E·XFL

NXP USA Inc. - MSC7112VM1000 Datasheet

Welcome to E-XFL.COM

Understanding <u>Embedded - DSP (Digital</u> <u>Signal Processors)</u>

Embedded - DSP (Digital Signal Processors) are specialized microprocessors designed to perform complex mathematical computations on digital signals in real-time. Unlike general-purpose processors, DSPs are optimized for high-speed numeric processing tasks, making them ideal for applications that require efficient and precise manipulation of digital data. These processors are fundamental in converting and processing signals in various forms, including audio, video, and communication signals, ensuring that data is accurately interpreted and utilized in embedded systems.

Applications of <u>Embedded - DSP (Digital</u> <u>Signal Processors)</u>

Details

Product Status	Obsolete
Туре	Fixed Point
Interface	Host Interface, I ² C, UART
Clock Rate	266MHz
Non-Volatile Memory	ROM (8kB)
On-Chip RAM	208kB
Voltage - I/O	3.30V
Voltage - Core	1.20V
Operating Temperature	-40°C ~ 105°C (TJ)
Mounting Type	Surface Mount
Package / Case	400-LFBGA
Supplier Device Package	400-LFBGA (17x17)
Purchase URL	https://www.e-xfl.com/product-detail/nxp-semiconductors/msc7112vm1000

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Pin Assignments

Figure 3. MSC7112 Molded Array Process-Ball Grid Array (MAP-BGA), Bottom View

1.2 Signal List By Ball Location

Table 1 lists the signals sorted by ball number and configuration.

Table 1. MSC7112 Signals by Ball Designator

	Signal Names						
Number		S	Hardware	Controlled			
	End of Reset	GPI Enabled (Default)	Interrupt Enabled	GPO Enabled	Primary	Alternate	
A1			GI	ND			
A2			GI	ND			
A3			DC	QM1			
A4			DG	QS2			
A5			C	к			
A6			C	ĸ			
A7		GPIC7		GPOC7	H	D15	
A8		GPIC4		GPOC4	H	D12	
A9		GPIC2		GPOC2	H	D10	
A10		rese	erved		Н	D7	
A11		rese	erved		Н	D6	
A12		rese	erved		Н	D4	
A13	reserved HD1					D1	
A14		rese	erved		Н	D0	
A15			GI	ND			
A16 (1L44X)			Ν	IC			
A16 (1M88B)	BM3	GP	ID8	GPOD7	rese	erved	
A17			N	IC			
A18			N	IC			
A19			N	IC			
A20			N	IC			
B1			VD	DM			
B2			N	IC			
В3			C	S0			
B4			DC	QM2			
B5	DQS3						
B6	DQS0						
B7	CKE						
B8		WE					
В9	GPIC6 GPOC6 HD14					D14	
B10		GPIC3		GPOC3	HI	D11	
B11		GPIC0		GPOC0	Н	D8	
B12		rese	erved		Н	D5	
B13		rese	erved		Н	D2	
B14			N	IC			
B15 (1L44X)			N	IC			

	Signal Names						
Number		S	Software Controlle	d	Hardware	Controlled	
	End of Reset	GPI Enabled (Default)	Interrupt Enabled	GPO Enabled	Primary	Alternate	
D13			V _D	DIO			
D14			V _D	DIO			
D15			V _D	DIO			
D16			V _D	DIO			
D17			V _D	DC			
D18			N	С			
D19			N	С			
D20			N	С			
E1			GI	ND			
E2			D	26			
E3			D	31			
E4			VD	DM			
E5			VD	DM			
E6			V _D	DC			
E7			V _D	DC			
E8			V _D	DC			
E9			V _D	DC			
E10			VD	DM			
E11			V _D	DIO			
E12			V _D	DIO			
E13			V _D	DIO			
E14			V _D	DIO			
E15			V _D	DIO			
E16		V _{DDC}					
E17		V _{DDC}					
E18		NC					
E19		NC					
E20			N	С			
F1			VD	DM			
F2			D	15			
F3			D	29			
F4			VD	DC			
F5			V _C	DC			
F6			V _C	DC			
F7			GI	ND			
F8			GI	ND			
F9			GI	ND			
F10		V _{DDM}					

