E·XFL

NXP USA Inc. - MSC7112VM800 Datasheet

Welcome to E-XFL.COM

Understanding <u>Embedded - DSP (Digital</u> <u>Signal Processors)</u>

Embedded - DSP (Digital Signal Processors) are specialized microprocessors designed to perform complex mathematical computations on digital signals in real-time. Unlike general-purpose processors, DSPs are optimized for high-speed numeric processing tasks, making them ideal for applications that require efficient and precise manipulation of digital data. These processors are fundamental in converting and processing signals in various forms, including audio, video, and communication signals, ensuring that data is accurately interpreted and utilized in embedded systems.

Applications of <u>Embedded - DSP (Digital</u> <u>Signal Processors)</u>

Details

Product Status	Obsolete
Туре	SC1400 Core
Interface	Host Interface, I ² C, UART
Clock Rate	200MHz
Non-Volatile Memory	External
On-Chip RAM	208kB
Voltage - I/O	3.30V
Voltage - Core	1.20V
Operating Temperature	-40°C ~ 105°C (TJ)
Mounting Type	Surface Mount
Package / Case	400-LFBGA
Supplier Device Package	400-LFBGA (17x17)
Purchase URL	https://www.e-xfl.com/product-detail/nxp-semiconductors/msc7112vm800

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Table of Contents

1	1 Pin Assignments						
	1.1	MAP-BGA Ball Layout Diagrams					
	1.2	Signal List By Ball Location					
2	Spec	ifications					
	2.1	Maximum Ratings					
	2.2	Recommended Operating Conditions					
	2.3	Thermal Characteristics					
	2.4	DC Electrical Characteristics					
	2.5	AC Timings					
3	Hard	ware Design Considerations					
	3.1	Thermal Design Considerations					
	3.2	Power Supply Design Considerations					
	3.3	Estimated Power Usage Calculations46					
	3.4	Reset and Boot48					
	3.5	DDR Memory System Guidelines					
4	Order	ring Information					
5	Packa	age Information					
6	Produ	uct Documentation					
7	Revis	sion History					
		Figures					

MSC7112 Block Diagram
MSC7112 Molded Array Process-Ball Grid Array
(MAP-BGA), Top View
MSC7112 Molded Array Process-Ball Grid Array
(MAP-BGA), Bottom View
Timing Diagram for a Reset Configuration Write 24
DDR DRAM Input Timing Diagram 24

Figure 6.	DDR DRAM Output Timing Diagram
Figure 7.	DDR DRAM AC Test Load
Figure 8.	TDM Receive Signals
Figure 9.	TDM Transmit Signals
Figure 10.	Read Timing Diagram, Single Data Strobe 29
Figure 11.	Read Timing Diagram, Double Data Strobe
Figure 12.	Write Timing Diagram, Single Data Strobe
Figure 13.	Write Timing Diagram, Double Data Strobe
Figure 14.	Host DMA Read Timing Diagram, HPCR[OAD] = 031
Figure 15.	Host DMA Write Timing Diagram, HPCR[OAD] = 032
Figure 16.	I2C Timing Diagram
Figure 17.	UART Input Timing
Figure 18.	UART Output Timing
Figure 19.	EE Pin Timing
Figure 20.	EVNT Pin Timing
Figure 21.	GPI/GPO Pin Timing
Figure 22.	Test Clock Input Timing Diagram
Figure 23.	Boundary Scan (JTAG) Timing Diagram
Figure 24.	Test Access Port Timing Diagram
Figure 25.	TRST Timing Diagram
Figure 26.	Voltage Sequencing Case 1 40
Figure 27.	Voltage Sequencing Case 2 41
Figure 28.	Voltage Sequencing Case 3 42
Figure 29.	Voltage Sequencing Case 4
Figure 30.	Voltage Sequencing Case 5 44
Figure 31.	PLL Power Supply Filter Circuits
Figure 32.	SSTL Termination Techniques 50
Figure 33.	SSTL Power Value

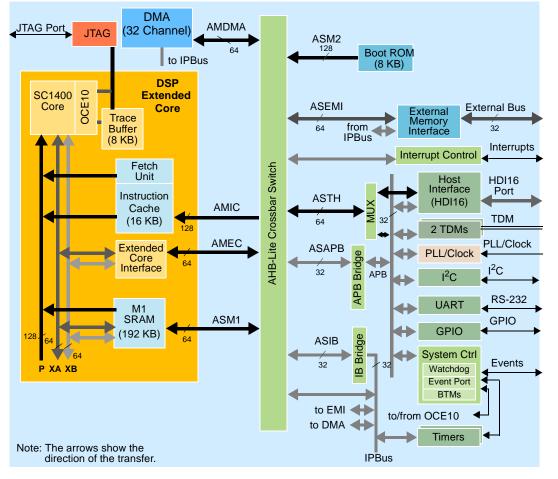


Figure 1. MSC7112 Block Diagram

1.2 Signal List By Ball Location

 Table 1 lists the signals sorted by ball number and configuration.

