

Welcome to E-XFL.COM

Understanding Embedded - Microprocessors

Embedded microprocessors are specialized computing chips designed to perform specific tasks within an embedded system. Unlike general-purpose microprocessors found in personal computers, embedded microprocessors are tailored for dedicated functions within larger systems, offering optimized performance, efficiency, and reliability. These microprocessors are integral to the operation of countless electronic devices, providing the computational power necessary for controlling processes, handling data, and managing communications.

Applications of **Embedded - Microprocessors**

Embedded microprocessors are utilized across a broad spectrum of applications, making them indispensable in

Details

Product Status	Obsolete
Core Processor	MIPS-II
Number of Cores/Bus Width	1 Core, 32-Bit
Speed	100MHz
Co-Processors/DSP	-
RAM Controllers	SDRAM
Graphics Acceleration	No
Display & Interface Controllers	-
Ethernet	-
SATA	-
USB	-
Voltage - I/O	3.3V
Operating Temperature	-40°C ~ 85°C (TA)
Security Features	-
Package / Case	208-BFQFP
Supplier Device Package	208-PQFP (28x28)
Purchase URL	https://www.e-xfl.com/product-detail/renesas-electronics-america/79rc32v332-100dhgi

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

IDT 79RC32332

Serial Peripheral Interface (SPI) master mode interface

UART Interface

- 16550 compatible UART
- Baud rate support up to 1.5 Mb/s

Memory & Peripheral Controller

- 6 banks, up to 8MB per bank
- Supports 8-,16-, and 32-bit interfaces
- Supports Flash ROM, SRAM, dual-port memory, and peripheral devices
- Supports external wait-state generation
- 8-bit boot PROM support
- Flexible I/O timing protocols

4 DMA Channels

- 4 general purpose DMA, each with endianess swappers and byte lane data alignment
- Supports scatter/gather, chaining via linked lists of records
- Supports memory-to-memory, memory-to-I/O, memory-to-PCI, PCI-to-PCI, and I/O-to-I/O transfers
- Supports unaligned transfers
- Supports burst transfers
- Programmable DMA bus transactions burst size (up to 16 bytes)

PCI Bus Interface

- 32-bit PCI, up to 50 MHz
- Revision 2.2 compatible
- Target or master
- Host or satellite
- Two slot PCI arbiter
- Serial EEPROM support, for loading configuration registers
- Off-the-shelf development tools
- JTAG Interface (IEEE Std. 1149.1 compatible)
- + 208 QFP Package

- 3.3V or 2.5V core supply with 3.3V I/O supply
- 3.3V core supply is 5V I/O tolerant
- EJTAG in-circuit emulator interface

CPU Execution Core

The RC32332 integrates the RISCore 32300, the same CPU core found in the award-winning RC32364 microprocessor. The RISCore 32300 implements the Enhanced MIPS-II ISA. Thus, it is upwardly compatible with applications written for a wide variety of MIPS architecture processors, and it is kernel compatible with the modern operating systems that support IDT's 64-bit RISController product family. The RISCore 32300 was explicitly defined and designed for integrated processor products such as the RC32332. Key attributes of the execution core found within this product include:

- High-speed, 5-stage scalar pipeline executes to 150MHz. This high performance enables the RC32332 to perform a variety of performance intensive tasks, such as routing, DSP algorithms, etc.
- 32-bit architecture with enhancements of key capabilities. Thus, the RC32332 can execute existing 32-bit programs, while enabling designers to take advantage of recent advances in CPU architecture.
- Count leading-zeroes/ones. These instructions are common to a wide variety of tasks, including modem emulation, voice over IP compression and decompression, etc.
- Cache PREFetch instruction support, including a specialized form intended to help memory coherency. System programmers can allocate and stage the use of memory bandwidth to achieve maximum performance.
- 8KB of 2-way set associative instruction cache

Figure 2 RC32332 Based System Diagram

Pin Description Table

The following table lists the pins provided on the RC32332. Note that those pin names followed by "_n" are active-low signals. All external pull-ups and pull-downs require 10 k Ω resistor.