Table 1. MSC7112 Signals by Ball Designator (continued)

	Signal Names					
Number		S	Software Controlle	ed	Hardware	Controlled
	End of Reset	GPI Enabled (Default)	Interrupt Enabled	GPO Enabled	Primary	Alternate
H9			G	ND		
H10			G	ND		
H11			G	ND		
H12			G	ND		
H13			G	ND		
H14			G	ND		
H15			VD	DIO		
H16			V _D	DIO		
H17			V			
H18			N	IC		
H19		rese	erved		Н	A2
H20		rese	erved		Н	A1
J1			D	10		
J2			V _C	DM		
J3			Γ	9		
J4			V _C	DM		
J5			V _C	DM		
J6			V _C	DM		
J7			G	ND		
J8			G	ND		
J9			G	ND		
J10			G	ND		
J11			G	ND		
J12			G	ND		
J13			G	ND		
J14			G	ND		
J15			G	ND		
J16			V _D	DIO		
J17			V	DDC		
J18 (1L44X)		rese	erved		Н	A3
J18 (1M88B)		GPIC11		GPOC11	Н	A3
J19		rese	erved		HACK/HACK of	or HRRQ/HRRQ
J20	HDSP		reserved		HREQ/HREQ	or HTRQ/HTRQ
K1				00		
K2			G	ND		
K3			C	08		
K4			V	DDC		
K5			V	DDM		

Table 1. MSC7112 Signals by Ball Designator (continued)

	Signal Names							
Number		s	Hardware	e Controlled				
	End of Reset	GPI Enabled (Default)	Interrupt Enabled	GPO Enabled	Primary	Alternate		
K6			G	SND				
K7			G	SND				
K8			G	SND				
K9			G	SND				
K10			G	SND				
K11			G	SND				
K12			G	SND				
K13			G	SND				
K14			G	SND				
K15			V	DDIO				
K16			V	DDIO				
K17			V	DDC				
K18		rese	erved		ŀ	HA0		
K19		reserved HDDS						
K20	reserved HDS/HDS or				or HWR/HWR			
L1				D1				
L2			G	SND				
L3				D3				
L4			V	DDC				
L5			V	DDM				
L6			C	SND				
L7			C	SND				
L8			G	SND				
L9			G	SND				
L10			G	SND				
L11			G	SND				
L12			C	SND				
L13			C	SND				
L14			V	DDIO				
L15			V	DDIO				
L16			V	DDIO				
L17			V	DDC				
L18 (1L44X)		rese	erved		HCS	2/HCS2		
L18 (1M88B)		GPIB11		GPOB11	HCS	2/HCS2		
L19		rese	erved		HCS	1/HCS1		
L20		rese	erved		HRW or	HRD/HRD		
M1				D2				
M2			V	DDM				

Table 1. MSC7112 Signals by Ball Designator (continued)

Signal Names							
Number		S	ed	Hardware	Controlled		
Number	End of Reset	GPI Enabled (Default)	Interrupt Enabled	GPO Enabled	Primary	Alternate	
M3			C	95			
M4			VD	DM			
M5			VD	DM			
M6			GI	ND			
M7			GI	ND			
M8			GI	ND			
M9			GI	ND			
M10			GI	ND			
M11			GI	ND			
M12			GI	ND			
M13			GI	ND			
M14			GI	ND			
M15			GI	ND			
M16			V _D	DC			
M17			V _D	DC			
M18	GPI	IA14	IRQ15	GPOA14	SI	DA	
M19	GPI	IA12	IRQ3	GPOA12	UT	XD	
M20	GPI	IA13	IRQ2	GPOA13	3 URXD		
N1			C	04			
N2			C	06			
N3			V _F	REF			
N4			VD	DM			
N5			VD	DM			
N6			VD	DM			
N7			GI	ND			
N8			GI	ND			
N9			GI	ND			
N10			GI	ND			
N11			GI	ND			
N12			GI	ND			
N13			GI	ND			
N14			GI	ND			
N15			VD	DIO			
N16			V _D	DC			
N17			V _D	DC			
N18			CL	KIN			
N19	GP	IA15	IRQ14	GPOA15	S	CL	
N20			V _{SS}	SPLL			