Table 1. MSC7112 Signals by Ball Designator

	Signal Names								
Number		S	ed	Hardware	Controlled				
	End of Reset	GPI Enabled (Default)	Interrupt Enabled	GPO Enabled	Primary	Alternate			
A1			G	ND					
A2			G	ND					
A3			DC	QM1					
A4			DC	QS2					
A5			C	к					
A6			C	Ж					
A7		GPIC7		GPOC7	Н	D15			
A8		GPIC4		GPOC4	Н	D12			
A9		GPIC2		GPOC2	Н	D10			
A10		rese	rved		F	ID7			
A11		rese	rved		F	ID6			
A12		rese	rved		F	ID4			
A13		rese	rved		F	ID1			
A14		rese	rved		HD0				
A15			G	ND					
A16 (1L44X)			Ν	IC					
A16 (1M88B)	BM3	GP	ID8	GPOD7	res	erved			
A17			Ν	IC					
A18			Ν	IC					
A19				IC					
A20				IC					
B1				DDM					
B2				IC					
B3				<u>S0</u>					
B4		DQM2							
B5	DQS3								
B6	DQS0								
B7	CKE								
B8		WE							
B9	GPIC6 GPOC6 HD14								
B10	GPIC3 GPOC3					D11			
B11		GPIC0		ID8					
B12			rved	GPOC0		ID5			
B13			rved			ID2			
B14				IC					
B15 (1L44X)				IC					

	Signal Names								
Number		So	ed	Hardware	Controlled				
	End of Reset	GPI Enabled (Default)	Interrupt Enabled	GPO Enabled	Primary	Alternate			
D13			VD	DIO					
D14				DIO					
D15				DIO					
D16				DIO					
D17			V _E	DDC					
D18			N	IC					
D19			Ν	IC					
D20			N	IC					
E1			GI	ND					
E2			D	26					
E3			D	31					
E4			V _D	DM					
E5				DM					
E6				DDC					
E7				DDC					
E8				DDC					
E9				DDC					
E10				DDM					
E11				DIO					
E12				DIO					
E13				DIO					
E14				DIO					
E15									
E16		V _{DDIO} V _{DDC}							
E17									
E18	V _{DDC} NC								
E19				IC					
E20	1	NC							
F1				DM					
F2				15					
F3				29					
F4				DDC					
F5				DDC					
F6				DDC					
F7		GND							
F8		GND GND							
F9				ND					
F10				DM					

Table 1. MSC7112 Signals by Ball Designator (continued)

	Signal Names								
Number		Software Controlled				Hardware Controlled			
	End of Reset	GPI Enabled (Default)	Interrupt Enabled	GPO Enabled	Primary	Alternate			
H9			GI	ND					
H10			GI	ND					
H11			GI	ND					
H12			GI	ND					
H13			GI	ND					
H14			GI	ND					
H15			V _D	DIO					
H16			V _D	DIO					
H17			VD	DC					
H18			Ν	C					
H19		rese	erved		H	A2			
H20		rese	erved		H	A1			
J1			D	10					
J2			V _D	DM					
J3			D	99					
J4			V _D	DM					
J5				DM					
J6			V _D	DM					
J7			GI	ND					
J8			GI	ND					
J9			GI	ND					
J10			GI	ND					
J11			GI	ND					
J12			GI	ND					
J13			GI	ND					
J14		GND							
J15		GND							
J16		V _{DDIO}							
J17			VD	DC					
J18 (1L44X)		rese	erved		н.	A3			
J18 (1M88B)		GPIC11		GPOC11	H	A3			
J19		reserved HACK/HACK or HRRQ/HRF				or HRRQ/HRRQ			
J20	HDSP		reserved		HREQ/HREQ	or HTRQ/HTRQ			
K1		D0							
K2		GND							
K3			D	08					
K4			VD	DC					
K5			V _D	DM					

Table 1. MSC7112 Signals by Ball Designator (continued)

	Signal Names							
Number		S	oftware Controlle	ed	Hardware	Controlled		
	End of Reset	GPI Enabled (Default)	Interrupt Enabled	GPO Enabled	Primary	Alternate		
K6			GI	ND				
K7			GI	ND				
K8			GI	ND				
K9			GI	ND				
K10			GI	ND				
K11			GI	ND				
K12			GI	ND				
K13			GI	ND				
K14			GI	ND				
K15			VD	DIO				
K16			V _D	DIO				
K17			V	DC				
K18		rese	erved		F	1A0		
K19		rese	erved		Н	DDS		
K20		rese	erved		HDS/HDS	or HWR/HWR		
L1			C	01				
L2			GI	ND				
L3			C	03				
L4			V	DC				
L5				DM				
L6				ND				
L7			GI	ND				
L8			GI	ND				
L9			GI	ND				
L10			GI	ND				
L11			GI	ND				
L12			GI	ND				
L13		GND						
L14			VD	DIO				
L15			VD	DIO				
L16			VD	DIO				
L17			V	DC				
L18 (1L44X)		reserved HCS2/HCS2						
_18 (1M88B)		GPIB11		GPOB11	HCS	2/HCS2		
L19		rese	erved		HCS	1/HCS1		
L20		reserved HRW or HRD/HRD						
M1			C	02				
M2			Vr	DM				