Name	Туре	Reset State Status	Drive Strength Capability	Description									
Local System Interf	ace												
mem_data[31:0]	I/O	Z	High	Local system data bus	ata bus s for memory. I/O and SDF	RAM.							
mem_addr[22:2]	I/O	[22:10] Z [9:2] L	[22:17] Low [16:2] High	Memory Address These signals pri- each word data, tion type. The tal memory port wid	lemory Address Bus These signals provide the Memory or DRAM address, during a Memory or DRAM bus transaction. During each word data, the address increments either in linear or sub-block ordering, depending on the transac- on type. The table below indicates how the memory write enable signals are used to address discreet memory port width types.								
				Port Width	mem_we_n[3]	mem_we_n[2]	mem_we_n[1]	mem_we_n[0]					
				DMA (32-bit)	 mem_we_n[3]	mem_we_n[2]	 	 					
				32-bit	mem_we_n[3]	mem_we_n[2]	mem_we_n[1]	mem_we_n[0]					
				16-bit	Byte High Write Enable	mem_addr[1]	Not Used (Driven Low)	Byte Low Write Enable					
				8-bit	Not Used (Driven High)	mem_addr[1]	mem_addr[0]	Byte Write Enable					
				mem_addr[21] A mem_addr[21] A mem_addr[20] A mem_addr[19] A mem_addr[18] A mem_addr[16] A mem_addr[15] A mem_addr[11] A mem_addr[11] A mem_addr[10] Alt mem_addr[6] Alt mem_addr[6] Alt mem_addr[6] Alt mem_addr[6] Alt mem_addr[6] Alt mem_addr[7] Alt mem_addr[7] Alt mem_addr[7] Alt mem_addr[7] Alt mem_addr[7] Alt mem_addr[7] Alt	Iternate function: reset_bo Iternate function: reset_po Iternate function: modebit Iternate function: modebit Iternate function: modebit Iternate function: sdram_a Iternate function: sdram_a Iternate function: sdram_a Iternate function: sdram_ac ernate function: sdram_ac	bot_mode[0]. ci_host_mode[0]. ci_host_mode. [9]. [8]. [7]. addr[16]. addr[15]. addr[15]. addr[14]. addr[13]. addr[10]. ddr[9]. ddr[9]. ddr[8]. ddr[7]. ddr[6]. ddr[4]. ddr[3]. ddr[2].							
mem_cs_n[5:0]	Output	Н	Low	Memory Chip So Signals that a Me	elect Negated Recomme emory Bank is actively sel	nd an external pu lected.	ıll-up.						
mem_oe_n	Output	Н	High	Memory Output Signals that a Me	Enable Negated Recom emory Bank can output its	mend an externa data lines onto t	l pull-up. he cpu_ad bus.						
mem_we_n[3:0]	Output	Н	High	Memory Write E Signals which by mem_addr[1:0] s	inable Negated Bus tes are to be written durin ignals for 8-bit or 16-bit w	ig a memory tran vide addressing.	saction. Bits act as By	te Enable and					

Table 1 Pin Descriptions (Part 1 of 6)

Name	Туре	Reset State Status	Drive Strength Capability	Description
mem_wait_n	Input		_	Memory Wait Negated Requires an external pull-up. SRAM/IOI/IOM modes: Allows external wait-states to be injected during the last cycle before data is sam- pled. DPM (dual-port) mode: Allows dual-port busy signal to restart memory transaction. Alternate function: sdram_wait_n.
mem_245_oe_n	Output	Н	Low	Memory FCT245 Output Enable Negated Controls output enable to optional FCT245 transceiver bank by asserting during both reads and writes to a memory or I/O bank.
mem_245_dt_r_n	Output	Z	High	Memory FCT245 Direction Xmit/Rcv Negated Recommend an external pull-up. Alternate function: cpu_dt_r_n. See CPU Core Specific Signals below.
output_clk	Output	cpu_mas terclk	High	Output Clock Optional clock output.
PCI Interface		1		
pci_ad[31:0]	I/O	Z	PCI	PCI Multiplexed Address/Data Bus Address driven by Bus Master during initial frame_n assertion, and then the Data is driven by the Bus Master during writes; or the Data is driven by the Bus Slave during reads.
pci_cbe_n[3:0]	I/O	Z	PCI	PCI Multiplexed Command/Byte Enable Bus Command (not negated) Bus driven by the Bus Master during the initial frame_n assertion. Byte Enable Negated Bus driven by the Bus Master during the data phase(s).
pci_par	I/O	Z	PCI	PCI Parity Even parity of the pci_ad[31:0] bus. Driven by Bus Master during Address and Write Data phases. Driven by the Bus Slave during the Read Data phase.
pci_frame_n	I/O	Z	PCI	PCI Frame Negated Driven by the Bus Master. Assertion indicates the beginning of a bus transaction. De-assertion indicates the last datum.
pci_trdy_n	I/O	Z	PCI	PCI Target Ready Negated Driven by the Bus Slave to indicate the current datum can complete.
pci_irdy_n	I/O	Z	PCI	PCI Initiator Ready Negated Driven by the Bus Master to indicate that the current datum can complete.
pci_stop_n	I/O	Z	PCI	PCI Stop Negated Driven by the Bus Slave to terminate the current bus transaction.
pci_idsel_n	Input		—	PCI Initialization Device Select Uses pci_req_n[2] pin. See the PCI subsection.
pci_perr_n	I/O	Z	PCI	PCI Parity Error Negated Driven by the receiving Bus Agent 2 clocks after the data is received, if a parity error occurs.
pci_serr_n	I/O Open- collec- tor	Z	PCI	System Error Requires an external pull-up. Driven by any agent to indicate an address parity error, data parity during a Special Cycle command, or any other system error.
pci_clk	Input		_	PCI Clock Clock for PCI Bus transactions. Uses the rising edge for all timing references.
pci_rst_n	Input	L	-	PCI Reset Negated Host mode: Resets all PCI related logic. Satellite mode: Resets all PCI related logic and also warm resets the 32332.
pci_devsel_n	I/O	Z	PCI	PCI Device Select Negated Driven by the target to indicate that the target has decoded the present address as a target address.