Table 1. MSC7112 Signals by Ball Designator (continued)

	Signal Names							
Number	Software Controlled				Hardware	Controlled		
	End of Reset	GPI Enabled (Default)	Interrupt Enabled	GPO Enabled	Primary	Alternate		
P1			l	77				
P2			C	017				
P3			C	016				
P4			V	DDM				
P5			V	DDM				
P6			V	DDM				
P7			G	ND				
P8			G	ND				
P9			G	ND				
P10			G	ND				
P11			G	ND				
P12			G	ND				
P13			G	ND				
P14			G	ND				
P15			V	DDIO				
P16			V	DDIO				
P17			V	DDC				
P18			POF	RESET				
P19			TF	SEL				
P20			VD	DPLL				
R1			G	ND				
R2			C	019				
R3			C	018				
R4			V	DDM				
R5			V	DDM				
R6			V	DDM				
R7			G	ND				
R8			V	DDM				
R9			G	ND				
R10			V	DDM				
R11			G	ND				
R12			G	ND				
R13			V	DDIO				
R14			G	ND				
R15			V	DDIO				
R16			V	DDIO				
R17			V	DDC				
R18	TDO							

Table 1. MSC7112 Signals by Ball Designator (continued)

	Signal Names						
Number		s	oftware Controlle	ed	Hardware	Controlled	
	End of Reset	GPI Enabled (Default)	Interrupt Enabled	GPO Enabled	Primary	Alternate	
U17			V	DDC			
U18			N	IC			
U19			т	СК			
U20			AL AL	RST			
V1			V _C	DDM			
V2			Ν	IC			
V3			A	13			
V4			A	11			
V5			A	10			
V6			A	\5			
V7			A	12			
V8			B	A0			
V9		NC					
V10		rese	erved		EV	NT0	
V11	SWTE	GPIA16	IRQ12	GPOA16	EVNT4		
V12	GP	IA8	IRQ6	GPOA8	ТОТСК		
V13	GP	IA4	IRQ1	GPOA4	T1	RFS	
V14	GP	'IAO	IRQ11	GPOA0	T1	TD	
V15	GPI	A28	IRQ17	GPOA28	reserved	reserved	
V16		GPID6		GPOD6	reserved	reserved	
V17	GPI	A22	IRQ22	GPOA22	rese	erved	
V18	GPI	A24	IRQ24	GPOA24	rese	erved	
V19			Ν	IC			
V20			Т	DI			
W1			GI	ND			
W2			V _C	DDM			
W3			A	12			
W4			А	\8			
W5			A	7			
W6			А	٨6			
W7	A3						
W8			Ν	IC			
W9	GPI	A17	IRQ13	GPOA17	EVNT1	CLKO	
W10	BM0	GPI	C14	GPOC14	EV	NT2	
W11	GPI	A10	IRQ5	GPOA10	TO	RFS	
W12	GP	PIA7	IRQ7	GPOA7	TO	TFS	
W13	GP	IA3	IRQ8	GPOA3	T1	RD	
W14	GP	IA1	IRQ10	GPOA1	T1	TFS	

Table 1. MSC7112 Signals by Ball Designator (continued)

ifications

2.2 Recommended Operating Conditions

Table 3 lists recommended operating conditions. Proper device operation outside of these conditions is not guaranteed.

Rating	Symbol	Value	Unit
Core supply voltage	V _{DDC}	1.14 to 1.26	V
Memory supply voltage	V _{DDM}	2.38 to 2.63	V
PLL supply voltage	V _{DDPLL}	1.14 to 1.26	V
I/O supply voltage	V _{DDIO}	3.14 to 3.47	V
Reference voltage	V _{REF}	1.19 to 1.31	V
Operating temperature range	T _J T _A	maximum: 105 minimum: –40	℃ ℃

Table 3. Recommended Op	perating Conditions
-------------------------	---------------------

2.3 Thermal Characteristics

 Table 4 describes thermal characteristics of the MSC7112 for the MAP-BGA package.