Table 1. MSC7112 Signals by Ball Designator (continued)

	Signal Names								
Number	Software Controlled				Hardware Controlled				
	End of Reset	GPI Enabled (Default)	Interrupt Enabled	GPO Enabled	Primary	Alternate			
M3			D	5					
M4			V _D	DM					
M5			V _D	DM					
M6			GI	ND					
M7			GI	ND					
M8			GI	ND					
M9			GI	ND					
M10			GI	ND					
M11			GI	ND					
M12			GI	ND					
M13			GI	ND					
M14			GI	ND					
M15			GI	ND					
M16			VD	DC					
M17				DC					
M18	GPI	A14	IRQ15	GPOA14	SDA				
M19	GP	A12	IRQ3	GPOA12	UTXD				
M20	GPI	A13	IRQ2	GPOA13	URXD				
N1			D	4					
N2			D	6					
N3			V _F	EF					
N4				DM					
N5				DM					
N6				DM					
N7				ND					
N8			GI	ND					
N9			GI	ND					
N10				ND					
N11				ND					
N12			GI	ND					
N13				ND					
N14				ND					
N15				DIO					
N16				DC					
N17	V _{DDC}								
N18			CL						
N19	GPI	A15	IRQ14	GPOA15	S	CL			
N20			V _{SS}						

Table 1. MSC7112 Signals by Ball Designator (continued)

	Signal Names								
Number	Software Controlled				Hardware	Controlled			
	End of Reset	GPI Enabled (Default)	Interrupt Enabled	GPO Enabled	Primary	Alternate			
U17			V	DDC					
U18			1	١C					
U19			т	СК					
U20			TF	RST					
V1			V	DDM					
V2			٦	1C					
V3			A	.13					
V4			Ą	.11					
V5			Ą	.10					
V6			/	45					
V7				A2					
V8			В	A0					
V9			1	۱C					
V10		resei	rved		EVN	NT0			
V11	SWTE	GPIA16	IRQ12	GPOA16	EVNT4				
V12	GP	IA8	IRQ6	GPOA8	TOTCK				
V13	GP	IA4	IRQ1	GPOA4	T1RFS				
V14	GP	IA0	IRQ11	GPOA0	T1TD				
V15	GPI	A28	IRQ17	GPOA28	reserved	reserved			
V16		GPID6		GPOD6	reserved	reserved			
V17	GPI	A22	IRQ22	GPOA22	reserved				
V18	GPI	A24	IRQ24	GPOA24	reserved				
V19			٦	1C					
V20			Т	DI					
W1			G	ND					
W2			V	DDM					
W3				.12					
W4			,	48					
W5				47					
W6				46					
W7		A3							
W8			1	۱C					
W9	GPIA17		IRQ13	GPOA17	EVNT1	CLKO			
W10			C14	GPOC14	EVN	NT2			
W11	GPI	A10	IRQ5	GPOA10	TOR	RFS			
W12	GP	IA7	IRQ7	GPOA7	тот	FS			
W13	GP	IA3	IRQ8	GPOA3	T1RD				
W14	GP	IA1	IRQ10	GPOA1	T1T	FS			

Table 1. MSC7112 Signals by Ball Designator (continued)

Specifications

This chapter covers power considerations, DC/AC electrical characteristics, and AC timing specifications. For additional information, see the MSC711x Reference Manual.

Note: The MSC7112 electrical specifications are preliminary and many are from design simulations. These specifications may not be fully tested or guaranteed at this early stage of the product life cycle. Finalized specifications will be published after thorough characterization and device qualifications have been completed.

Maximum Ratings 2.1

CAUTION

This device contains circuitry protecting against damage due to high static voltage or electrical fields; however, normal precautions should be taken to avoid exceeding maximum voltage ratings. Reliability is enhanced if unused inputs are tied to an appropriate logic voltage level (for example, either GND or V_{DD}).

In calculating timing requirements, adding a maximum value of one specification to a minimum value of another specification does not yield a reasonable sum. A maximum specification is calculated using a worst case variation of process parameter values in one direction. The minimum specification is calculated using the worst case for the same parameters in the opposite direction. Therefore, a "maximum" value for a specification never occurs in the same device with a "minimum" value for another specification; adding a maximum to a minimum represents a condition that can never exist.

Table 2 describes the maximum electrical ratings for the MSC7112.

