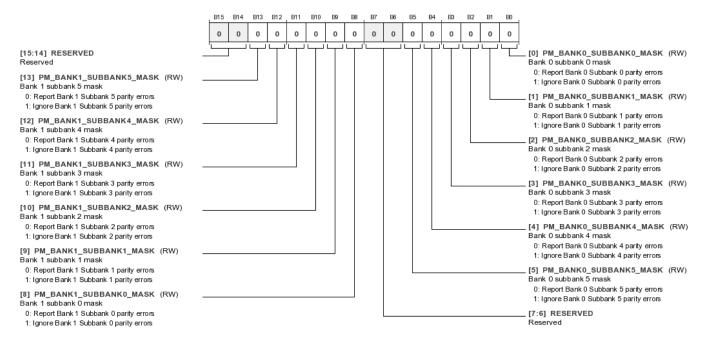

ADAU1462/ADAU1466

Reg	Name	Bits	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Reset	RW
0xF380	FTDM_OUTx	[15:8]					RVED	~~			0x0000	RW
 0xF3BF		[7:0]	SLOT_ ENABLE_OUT	REVERSE_ OUT_BYTE	SERIAL_ OUT_SEL		HANNEL_OUT_P	OS	BYIE_	OUT_POS		
0xF400	HIBERNATE	[15:8]		•	•		ED[14:7]		•		0x0000	RW
		[7:0]				RESERVED[6:0]				HIBERNATE		
0xF401	START_PULSE	[15:8]				RESERV	ED[10:3]				0x0002	RW
0xF402	START CORE	[7:0] [15:8]		RESERVED[2:0]	DECEDV	ED[14:7]	START_PULSE			0x0000	RW
081402	START_CORE	[7:0]				RESERVED[6:0]	LD[14.7]			START CORE	00000	nvv
0xF403	KILL_CORE	[15:8]					ED[14:7]			10.000	0x0000	RW
		[7:0]				RESERVED[6:0]				KILL_CORE		
0xF404	START_ADDRESS	[15:8]				START_AD	DRESS[15:8]				0x0000	RW
		[7:0]				START_AD						
0xF405	CORE_STATUS	[15:8] [7:0]			RESERVED[4:0]		ED[12:5]		CORE STATU	с	0x0000	R
0xF420	DEBUG MODE	[15:8]			RESERVED[4.0		ED[14:7]		CORE_STATU	3	0x0000	RW
0,0 120	22000	[7:0]				RESERVED[6:0]				DEBUG_MODE		
0xF421	PANIC_CLEAR	[15:8]				RESERV	ED[14:7]			• –	0x0000	RW
		[7:0]				RESERVED[6:0]				PANIC_CLEAR		
0xF422	PANIC_PARITY_MASK	[15:8]		RE	SERVED		DM1_BANK3_ MASK	DM1_BANK2_ MASK	DM1_BANK1_ MASK	DM1_BANK0_ MASK	0x0003	RW
		[7:0]	DM0 BANK3	DM0 BANK2	DM0_BANK1_	DM0_BANK0_	PM1 MASK	PM0_MASK		ASRC0_MASK	·	
		[7.0]	MASK	MASK	MASK	MASK			/ Bhel_m/Bh	Nonco_minor		
0xF423	PANIC_SOFTWARE_	[15:8]				RESERV	ED[14:7]				0x0000	RW
	MASK	[7:0]				RESERVED[6:0]				PANIC		
	[7:0]				RESERVED[0:0]				SOFTWARE			
0xF424	PANIC_WD_MASK	[15:8]				RESERV	ED[14:7]				0x0000	RW
		[7:0]				RESERVED[6:0]				PANIC_WD		
0xF425 PANIC_STACK_MAS	PANIC_STACK_MASK	[15:8]					ED[14:7]				0x0000	RW
		[7:0]				RESERVED[6:0]				PANIC_STACK		-
0xF426	PANIC_LOOP_MASK	[15:8]				RESERVED[6:0]	ED[14:7]			PANIC_LOOP	0x0000	RW
0xF427	PANIC FLAG	[7:0] [15:8]					ED[14:7]			PANIC_LOOP	0x0000	R
0/4 12/		[7:0]				RESERVED[6:0]				PANIC_FLAG		[``
0xF428	PANIC_CODE	[15:8]	ERR_SOFT	ERR_LOOP	ERR_STACK	ERR_	ERR_DM1B3	ERR_DM1B2	ERR_DM1B1	ERR_DM1B0	0x0000	R
						WATCHDOG						
0xF429	DECODE OP0	[7:0]	ERR_DM0B3	ERR_DM0B2	ERR_DM0B1	ERR_DM0B0	ERR_PM1	ERR_PM0	ERR_ASRC1	ERR_ASRC0	0x0000	R
UXF429	DECODE_OPU	[15:8] [7:0]					OP0[15:8] _OP0[7:0]				0x0000	ľ
0xF42A	DECODE_OP1	[15:8]					OP1[15:8]				0x0000	R
		[7:0]				DECODE	OP1[7:0]					
0xF42B	DECODE_OP2	[15:8]				DECODE_	OP2[15:8]				0x0000	R
		[7:0]				DECODE						
0xF42C	DECODE_OP3	[15:8]					OP3[15:8]				0x0000	R
0xF42D	EXECUTE_OP0	[7:0] [15:8]					_OP3[7:0] _EX0[15:8]				0x0000	R
	EXECUTE_OF	[7:0]					_EX0[13.8] _EX0[7:0]				0,0000	ľ
		F. 1.47									0x0000	R
0xF42E	EXECUTE_OP1	[15:8]				DECODE	_EX1[15:8]				-	
0xF42E	EXECUTE_OP1	[15:8] [7:0]					_EX1[15:8] _EX1[7:0]					