Table 1 Pin Descriptions (Part 2 of 6)

Name	Туре	Reset State Status	Drive Strength Capability	Description
pci_req_n[2]	Input	Z	_	PCI Bus Request #2 Negated Requires an external pull-up. Host mode: pci_req_n[2] is an input indicating a request from an external device. Satellite mode: used as pci_idsel pin which selects this device during a configuration read or write. Alternate function: pci_idsel (satellite).
pci_req_n[0]	I/O	Z	High	PCI Bus Request #0 Negated Requires an external pull-up for burst mode. Host mode: pci_req_n[0] is an input indicating a request from an external device. Satellite mode: pci_req_n[0] is an output indicating a request from this device.
pci_gnt_n[2]	Output	Z ¹	High	PCI Bus Grant #2 Negated Recommend an external pull-up. Host mode: pci_gnt_n[2] is an output indicating a grant to an external device. Satellite mode: pci_gnt_n[2] is used as the pci_inta_n output pin. External pull-up is required. Alternate function: pci_inta_n (satellite).
pci_gnt_n[1] (can only be used as alternate function)	I/O	X for 1 pci clock then H ²	High	PCI Bus Grant #1 Negated Recommend external pull-up. Host mode: not used as pci_gnt_n[1]. Must be used as alternate function PIO[7]. Satellite mode: Not used as pci_gnt_n[1]. Used as pci_eprom_cs output pin for Serial Chip Select for loading PCI Configuration Registers in the RC32332 Reset Initialization Vector PCI boot mode. Defaults to the output direction at reset time. 1st Alternate function: pci_eeprom_cs (satellite). 2nd Alternate function: PIO[7].
pci_gnt_n[0]	I/O	Z	High	PCI Bus Grant #0 Negated Host mode: pci_gnt_n[0] is an output indicating a grant to an external device. Recommend external pull- up. Satellite mode: pci_gnt_n[0] is an input indicating a grant to this device. Requires external pull-up.
pci_inta_n	Output Open- collec- tor	Z	PCI	PCI Interrupt #A Negated Uses pci_gnt_n[2]. See the PCI subsection.
pci_lock_n	Input			PCI Lock Negated Driven by the Bus Master to indicate that an exclusive operation is occurring.

² H in host mode, L in satellite non-boot mode, Z in satellite boot mode. X = unknown.