Rating	Symbol	Value	Unit
Core supply voltage	V _{DDC}	1.5	V
Memory supply voltage	V _{DDM}	4.0	V
PLL supply voltage	V _{DDPLL}	1.5	V
I/O supply voltage	V _{DDIO}	-0.2 to 4.0	V
Input voltage	V _{IN}	(GND – 0.2) to 4.0	V
Reference voltage	V _{REF}	4.0	V
Maximum operating temperature	TJ	105	°C
Minimum operating temperature	T _A	-40	°C
Storage temperature range	T _{STG}	-55 to +150	°C

Table 2. Absolute Maximum Ratings

Absolute maximum ratings are stress ratings only, and functional operation at the maximum is not guaranteed. Stress beyond 2. the listed limits may affect device reliability or cause permanent damage.

3. Section 3.1. Thermal Design Considerations includes a formula for computing the chip junction temperature (T₁).

CLKC.	TRL[CKSEL]	CLKCTRL[RNG]	Resulting Division Factor	Allowed Range of Core Clock	Comments				
	11	1	1	Reserved	Reserved				
	11	0	2	$150 \leq Core_Clk \leq 200 \text{ MHz}$	Limited by range of PLL				
01 1 2 150 ≤ Core_Clk ≤ 200 MHz Limited by range of PLL									
	01	0	4	$75 \le Core_Clk \le 150 MHz$	Limited by range of PLL				
Note:	Note: This table results from the allowed range for F _{OUT} , which depends on clock selected via CLKCTRL[CKSEL].								

Table 13. Resulting Ranges Permitted for the Core Clock

2.5.2.5 Core Clock Frequency Range When Using DDR Memory

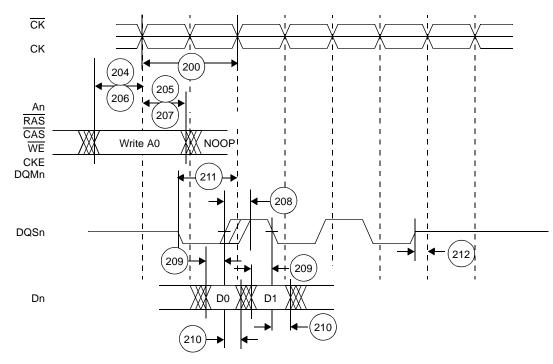
The core clock can also be limited by the frequency range of the DDR devices in the system. **Table 14** summarizes this restriction.

DDR Type	Allowed Frequency Range for DDR CK	Corresponding Range for the Core Clock	Comments
DDR 200 (PC-1600)	83–100 MHz	$166 \le core \ clock \le 200 \ MHz$	Core limited to $2 \times maximum DDR$ frequency
DDR 266 (PC-2100)	83–133 MHz	$166 \le core \ clock \le 266 \ MHz$	Core limited to $2 \times maximum DDR$ frequency
DDR 333 (PC-2600)	83–150 MHz	$166 \le core \ clock \le 300 \ MHz$	Core limited to $2 \times maximum DDR$ frequency

Table 14. Core Clock Ranges When Using DDR

2.5.3 Reset Timing

The MSC7112 device has several inputs to the reset logic. All MSC7112 reset sources are fed into the reset controller, which takes different actions depending on the source of the reset. The reset status register indicates the most recent sources to cause a reset. **Table 15** describes the reset sources.


Table 15. Reset	Sources
-----------------	---------

Name	Direction	Description
Power-on reset (PORESET)	Input	Initiates the power-on reset flow that resets the MSC7112 and configures various attributes of the MSC7112. On PORESET, the entire MSC7112 device is reset. SPLL and DLL states are reset, HRESET is driven, the SC1400 extended core is reset, and system configuration is sampled. The system is configured only when PORESET is asserted.
External Hard reset (HRESET)	Input/ Output	Initiates the hard reset flow that configures various attributes of the MSC7112. While HRESET is asserted, HRESET is an open-drain output. Upon hard reset, HRESET is driven and the SC1400 extended core is reset.
Software watchdog reset	Internal	When the MSC7112 watchdog count reaches zero, a software watchdog reset is signalled. The enabled software watchdog event then generates an internal hard reset sequence.
Bus monitor reset	Internal	When the MSC7112 bus monitor count reaches zero, a bus monitor hard reset is asserted. The enabled bus monitor event then generates an internal hard reset sequence.
JTAG EXTEST, CLAMP, or HIGHZ command	Internal	When a Test Access Port (TAP) executes an EXTEST, CLAMP, or HIGHZ command, the TAP logic asserts an internal reset signal that generates an internal soft reset sequence.

Table 16 summarizes the reset actions that occur as a result of the different reset sources.

Figure 6 shows the DDR DRAM output timing diagram.

Figure 6. DDR DRAM Output Timing Diagram

Figure 7 provides the AC test load for the DDR DRAM bus.