	EXECUTE_OP1 EXECUTE_OP2	+				DECODE					0x0000	R
0xF42F	EXECUTE_OP2	[7:0] [15:8] [7:0]				DECODE DECODE DECODE	_EX1[7:0] _EX2[15:8] _EX2[7:0]					
0xF42F	_	[7:0] [15:8] [7:0] [15:8]				DECODE DECODE DECODE DECODE	_EX1[7:0] _EX2[15:8] _EX2[7:0] _EX3[15:8]				0x0000 0x0000	
0xF42F 0xF430	EXECUTE_OP2	[7:0] [15:8] [7:0] [15:8] [7:0]				DECODE DECODE DECODE DECODE DECODE	_EX1[7:0] EX2[15:8] _EX2[7:0] EX3[15:8] _EX3[7:0]				0x0000	R
0xF42F	EXECUTE_OP2	[7:0] [15:8] [7:0] [15:8] [7:0] [15:8]				DECODE DECODE DECODE DECODE DECODE DECODE_C	_EX1[7:0] EX2[15:8] _EX2[7:0] EX3[15:8] _EX3[7:0] OUNT[15:8]					R
0xF42F 0xF430	EXECUTE_OP2	[7:0] [15:8] [7:0] [15:8] [7:0] [15:8] [7:0]				DECODE DECODE DECODE DECODE DECODE DECODE_C DECODE_C	_EX1[7:0] EX2[15:8] _EX2[7:0] EX3[15:8] _EX3[7:0]				0x0000	R R
0xF42F 0xF430 0xF431	EXECUTE_OP2 EXECUTE_OP3 DECODE_COUNT	[7:0] [15:8] [7:0] [15:8] [7:0] [15:8]				DECODE DECODE DECODE DECODE DECODE DECODE DECODE EXECUTE_C	_EX1[7:0] EX2[15:8] _EX2[7:0] EX3[15:8] _EX3[7:0] OUNT[15:8] COUNT[7:0]				0x0000 0x0000	R R
0xF42F 0xF430 0xF431 0xF432	EXECUTE_OP2 EXECUTE_OP3 DECODE_COUNT	[7:0] [15:8] [7:0] [15:8] [7:0] [15:8] [7:0] [15:8]				DECODE DECODE DECODE DECODE DECODE DECODE EXECUTE_C EXECUTE_C	_EX1[7:0] _EX2[15:8] _EX2[7:0] EX3[15:8] _EX3[7:0] OUNT[15:8] COUNT[7:0] OUNT[15:8]				0x0000 0x0000	R R R
0xF42F 0xF430 0xF431 0xF432 0xF433	EXECUTE_OP2 EXECUTE_OP3 DECODE_COUNT EXECUTE_COUNT SOFTWARE_VALUE_0	[7:0] [15:8] [7:0] [15:8] [7:0] [15:8] [7:0] [15:8] [7:0] [15:8] [7:0] [15:8] [7:0] [15:8] [7:0]				DECODE DECODE DECODE DECODE DECODE_C DECODE_C EXECUTE_C EXECUTE_C SOFTWARE_N SOFTWARE_N	_EX1[7:0] _EX2[15:8] _EX2[7:0] EX3[15:8] _EX3[7:0] OUNT[15:8] COUNT[7:0] COUNT[15:8] COUNT[7:0] YALUE_0[15:8] VALUE_0[7:0]				0x0000 0x0000 0x0000 0x0000	R R R R
0xF42F 0xF430 0xF431	EXECUTE_OP2 EXECUTE_OP3 DECODE_COUNT EXECUTE_COUNT	[7:0] [15:8] [7:0] [15:8] [7:0] [15:8] [7:0] [15:8] [7:0] [15:8] [7:0] [15:8] [7:0] [15:8] [7:0] [15:8] [7:0] [15:8]				DECODE DECODE DECODE DECODE DECODE C DECODE EXECUTE SOFTWARE SOFTWARE SOFTWARE	_EX1[7:0] EX2[15:8] _EX2[7:0] EX3[15:8] _EX3[7:0] OUNT[15:8] COUNT[7:0] COUNT[15:8] COUNT[7:0] YALUE_0[15:8] VALUE_0[7:0] YALUE_1[15:8]				0x0000 0x0000 0x0000	R R R
0xF42F 0xF430 0xF431 0xF432 0xF433	EXECUTE_OP2 EXECUTE_OP3 DECODE_COUNT EXECUTE_COUNT SOFTWARE_VALUE_0	[7:0] [15:8] [7:0] [15:8] [7:0] [15:8] [7:0] [15:8] [7:0] [15:8] [7:0] [15:8] [7:0] [15:8] [7:0]		RESERVED		DECODE DECODE DECODE DECODE DECODE C DECODE EXECUTE SOFTWARE SOFTWARE SOFTWARE	_EX1[7:0] EX2[15:8] _EX2[7:0] EX3[15:8] _EX3[7:0] OUNT[15:8] COUNT[7:0] COUNT[15:8] COUNT[7:0] VALUE_0[15:8] VALUE_0[7:0] VALUE_1[7:0]	//D_MAXCOUNT	12.01		0x0000 0x0000 0x0000 0x0000	R R R R R