				MAP-BGA	$17 imes 17~\mathrm{mm^5}$	
	Characteristic			Natural Convection	200 ft/min (1 m/s) airflow	Unit
Junction-to-ambient ^{1, 2}			R _{θJA}	39	31	°C/W
Junction-to-ambient, four-layer board ^{1, 3}		R _{θJA}	23	20	°C/W	
Junction-to-board ⁴		R _{θJB}	12		°C/W	
Junction-to-case ⁵			R _{θJC}	7		°C/W
Junctior	n-to-p	ackage-top ⁶	Ψ_{JT}	2		°C/W
Notes:	1.	Junction temperature is a function of die size temperature, ambient temperature, air flow, resistance.	e, on-chip power diss power dissipation of	sipation, package the other components c	ermal resistance, mou In the board, and boa	unting site (board) Ird thermal
	2.	Per SEMI G38-87 and JEDEC JESD51-2 wi	th the single layer bo	oard horizontal.		
	3.	Per JEDEC JESD51-6 with the board horizo	ntal.			
	4. Thermal resistance between the die and the printed circuit board per JEDEC JESD 51-8. Board temperature is measured on the top surface of the board near the package.					
	5.	Thermal resistance between the die and the 1012.1).	case top surface as	measured by the col	d plate method (MIL	SPEC-883 Method
	6.	Thermal characterization parameter indicatir per JEDEC JESD51-2.	ng the temperature di	ifference between pa	ackage top and the ju	nction temperature

Table 4.	Thermal	Characteristics	for MAP-BG	A Package
----------	---------	-----------------	------------	-----------

Section 3.1, Thermal Design Considerations explains these characteristics in detail.

Figure 4. Timing Diagram for a Reset Configuration Write

2.5.4 **DDR DRAM Controller Timing**

This section provides the AC electrical characteristics for the DDR DRAM interface.

2.5.4.1 **DDR DRAM Input AC Timing Specifications**

Table 18 provides the input AC timing specifications for the DDR DRAM interface.

	Parameter	Symbol	Min	М		
No.				Mask Set 1L44X	Mask Set 1M88B	Unit
—	AC input low voltage	V _{IL}	—	V _{REF} – 0.31	V _{REF} – 0.31	V
_	AC input high voltage	V _{IH}	V _{REF} + 0.31	V _{DDM} + 0.3	V _{DDM} + 0.3	V
201	Maximum Dn input setup skew relative to DQSn input	—	—	1026	900	ps
202	Maximum Dn input hold skew relative to DQSn input	—	_	386	900	ps
Notes:	 Maximum possible skew between a data strobe (DQSn) and any corresponding bit of data (D[8n + {07}] if 0 ≤ n ≤ 7). See Table 19 for t_{CK} value. Dn should be driven at the same time as DQSn. This is necessary because the DQSn centering on the DQn data tenure is 					

Table 18. DDR DRAM Input AC Timing

done internally.

2.5.4.2 DDR DRAM Output AC Timing Specifications

Table 19 and Table 20 list the output AC timing specifications and measurement conditions for the DDR DRAM interface.

			м			
No.	Parameter	Symbol	Mask Set 1L44X	Mask Set 1M88B	Мах	Unit
200	CK cycle time, (CK/ CK crossing) ¹ • 100 MHz (DDR200) • 133 MHz (DDR266)	t _{СК}	10 Not applicable	1.0 7.52	_	ns ns
204	An/RAS/CAS/WE/CKE output setup with respect to CK	t _{DDKHAS}	$0.5 imes t_{CK} - 2250$	$0.5 imes t_{CK} - 1000$	—	ps
205	An/RAS/CAS/WE/CKE output hold with respect to CK	t _{DDKHAX}	$0.5 imes t_{CK} - 1250$	$0.5 imes t_{CK} - 1000$	—	ps
206	CSn output setup with respect to CK	t _{DDKHCS}	$0.5 \times t_{CK} - 2250$	$0.5 \times t_{CK} - 1000$	—	ps
207	CSn output hold with respect to CK	t _{DDKHCX}	$0.5 imes t_{CK} - 1250$	$0.5 \times t_{\text{CK}} - 1000$	—	ps
208	CK to DQSn ²	t _{DDKHMH}	-600	-600	600	ps
209	Dn/DQMn output setup with respect to DQSn ³	t _{DDKHDS,} t _{DDKLDS}	0.25 × t _{MCK} – 1050	$0.25 imes t_{CK} - 750$	_	ps
210	Dn/DQMn output hold with respect to DQSn ³	t _{DDKHDX,} t _{DDKLDX}	$0.25 \times t_{CK} - 1050$	$0.25 imes t_{CK} - 750$	—	ps
211	DQSn preamble start ⁴	t _{DDKHMP}	$-0.25 \times t_{CK}$	$-0.25 \times t_{CK}$	_	ps
212	DQSn epilogue end ⁵	t _{DDKHME}	-600	-600	600	ps