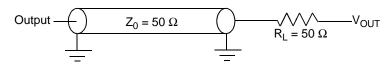


Figure 7. DDR DRAM AC Test Load

Table 20. DDR DRAM Measurement Conditions

		Symbol	DDR DRAM	Unit
V _{TH} ¹			V _{REF} ± 0.31 V	V
V _{OUT} ²			$0.5 imes V_{DDM}$	V
Notes:	1. 2.	Data input threshold measurement point. Data output measurement point.		

2.5.5 TDM Timing

Table 21. TDM Timing

No.	Characteristic	Expression	Min	Max	Units
300	TDMxRCK/TDMxTCK	TC	20.0	—	ns
301	TDMxRCK/TDMxTCK High Pulse Width	0.4 imes TC	8.0	—	ns
302	TDMxRCK/TDMxTCK Low Pulse Width	0.4 imes TC	8.0	—	ns
303	TDM all input Setup time		3.0	—	ns
304	TDMxRD Hold time		3.5	—	ns
305	TDMxTFS/TDMxRFS input Hold time		2.0	_	ns
306	TDMxTCK High to TDMxTD output active		4.0		ns

2.5.8 UART Timing

No.	Characteristics	Expression		k Set 14X	Mask Set 1M88B		Unit
			Min	Max	Min	Мах	
_	Internal bus clock (APBCLK)	F _{CORE} /2	_	100	—	133	MHz
—	Internal bus clock period (1/APBCLK)	T _{APBCLK}	10.0		7.52		ns
400	URXD and UTXD inputs high/low duration	16 × T _{APBCLK}	160.0		120.3		ns
401	URXD and UTXD inputs rise/fall time		—	5	—	5	ns
402	UTXD output rise/fall time			5	—	5	ns

Table 24. UART Timing

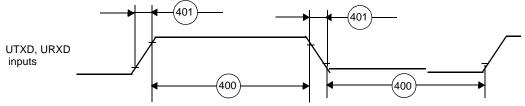


Figure 17. UART Input Timing

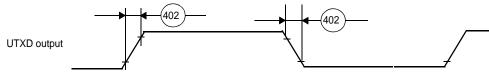


Figure 18. UART Output Timing

2.5.9 EE Timing

Table 25. EE0 Timing

Number			Characteristics	Туре	Min
65			EE0 input to the core	Asynchronous	4 core clock periods
66	66		EE0 output from the core	Synchronous to core clock	1 core clock period
Notes:	Notes: 1. The core clock is the SC1400 core clock. The ratio between the core clock and CLKOUT is configured during power-on				
	2. Configure the direction of the EE pin in the EE_CTRL register (see the SC1400 Core Reference Manual for deta		Reference Manual for details.		
	3. Refer to Table 15 for details on EE pin functionality.				

Figure 19 shows the signal behavior of the EE pin.

Figure 19. EE Pin Timing

3 Hardware Design Considerations

This section described various areas to consider when incorporating the MSC7112 device into a system design.

3.1 Thermal Design Considerations

An estimation of the chip-junction temperature, T_J, in °C can be obtained from the following:

$$T_J = T_A + (R_{\bigcup JA} \times P_D) \qquad \qquad Eqn.$$

where

 T_A = ambient temperature near the package (°C)

 $R_{\text{HJA}} =$ junction-to-ambient thermal resistance (°C/W)

 $P_D = P_{INT} + P_{I/O} =$ power dissipation in the package (W)

 $P_{INT} = I_{DD} \times V_{DD}$ = internal power dissipation (W)

 $P_{I/O}$ = power dissipated from device on output pins (W)

The power dissipation values for the MSC7112 are listed in **Table 4**. The ambient temperature for the device is the air temperature in the immediate vicinity that would cool the device. The junction-to-ambient thermal resistances are JEDEC standard values that provide a quick and easy estimation of thermal performance. There are two values in common usage: the value determined on a single layer board and the value obtained on a board with two planes. The value that more closely approximates a specific application depends on the power dissipated by other components on the printed circuit board (PCB). The value obtained using a single layer board is appropriate for tightly packed PCB configurations. The value obtained using a board with internal planes is more appropriate for boards with low power dissipation (less than 0.02 W/cm^2 with natural convection) and well separated components. Based on an estimation of junction temperature using this technique, determine whether a more detailed thermal analysis is required. Standard thermal management techniques can be used to maintain the device thermal junction temperature below its maximum. If T_J appears to be too high, either lower the ambient temperature or the power dissipation of the chip.