Power Enable 1 Register

Address: 0xF051, Reset: 0x0000, Name: POWER_ENABLE1

For the purpose of power savings, this register allows the PDM microphone interfaces, S/PDIF interfaces, and auxiliary ADCs to be disabled when not in use. When these functional blocks are disabled, the current draw on the corresponding supply pins decreases.


Table 75. Bit Descriptions for POWER_ENABLE1

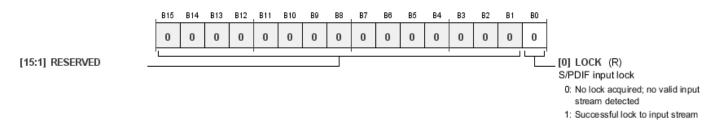
Bits	Bit Name	Settings	Description	Reset	Access
[15:5]	RESERVED			0x0	RW
4 PDM1_PWR			PDM Microphone Channel 2 and PDM Microphone Channel 3 power enable. When this bit is disabled, PDM Microphone Channel 2 and PDM Microphone Channel 3 and their associated circuitry are disabled, and their data values cease to update.	0x0	RW
		0	Power disabled		
		1	Power enabled		
3 PDM0_PWR		PDM Microphone Channel 0 and PDM Microphone Channel 1 power enable. When this bit is disabled, PDM Microphone Channel 0 and PDM Microphone Channel 1 and their associated circuitry are disabled, and their data values cease to update.	0x0	RW	
		0	Power disabled		
		1	Power enabled		
2 TX_PWR		S/PDIF transmitter power enable. This bit disables the S/PDIF transmitter circuit. Clock and data ceases to output from the S/PDIF transmitter pin, and the output is held at logic low as long as this bit is disabled.	0x0	RW	
		0	Power disabled		
		1	Power enabled		
1	RX_PWR		S/PDIF receiver power enable. This bit disables the S/PDIF receiver circuit. Clock and data recovery from the S/PDIF input stream ceases until this bit is reenabled.	0x0	RW
		0	Power disabled		
		1	Power enabled		
0	ADC_PWR		Auxiliary ADC power enable. When this bit is disabled, the auxiliary ADCs are powered down, their outputs cease to update, and they hold their last value.	0x0	RW
		0	Power disabled		
		1	Power enabled		