SDRAM Control Interface

sdram_addr_12	Output	L	High	SDRAM Address Bit 12 and Precharge All SDRAM mode: Provides SDRAM address bit 12 (10 on the SDRAM chip) during row address and "pre- charge all" signal during refresh, read and write command.
sdram_ras_n	Output	Н	High	SDRAM RAS Negated SDRAM mode: Provides SDRAM RAS control signal to all SDRAM banks.
sdram_cas_n	Output	Н	High	SDRAM CAS Negated SDRAM mode: Provides SDRAM CAS control signal to all SDRAM banks.
sdram_we_n	Output	Н	High	SDRAM WE Negated SDRAM mode: Provides SDRAM WE control signal to all SDRAM banks.
sdram_cke	Output	Н	High	SDRAM Clock Enable SDRAM mode: Provides clock enable to all SDRAM banks.
sdram_cs_n[3:0]	Output	Н	High	SDRAM Chip Select Negated Bus Recommend an external pull-up. SDRAM mode: Provides chip select to each SDRAM bank. SODIMM mode: Provides upper select byte enables [7:4].
sdram_s_n[1:0]	Output	Н	High	SDRAM SODIMM Select Negated Bus SDRAM mode: Not used. SDRAM SODIMM mode: Upper and lower chip selects.

Table 1 Pin Descriptions (Part 3 of 6)

7 of 30

Name	Туре	Reset State Status	Drive Strength Capability	Description
sdram_bemask_n [3:0]	Output	Н	High	SDRAM Byte Enable Mask Negated Bus (DQM) SDRAM mode: Provides byte enables for each byte lane of all DRAM banks. SODIMM mode: Provides lower select byte enables [3:0].
sdram_245_oe_n	Output	Н	Low	SDRAM FCT245 Output Enable Negated Recommend an external pull-up. SDRAM mode: Controls output enable to optional FCT245 transceiver bank by asserting during both reads and writes to any DRAM bank.
sdram_245_dt_r_n	Output	Z	High	SDRAM FCT245 Direction Transmit/Receive Recommend an external pull-up. Uses cpu_dt_r_n. See CPU Core Specific Signals below.
On-Chip Peripheral	s			
dma_ready_n[0]	I/O	Z	Low	DMA Ready Negated Bus Requires an external pull-up. Ready mode: Input pin for general purpose DMA channel 0 that can initiate the next datum in the current DMA descriptor frame. Done mode: Input pin for general purpose DMA channel 0 that can terminate the current DMA descriptor frame. dma_ready_n[0] 1st Alternate function PIO[0]; 2nd Alternate function: dma_done_n[0].
pio[7:0]	I/O	See related pins	Low	Programmable Input/Output General purpose pins that can each can be configured as a general purpose input or general purpose output. These pins are multiplexed with other pin functions: pci_gnt_n[1] (pci_eeprom_cs), spi_mosi, spi_sck, spi_ss_n, spi_miso, uart_rx[0], uart_tx[0], dma_ready_n[0]. Note that pci_gnt_n[1], spi_mosi, spi_sck, and spi_ss_n default to outputs at reset time. The others default to inputs.
uart_rx[0]	I/O	Z	Low	UART Receive Data Bus UART mode: UART channel receive data. uart_rx[0] Alternate function: PIO[2].
uart_tx[0]	I/O	Z	Low	UART Transmit Data Bus Recommend an external pull-up. UART mode: UART channel send data. Note that this pin defaults to an input at reset time and must be programmed via the PIO interface before being used as a UART output. uart_tx[0] Alternate function: PIO[1].
spi_mosi	I/O	L	Low	SPI Data Output Serial mode: Output pin from RC32332 as an Input to a Serial Chip for the Serial data input stream. In PCI satellite mode, acts as an Output pin from RC32332 that connects as an Input to a Serial Chip for the Serial data input stream for loading PCI Configuration Registers in the RC32332 Reset Initialization Vector PCI boot mode. 1st Alternate function: PIO[6]. Defaults to the output direction at reset time. 2nd Alternate function: pci_eeprom_mdo.
spi_miso	I/O	Z	Low	SPI Data Input Serial mode: Input pin to RC32332 from the Output of a Serial Chip for the Serial data output stream. In PCI satellite mode, acts as an Input pin from RC32332 that connects as an output to a Serial Chip for the Serial data output stream for loading PCI Configuration Registers in the RC32332 Reset Initialization Vector PCI boot mode. Defaults to input direction at reset time. 1st Alternate function: PIO[3]. 2nd Alternate function: pci_eeprom_mdi.
spi_sck	I/O	L	Low	SPI Clock Serial mode: Output pin for Serial Clock. In PCI satellite mode, acts as an Output pin for Serial Clock for loading PCI Configuration Registers in the RC323332 Reset Initialization Vector PCI boot mode. 1st Alternate function: PIO[5]. Defaults to the output direction at reset time. 2nd Alternate function: pci_eeprom_sk.