You can verify the junction temperature by measuring the case temperature using a small diameter thermocouple (40 gauge is recommended) or an infrared temperature sensor on a spot on the device case. Use the following equation to determine T_J :

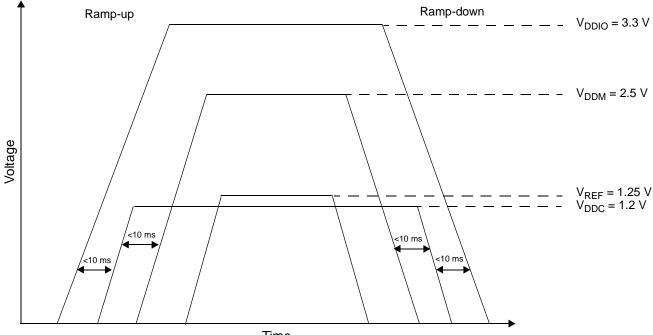
$$T_J = T_T + (\Psi_{JT} \times P_D)$$
 Eqn. 2

where

 T_T = thermocouple (or infrared) temperature on top of the package (°C) Ψ_{JT} = thermal characterization parameter (°C/W) P_D = power dissipation in the package (W)

3.2.2.1 Case 1

The power-up sequence is as follows:


- 1. Turn on the V_{DDIO} (3.3 V) supply first.
- 2. Turn on the V_{DDC} (1.2 V) supply second.
- 3. Turn on the V_{DDM} (2.5 V) supply third.
- 4. Turn on the V_{REF} (1.25 V) supply fourth (last).

The power-down sequence is as follows:

- 1. Turn off the V_{REF} (1.25 V) supply first.
- 2. Turn off the V_{DDM} (2.5 V) supply second.
- 3. Turn off the V_{DDC} (1.2 V) supply third.
- 4. Turn of the V_{DDIO} (3.3 V) supply fourth (last).

Use the following guidelines:

- Make sure that the time interval between the ramp-down of V_{DDIO} and V_{DDC} is less than 10 ms.
- Make sure that the time interval between the ramp-up or ramp-down for V_{DDC} and V_{DDM} is less than 10 ms for power-up and power-down.
- Refer to **Figure 26** for relative timing for power sequencing case 1.

Time Figure 26. Voltage Sequencing Case 1

3.2.2.3 Case 3

The power-up sequence is as follows:

- 1. Turn on the V_{DDIO} (3.3 V) supply first.
- 2. Turn on the V_{DDC} (1.2 V) supply second.
- 3. Turn on the V_{DDM} (2.5 V) and V_{REF} (1.25 V) supplies simultaneously (third).

Note: Make sure that the time interval between the ramp-up of V_{DDIO} and V_{DDC} is less than 10 ms.

The power-down sequence is as follows:

- 1. Turn off the V_{DDM} (2.5 V) and V_{REF} (1.25 V) supplies simultaneously (first).
- 2. Turn off the V_{DDC} (1.2 V) supply second.
- 3. Turn of the V_{DDIO} (3.3 V) supply third (last).

Use the following guidelines:

- Make sure that the time interval between the ramp-down for V_{DDIO} and V_{DDC} is less than 10 ms.
- Make sure that the time interval between the ramp-up or ramp-down time for V_{DDC} and V_{DDM} is less than 10 ms for power-up and power-down.
- Refer to **Figure 28** for relative timing for Case 3.

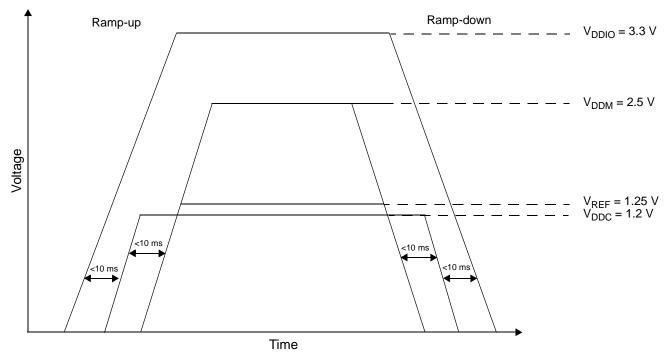



Figure 28. Voltage Sequencing Case 3

3.2.2.4 Case 4

The power-up sequence is as follows:

- 1. Turn on the V_{DDIO} (3.3 V) supply first.
- 2. Turn on the V_{DDC} (1.2 V), V_{DDM} (2.5 V), and V_{REF} (1.25 V) supplies simultaneously (second).

Note: Make sure that the time interval between the ramp-up of V_{DDIO} and V_{DDC} is less than 10 ms.

The power-down sequence is as follows:

- 1. Turn off the V_{DDC} (1.2 V), V_{REF} (1.25 V), and V_{DDM} (2.5 V) supplies simultaneously (first).
- 2. Turn of the V_{DDIO} (3.3 V) supply last.

Use the following guidelines:

- Make sure that the time interval between the ramp-up or ramp-down time for V_{DDC} and V_{DDM} is less than 10 ms for power-up and power-down.
- Refer to **Figure 29** for relative timing for Case 4.