Bits	Bit Name	Settings	Description	Reset	Access
8	DM1_BANK3_SUBBANK0_MASK		Bank 3 Subbank 0 mask.	0x0	RW
		0	Report Bank 3 Subbank 0 parity errors		
		1	Ignore Bank 3 Subbank 0 parity errors		
[7:5]	RESERVED		Reserved.	0x0	RW
4	DM1_BANK2_SUBBANK4_MASK		Bank 2 Subbank 4 mask.	0x0	RW
		0	Report Bank 2 Subbank 4 parity errors		
		1	Ignore Bank 2 Subbank 4 parity errors		
3	DM1_BANK2_SUBBANK3_MASK		Bank 2 Subbank 3 mask.	0x0	RW
		0	Report Bank 2 Subbank 3 parity errors		
		1	Ignore Bank 2 Subbank 3 parity errors		
2	DM1_BANK2_SUBBANK2_MASK		Bank 2 Subbank 2 mask.	0x0	RW
		0	Report Bank 2 Subbank 2 parity errors		
		1	Ignore Bank 2 Subbank 2 parity errors		
1	DM1_BANK2_SUBBANK1_MASK		Bank 2 Subbank 1 mask.	0x0	RW
		0	Report Bank 2 Subbank 1 parity errors		
		1	Ignore Bank 2 Subbank 1 parity errors		
0	DM1_BANK2_SUBBANK0_MASK		Bank 2 Subbank 0 mask.	0x0	RW
		0	Report Bank 2 Subbank 0 parity errors		
		1	Ignore Bank 2 Subbank 0 parity errors		

Panic Mask Parity PM Bank [1:0] Register

Address: 0xF46B, Reset: 0x0000, Name: PANIC_PARITY_MASK5

Table 116. Bit Descriptions for PANIC_PARITY_MASK5

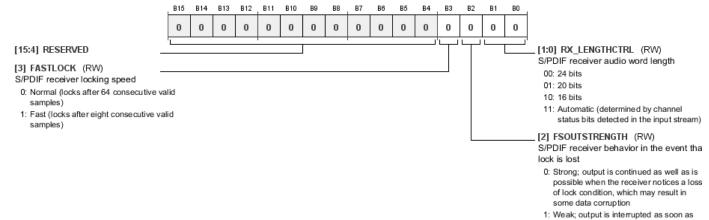

Bits	Bit Name	Settings	Description	Reset	Access
[15:14]	RESERVED		Reserved.	0x0	RW
13	PM_BANK1_SUBBANK5_MASK		Bank 1 Subbank 5 mask.	0x0	RW
		0	Report Bank 1 Subbank 5 parity errors		
		1	Ignore Bank 1 Subbank 5 parity errors		
12	PM_BANK1_SUBBANK4_MASK		Bank 1 Subbank 4 mask.	0x0	RW
		0	Report Bank 1 Subbank 4 parity errors		
		1	Ignore Bank 1 Subbank 4 parity errors		

S/PDIF INTERFACE REGISTERS

S/PDIF Receiver Lock Bit Detection Register

Address: 0xF600, Reset: 0x0000, Name: SPDIF_LOCK_DET

This register contains a flag that monitors the S/PDIF receiver and provides a way to check the validity of the input signal.


Table 132. Bit Descriptions for SPDIF_LOCK_DET

Bits	Bit Name	Settings	Description	Reset	Access
[15:1]	RESERVED			0x0	RW
0	LOCK		S/PDIF input lock.	0x0	R
		0	No lock acquired; no valid input stream detected		
		1	Successful lock to input stream		

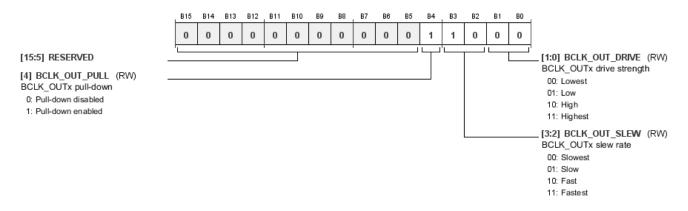
S/PDIF Receiver Control Register

Address: 0xF601, Reset: 0x0000, Name: SPDIF_RX_CTRL

This register provides controls that govern the behavior of the S/PDIF receiver on the ADAU1466 and ADAU1462.