Table 19. DDR DRAM Output AC Timing

Notes: 1. All CK/CK referenced measurements are made from the crossing of the two signals ±0.1 V.

2. t_{DDKHMH} can be modified through the TCFG2[WRDD] DQSS override bits. The DRAM requires that the first write data strobe arrives 75–125% of a DRAM cycle after the write command is issued. Any skew between DQSn and CK must be considered when trying to achieve this 75%–125% goal. The TCFG2[WRDD] bits can be used to shift DQSn by 1/4 DRAM cycle increments. The skew in this case refers to an internal skew existing at the signal connections. By default, the CK/CK crossing occurs in the middle of the control signal (An/RAS/CAS/WE/CKE) tenure. Setting TCFG2[ACSM] bit shifts the control signal assertion 1/2 DRAM cycle earlier than the default timing. This means that the signal is asserted no earlier than 410 ps before the CK/CK crossing and no later than 677 ps after the crossing time; the device uses 1087 ps of the skew budget (the interval from –410 to +677 ps). Timing is verified by referencing the falling edge of CK. See Chapter 10 of the *MSC711x Reference Manual* for details.

3. Determined by maximum possible skew between a data strobe (DQS) and any corresponding bit of data. The data strobe should be centered inside of the data eye.

4. Please note that this spec is in reference to the DQSn first rising edge. It could also be referenced from CK(r), but due to programmable delay of the write strobes (TCFG2[WRDD]), there pre-amble may be extended for a full DRAM cycle. For this reason, we reference from DQSn.

5. All outputs are referenced to the rising edge of CK. Note that this is essentially the CK/DQSn skew in spec 208. In addition there is no real "maximum" time for the epilogue end. JEDEC does not require this is as a device limitation, but simply for the chip to guarantee fast enough write to read turn-around times. This is already guaranteed by the memory controller operation.

Table 21. TDM Timing

No.	Characteristic Expression	Min	Max	Units		
307	TDMxTCK High to TDMxTD output valid	—	14.0	ns		
308	TDMxTD hold time	2.0 —		ns		
309	TDMxTCK High to TDMxTD output high impedance	—	10.0	ns		
310	TDMXTFS/TDMxRFS output valid	_	13.5	ns		
311	TDMxTFS/TDMxRFS output hold time	2.5	—	ns		
Notes:	1. Output values are based on 30 pF capacitive load.					

2. Inputs are referenced to the sampling that the TDM is programmed to use. Outputs are referenced to the programming edge they are programmed to use. Use of the rising edge or falling edge as a reference is programmable. Refer to the MSC711x Reference Manual for details. TDMxTCK and TDMxRCK are shown using the rising edge.

Figure 8. TDM Receive Signals

Figure 15. Host DMA Write Timing Diagram, HPCR[OAD] = 0

2.5.7 I²C Timing

NI -		Fas	st	
NO.	Characteristic	Min	Мах	Unit
450	SCL clock frequency	0	400	kHz
451	Hold time START condition	(Clock period/2) – 0.3	_	μs
452	SCL low period	(Clock period/2) – 0.3	_	μs
453	SCL high period	(Clock period/2) – 0.1		μs
454	Repeated START set-up time (not shown in figure)	$2 \times 1/F_{BCK}$	_	μs
455	Data hold time	0		μs
456	Data set-up time	250	_	ns
457	SDA and SCL rise time	_	700	ns
458	SDA and SCL fall time	—	300	ns
459	Set-up time for STOP	(Clock period/2) – 0.7	_	μs
460	Bus free time between STOP and START	(Clock period/2) – 0.3	_	μs
Note:	SDA set-up time is referenced to the rising edge of SCL. SD on SDA and SCL is 400 pF.	A hold time is referenced to the	e falling edge of SCL. Load cap	bacitance