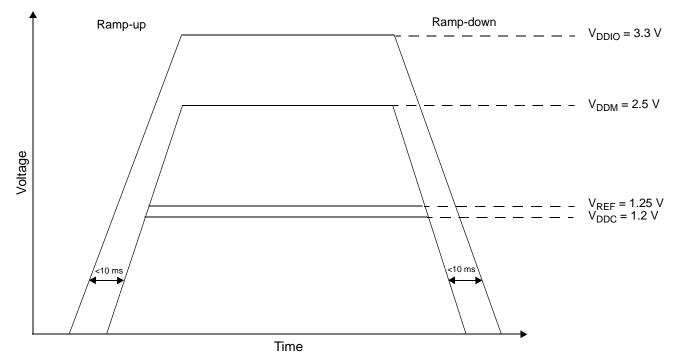


Figure 29. Voltage Sequencing Case 4

3.4.3.2 I²C Boot

When the MSC7112 device is configured to boot from the I^2C port, the boot program configures the GPIO pins shared with the I^2C pins as I^2C pins. The I^2C interface is configured as follows:

- I²C in master mode.
- EPROM in slave mode.

For details on the boot procedure, see the "Boot Program" chapter of the MSC711x Reference Manual.

3.5 DDR Memory System Guidelines

MSC7112 devices contain a memory controller that provides a glueless interface to external double data rate (DDR) SDRAM memory modules with Class 2 Series Stub Termination Logic 2.5 V (SSTL_2). There are two termination techniques, as shown in Figure 32. Technique B is the most popular termination technique.

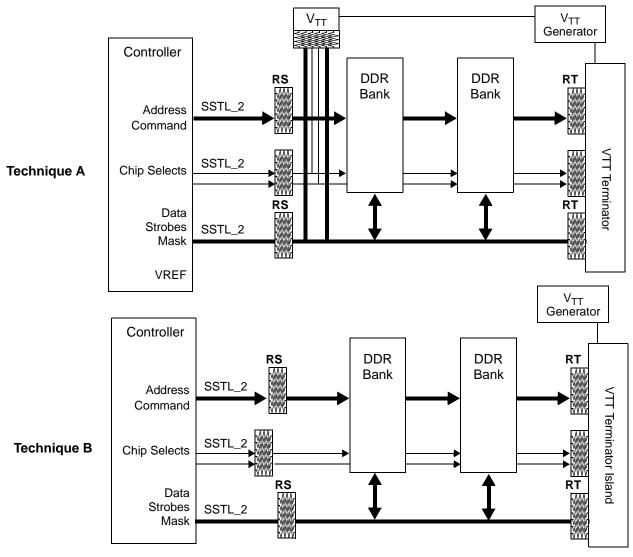


Figure 32. SSTL Termination Techniques

Figure 33 illustrates the power wattage for the resistors. Typical values for the resistors are as follows:

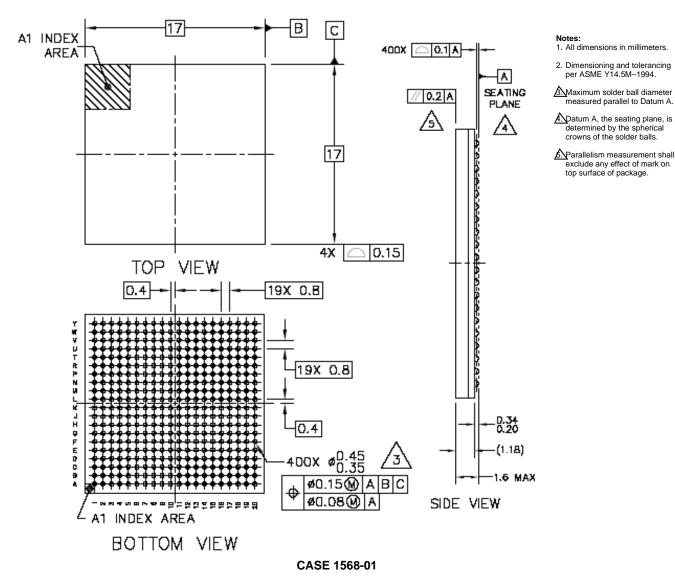
- $RS = 22 \Omega$
- $RT = 24 \Omega$

3.6 Connectivity Guidelines

This section summarizes the connections and special conditions, such as pull-up or pull-down resistors, for the MSC7112 device. Following are guidelines for signal groups and configuration settings:

- Clock and reset signals.
 - SWTE is used to configure the MSC7112 device and is sampled on the deassertion of PORESET, so it should be tied to V_{DDC} or GND either directly or through pull-up or pull-down resistors until PORESET is deasserted. After PORESET, this signal can be left floating.
 - BM[0–1] configure the MSC7112 device and are sampled until PORESET is deasserted, so they should be tied to V_{DDIO} or GND either directly or through pull-up or pull-down resistors.
 - **HRESET** should be pulled up.
- Interrupt signals. When used, **IRQ** pins must be pulled up.
- HDI16 signals.
 - When they are configured for open-drain, the HREQ/HREQ or HTRQ/HTRQ signals require a pull-up resistor. However, these pins are also sampled at power-on reset to determine the HDI16 boot mode and may need to be pulled down. When these pins must be pulled down on reset and pulled up otherwise, a buffer can be used with the HRESET signal as the enable.
 - When the device boots through the HDI16, the HDDS, HDSP and H8BIT pins should be pulled up or down, depending on the required boot mode settings.
- I^2C signals. The SCL and SDA signals, when programmed for I^2C , requires an external pull-up resistor.
- *General-purpose I/O (GPIO) signals*. An unused GPIO pin can be disconnected. After boot, program it as an output pin.
- Other signals.
 - The $\overline{\mathsf{TEST0}}$ pin must be connected to ground.
 - The TPSEL pin should be pulled up to enable debug access via the EOnCE port and pulled down for boundary scan.
 - Pins labelled NO CONNECT (NC) must not be connected.
 - When a 16-pin double data rate (DDR) interface is used, the 16 unused data pins should be no connects (floating) if the used lines are terminated.
 - Do not connect DBREQ to DONE (as you would for the MSC8101 device). Connect DONE to one of the EVNT pins, and DBREQ to HRRQ.

4 Ordering Information


Consult a Freescale Semiconductor sales office or authorized distributor to determine product availability and place an order.

Part	Supply Voltage	Package Type	Pin Count	Core Frequency (MHz)	Solder Spheres	Order Number
MSC7112 (mask	1.2 V core 2.5 V mem.	Molded Array Process-Ball Grid Array (MAP-BGA)	400	200	Lead-free	MSC7112VM800
1L44X	3.3 V I/O				Lead-bearing	MSC7112VF800
MSC7112 (mask	1.2 V core 2.5 V mem	Molded Array Process-Ball Grid Array (MAP-BGA)	400	266	Lead-free	MSC7112VM1000
1M88B)	3.3 V I/O				Lead-bearing	MSC7112VF1000

age information

5 Package Information

6 **Product Documentation**

- *MSC711x Reference Manual* (MSC711xRM). Includes functional descriptions of the extended cores and all the internal subsystems including configuration and programming information.
- Application Notes. Cover various programming topics related to the StarCore DSP core and the MSC7112 device.
- *SC140/SC1400 DSP Core Reference Manual*. Covers the SC140 and SC1400 core architecture, control registers, clock registers, program control, and instruction set.

How to Reach Us:

Home Page: www.freescale.com

Web Support: http://www.freescale.com/support

USA/Europe or Locations Not Listed:

Freescale Semiconductor, Inc. Technical Information Center, EL516 2100 East Elliot Road Tempe, Arizona 85284 +1-800-521-6274 or +1-480-768-2130 www.freescale.com/support

Europe, Middle East, and Africa:

Freescale Halbleiter Deutschland GmbH Technical Information Center Schatzbogen 7 81829 Muenchen, Germany +44 1296 380 456 (English) +46 8 52200080 (English) +49 89 92103 559 (German) +33 1 69 35 48 48 (French) www.freescale.com/support

Japan:

Freescale Semiconductor Japan Ltd. Headquarters ARCO Tower 15F 1-8-1, Shimo-Meguro, Meguro-ku Tokyo 153-0064 Japan 0120 191014 or +81 3 5437 9125 support.japan@freescale.com

Asia/Pacific:

Freescale Semiconductor Hong Kong Ltd. Technical Information Center 2 Dai King Street Tai Po Industrial Estate Tai Po, N.T., Hong Kong +800 2666 8080 support.asia@freescale.com

For Literature Requests Only:

Freescale Semiconductor Literature Distribution Center P.O. Box 5405 Denver, Colorado 80217 +1-800 441-2447 or +1-303-675-2140 Fax: +1-303-675-2150 LDCForFreescaleSemiconductor @hibbertgroup.com

Document Number: MSC7112 Rev. 11 4/2008 Information in this document is provided solely to enable system and software implementers to use Freescale Semiconductor products. There are no express or implied copyright licenses granted hereunder to design or fabricate any integrated circuits or integrated circuits based on the information in this document.

Freescale Semiconductor reserves the right to make changes without further notice to any products herein. Freescale Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does Freescale Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. "Typical" parameters that may be provided in Freescale Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals", must be validated for each customer application by customer's technical experts. Freescale Semiconductor does not convey any license under its patent rights nor the rights of others. Freescale Semiconductor products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the Freescale Semiconductor product could create a situation where personal injury or death may occur. Should Buyer purchase or use Freescale Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold Freescale Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that Freescale Semiconductor was negligent regarding the design or manufacture of the part.

RoHS-compliant and/or Pb-free versions of Freescale products have the functionality and electrical characteristics as their non-RoHS-compliant and/or non-Pb-free counterparts. For further information, see http://www.freescale.com or contact your Freescale sales representative.

For information on Freescale's Environmental Products program, go to http://www.freescale.com/epp.

Freescale™, the Freescale logo, CodeWarrior, fieldBIST, and StarCore are trademarks of Freescale Semiconductor, Inc. All other product or service names are the property of their respective owners.

© Freescale Semiconductor, Inc. 2004, 2008. All rights reserved.