receiver notices a loss of lock condition

Table 133. Bit Descriptions for SPDIF_RX_CTRL

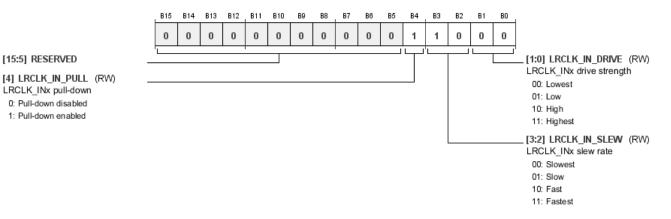

Bits	Bit Name	Settings	Description	Reset	Access
[15:4]	RESERVED			0x0	RW
3	FASTLOCK		S/PDIF receiver locking speed.	0x0	RW
		0	Normal (locks after 64 consecutive valid samples)		
		1	Fast (locks after eight consecutive valid samples)		
2	FSOUTSTRENGTH		S/PDIF receiver behavior in the event that lock is lost. FSOUTSTRENGTH applies to the output of the recovered frame clock from the S/PDIF receiver.	0x0	RW
		0	Strong; output is continued as well as is possible when the receiver notices a loss of lock condition, which may result in some data corruption		
		1	Weak; output is interrupted as soon as receiver notices a loss of lock condition		
[1:0]	RX_LENGTHCTRL		S/PDIF receiver audio word length.	0x0	RW
		00	24 bits		
		01	20 bits		
		10	16 bits		
		11	Automatic (determined by channel status bits detected in the input stream)		

Rev. C | Page 165 of 202

BCLK Output Pins Drive Strength and Slew Rate Register

Address: 0xF784 to 0xF787 (Increments of 0x1), Reset: 0x0018, Name: BCLK_OUTx_PIN

These registers configure the drive strength, slew rate, and pull resistors for the BCLK_OUTx pins. Register 0xF784 corresponds to BCLK_OUT0, Register 0xF785 corresponds to BCLK_OUT1, Register 0xF786 corresponds to BCLK_OUT2, and Register 0xF787 corresponds to BCLK_OUT3.

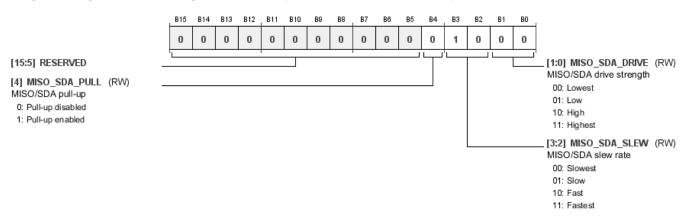

Table 160. Bit Descriptions for BCLK_OUTx_PIN

Bits	Bit Name	Settings	Description	Reset	Access
[15:5]	RESERVED			0x0	RW
4	BCLK_OUT_PULL		BCLK_OUTx pull-down.	0x1	RW
		0	Pull-down disabled		
		1	Pull-down enabled		
[3:2]	BCLK_OUT_SLEW		BCLK_OUTx slew rate.	0x2	RW
		00	Slowest		
		01	Slow		
		10	Fast		
		11	Fastest		
[1:0]	BCLK_OUT_DRIVE		BCLK_OUTx drive strength.	0x0	RW
		00	Lowest		
		01	Low		
		10	High		
		11	Highest		

LRCLK Input Pins Drive Strength and Slew Rate Register

Address: 0xF788 to 0xF78B (Increments of 0x1), Reset: 0x0018, Name: LRCLK_INx_PIN

These registers configure the drive strength, slew rate, and pull resistors for the LRCLK_INx pins. Register 0xF788 corresponds to LRCLK_IN0/MP10, Register 0xF789 corresponds to LRCLK_IN1/MP11, Register 0xF78A corresponds to LRCLK_IN2/MP12, and Register 0xF78B corresponds to LRCLK_IN3/MP13.