Table 23. I²C Timing

Figure 16. I²C Timing Diagram

2.5.12 JTAG Signals

No	Characteristics	All freq	All frequencies		
NO.	Characteristics	Min	Мах		
700	TCK frequency of operation (1/($T_C \times 3$); maximum 22 MHz)	0.0	40.0	MHz	
701	TCK cycle time	25.0	_	ns	
702	TCK clock pulse width measured at $V_{M =}$ 1.6 V	11.0	_	ns	
703	TCK rise and fall times	0.0	3.0	ns	
704	Boundary scan input data set-up time	5.0	—	ns	
705	Boundary scan input data hold time	14.0	—	ns	
706	TCK low to output data valid	0.0	20.0	ns	
707	TCK low to output high impedance	0.0	20.0	ns	
708	TMS, TDI data set-up time	5.0	_	ns	
709	TMS, TDI data hold time	25.0	—	ns	
710	TCK low to TDO data valid	0.0	24.0	ns	
711	TCK low to TDO high impedance	0.0	10.0	ns	
712	TRST assert time	100.0	_	ns	
Note:	All timings apply to OCE module data transfers as the OCE module uses the JTAG port as an interface.				

Table 28. JTAG Timing

Figure 22. Test Clock Input Timing Diagram

Figure 24. Test Access Port Timing Diagram

Figure 25. TRST Timing Diagram

ware Design Considerations

3.2.2.3 Case 3

The power-up sequence is as follows:

- 1. Turn on the V_{DDIO} (3.3 V) supply first.
- 2. Turn on the V_{DDC} (1.2 V) supply second.
- 3. Turn on the V_{DDM} (2.5 V) and V_{REF} (1.25 V) supplies simultaneously (third).

Note: Make sure that the time interval between the ramp-up of V_{DDIO} and V_{DDC} is less than 10 ms.

The power-down sequence is as follows:

- 1. Turn off the V_{DDM} (2.5 V) and V_{REF} (1.25 V) supplies simultaneously (first).
- 2. Turn off the V_{DDC} (1.2 V) supply second.
- 3. Turn of the V_{DDIO} (3.3 V) supply third (last).

Use the following guidelines:

- Make sure that the time interval between the ramp-down for V_{DDIO} and V_{DDC} is less than 10 ms.
- Make sure that the time interval between the ramp-up or ramp-down time for V_{DDC} and V_{DDM} is less than 10 ms for power-up and power-down.
- Refer to **Figure 28** for relative timing for Case 3.

Figure 28. Voltage Sequencing Case 3

ware Design Considerations

3.2.7 Power Supply Design

One of the most common ways to derive power is to use either a simple fixed or adjustable linear regulator. For the system I/O voltage supply, a simple fixed 3.3 V supply can be used. However, a separate adjustable linear regulator supply for the core voltage V_{DDC} should be implemented. For the memory power supply, regulators are available that take care of all DDR power requirements.

Supply	Symbol	Nominal Voltage	Current Rating
Core	V _{DDC}	1.2 V	1.5 A per device
Memory	V _{DDM}	2.5 V	0.5 A per device
Reference	V _{REF}	1.25 V	10 µA per device
I/O	V _{DDIO}	3.3 V	1.0 A per device

Table 30	. Recommended	Power	Supply	Ratings
----------	---------------	-------	--------	---------

3.3 Estimated Power Usage Calculations

The following equations permit estimated power usage to be calculated for individual design conditions. Overall power is derived by totaling the power used by each of the major subsystems:

$$P_{TOTAL} = P_{CORE} + P_{PERIPHERALS} + P_{DDRIO} + P_{IO} + P_{LEAKAGE}$$
 Eqn. 3

This equation combines dynamic and static power. Dynamic power is determined using the generic equation:

$$C \times V^2 \times F \times 10^{-3} mW$$
 Eqn. 4

where,

C = load capacitance in pF

V = peak-to-peak voltage swing in V

F = frequency in MHz

3.3.1 Core Power

Estimation of core power is straightforward. It uses the generic dynamic power equation and assumes that the core load capacitance is 750 pF, core voltage swing is 1.2 V, and the core frequency is 200 MHz or 266 MHz. This yields:

$$P_{CORE} = 750 \ pF \times (1.2 \ V)^2 \times 200 \ MHz \times 10^{-3} = 216 \ mW$$
 Eqn. 5

$$P_{CORE} = 750 \ pF \times (1.2 \ V)^2 \times 266 \ MHz \times 10^{-3} = 287 \ mW$$
 Eqn. 6

This equation allows for adjustments to voltage and frequency if necessary.