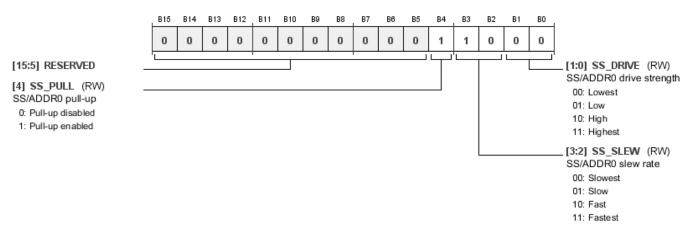

Table 161. Bit Descriptions for LRCLK_INx_PIN

Bits	Bit Name	Settings	Description	Reset	Access
[15:5]	RESERVED			0x0	RW
4	LRCLK_IN_PULL		LRCLK_INx pull-down.	0x1	RW
		0	Pull-down disabled		
		1	Pull-down enabled		
[3:2]	LRCLK_IN_SLEW		LRCLK_INx slew rate.	0x2	RW
		00	Slowest		
		01	Slow		
		10	Fast		
		11	Fastest		
[1:0]	LRCLK_IN_DRIVE		LRCLK_INx drive strength.	0x0	RW
		00	Lowest		
		01	Low		
		10	High		
		11	Highest		

MISO/SDA Pin Drive Strength and Slew Rate Register

Address: 0xF79A, Reset: 0x0008, Name: MISO_SDA_PIN

This register configures the drive strength, slew rate, and pull resistors for the MISO/SDA pin.


Table 167. Bit Descriptions for MISO_SDA_PIN

Bits	Bit Name	Settings	Description	Reset	Access
[15:5]	RESERVED			0x0	RW
4	MISO_SDA_PULL		MISO/SDA pull-up.	0x0	RW
		0	Pull-up disabled		
		1	Pull-up enabled		
[3:2]	MISO_SDA_SLEW		MISO/SDA slew rate.	0x2	RW
		00	Slowest		
		01	Slow		
		10	Fast		
		11	Fastest		
[1:0]	MISO_SDA_DRIVE		MISO/SDA drive strength.	0x0	RW
		00	Lowest		
		01	Low		
		10	High		
		11	Highest		

SS/ADDR0 Pin Drive Strength and Slew Rate Register

Address: 0xF79B, Reset: 0x0018, Name: SS_PIN

This register configures the drive strength, slew rate, and pull resistors for the SS/ADDR0 pin.

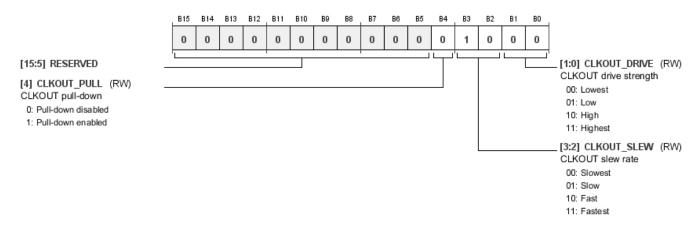

Bits	Bit Name	Settings	Description	Reset	Access
[15:5]	RESERVED			0x0	RW
4	SS_PULL		SS/ADDR0 pull-up.	0x1	RW
		0	Pull-up disabled		
		1	Pull-up enabled		
[3:2]	SS_SLEW		SS/ADDR0 slew rate.	0x2	RW
		00	Slowest		
		01	Slow		
		10	Fast		
		11	Fastest		
[1:0]	SS_DRIVE		SS/ADDR0 drive strength.	0x0	RW
		00	Lowest		
		01	Low		
		10	High		
		11	Highest		

Table 168. Bit Descriptions for SS_PIN

CLKOUT Pin Drive Strength and Slew Rate Register

Address: 0xF7A3, Reset: 0x0008, Name: CLKOUT_PIN

This register configures the drive strength, slew rate, and pull resistors for the CLKOUT pin.

Bits	Bit Name	Settings	Description	Reset	Access
[15:5]	RESERVED			0x0	RW
4	CLKOUT_PULL		CLKOUT pull-down.	0x0	RW
		0	Pull-down disabled		
		1	Pull-down enabled		
[3:2]	CLKOUT_SLEW		CLKOUT slew rate.	0x2	RW
		00	Slowest		
		01	Slow		
		10	Fast		
		11	Fastest		
[1:0]	CLKOUT_DRIVE		CLKOUT drive strength.	0x0	RW
		00	Lowest		
		01	Low		
		10	High		
		11	Highest		

Table 176. Bit Descriptions for CLKOUT_PIN