3.6 Connectivity Guidelines

This section summarizes the connections and special conditions, such as pull-up or pull-down resistors, for the MSC7112 device. Following are guidelines for signal groups and configuration settings:

- Clock and reset signals.
 - SWTE is used to configure the MSC7112 device and is sampled on the deassertion of PORESET, so it should be tied to V_{DDC} or GND either directly or through pull-up or pull-down resistors until PORESET is deasserted. After PORESET, this signal can be left floating.
 - BM[0–1] configure the MSC7112 device and are sampled until PORESET is deasserted, so they should be tied to V_{DDIO} or GND either directly or through pull-up or pull-down resistors.
 - **HRESET** should be pulled up.
- Interrupt signals. When used, **IRQ** pins must be pulled up.
- HDI16 signals.
 - When they are configured for open-drain, the HREQ/HREQ or HTRQ/HTRQ signals require a pull-up resistor. However, these pins are also sampled at power-on reset to determine the HDI16 boot mode and may need to be pulled down. When these pins must be pulled down on reset and pulled up otherwise, a buffer can be used with the HRESET signal as the enable.
 - When the device boots through the HDI16, the HDDS, HDSP and H8BIT pins should be pulled up or down, depending on the required boot mode settings.
- I^2C signals. The SCL and SDA signals, when programmed for I^2C , requires an external pull-up resistor.
- *General-purpose I/O (GPIO) signals*. An unused GPIO pin can be disconnected. After boot, program it as an output pin.
- Other signals.
 - The $\overline{\mathsf{TEST0}}$ pin must be connected to ground.
 - The TPSEL pin should be pulled up to enable debug access via the EOnCE port and pulled down for boundary scan.
 - Pins labelled NO CONNECT (NC) must not be connected.
 - When a 16-pin double data rate (DDR) interface is used, the 16 unused data pins should be no connects (floating) if the used lines are terminated.
 - Do not connect DBREQ to DONE (as you would for the MSC8101 device). Connect DONE to one of the EVNT pins, and DBREQ to HRRQ.

4 Ordering Information

Consult a Freescale Semiconductor sales office or authorized distributor to determine product availability and place an order.

Part	Supply Voltage	Package Type	Pin Count	Core Frequency (MHz)	Solder Spheres	Order Number
MSC7112 (mask 1L44X	1.2 V core 2.5 V mem. 3.3 V I/O	Molded Array Process-Ball Grid Array (MAP-BGA)	400	200	Lead-free Lead-bearing	MSC7112VM800 MSC7112VF800
MSC7112 (mask 1M88B)	1.2 V core 2.5 V mem 3.3 V I/O	Molded Array Process-Ball Grid Array (MAP-BGA)	400	266	Lead-free Lead-bearing	MSC7112VM1000 MSC7112VF1000

age Information

5 Package Information

Notes:

1. All dimensions in millimeters.

2. Dimensioning and tolerancing per ASME Y14.5M–1994.

Maximum solder ball diameter measured parallel to Datum A.

Apatum A, the seating plane, is determined by the spherical crowns of the solder balls.

Arallelism measurement shall exclude any effect of mark on top surface of package.

CASE 1568-01

Figure 34. MSC7112 Mechanical Information, 400-pin MAP-BGA Package

6 **Product Documentation**

- *MSC711x Reference Manual* (MSC711xRM). Includes functional descriptions of the extended cores and all the internal subsystems including configuration and programming information.
- Application Notes. Cover various programming topics related to the StarCore DSP core and the MSC7112 device.
- *SC140/SC1400 DSP Core Reference Manual*. Covers the SC140 and SC1400 core architecture, control registers, clock registers, program control, and instruction set.