Table 1 Pin Descriptions (Part 4 of 6)

Name	Туре	Reset State Status	Drive Strength Capability	Description
spi_ss_n	I/O	Н	Low	SPI Chip Select Output pin selecting the serial protocol device as opposed to the PCI satellite mode EEPROM device. Alternate function: PIO[4]. Defaults to the output direction at reset time.
CPU Core Specific	Signals			
cpu_nmi_n	Input		_	CPU Non-Maskable Interrupt Requires an external pull-up. This interrupt input is active low to the CPU.
cpu_masterclk	Input		-	CPU Master System Clock Provides the basic system clock.
cpu_int_n[1:0]	Input		_	CPU Interrupt Requires an external pull-up. These interrupt inputs are active low to the CPU.
cpu_coldreset_n	Input	L	_	CPU Cold Reset This active-low signal is asserted to the RC32332 after V _{cc} becomes valid on the initial power-up. The Reset initialization vectors for the RC32332 are latched by cold reset.
cpu_dt_r_n	Output	Z	_	CPU Direction Transmit/Receive This active-low signal controls the DT/R pin of an optional FCT245 transceiver bank. It is asserted during read operations. 1st Alternate function: mem_245_dt_r_n. 2nd Alternate function: sdram_245_dt_r_n.
JTAG Interface Sig	gnals	•		· · · · · · · · · · · · · · · · · · ·
jtag_tck	Input		_	JTAG Test Clock Requires an external pull-down. An input test clock used to shift into or out of the Boundary-Scan register cells. jtag_tck is independent of the system and the processor clock with nominal 50% duty cycle.
jtag_tdi, ejtag_dint_n	Input		_	JTAG Test Data In Requires an external pull-up. On the rising edge of jtag_tck, serial input data are shifted into either the Instruction or Data register, depending on the TAP controller state. During Real Mode, this input is used as an interrupt line to stop the debug unit from Real Time mode and return the debug unit back to Run Time Mode (standard JTAG). This pin is also used as the ejtag_dint_n signal in the EJTAG mode.
jtag_tdo, ejtag_tpc	Output	Z	High	JTAG Test Data Out The jtag_tdo is serial data shifted out from instruction or data register on the falling edge of jtag_tck. When no data is shifted out, the jtag_tdo is tri-stated. During Real Time Mode, this signal provides a non- sequential program counter at the processor clock or at a division of processor clock. This pin is also used as the ejtag_tpc signal in the EJTAG mode.
jtag_tms	Input		_	JTAG Test Mode Select Requires an external pull-up. The logic signal received at the jtag_tms input is decoded by the TAP controller to control test operation. jtag_tms is sampled on the rising edge of the jtag_tck.
jtag_trst_n	Input	L	-	JTAG Test Reset When neither JTAG nor EJTAG are being used, jtag_trst_n must be driven low (pulled down) or the jtag_tms/ejtag_tms signals must be pulled up and jtag_clk actively clocked.
ejtag_dclk	Output	Z	-	EJTAG Test Clock Processor Clock. During Real Time Mode, this signal is used to capture address and data from the ejtag_tpc signal at the processor clock speed or any division of the internal pipeline.

Table 1 Pin Descriptions (Part 5 of 6)

Name	Туре	Reset State Status	Drive Strength Capability	Description
ejtag_pcst[2:0]	I/O	Z	Low	EJTAG PC Trace Status Information 111 (STL) Pipe line Stall 110 (JMP) Branch/Jump forms with PC output 101 (BRT) Branch/Jump forms with no PC output 100 (EXP) Exception generated with an exception vector code output 011 (SEQ) Sequential performance 010 (TST) Trace is outputted at pipeline stall time 001 (TSQ) Trace trigger output at performance time 000 (DBM) Run Debug Mode Alternate function: modebit[2:0].
ejtag_debugboot	Input		_	EJTAG DebugBoot Requires an external pull-down. The ejtag_debugboot input is used during reset and forces the CPU core to take a debug exception at the end of the reset sequence instead of a reset exception. This enables the CPU to boot from the ICE probe without having the external memory working. This input signal is level sensitive and is not latched internally. This signal will also set the JtagBrk bit in the JTAG_Control_Register[12].
ejtag_tms	Input		_	EJTAG Test Mode Select Requires an external pull-up. The ejtag_tms is sampled on the rising edge of jtag_tck.
Debug Signals		•		
debug_cpu_dma_n	I/O	Z	Low	Debug CPU versus DMA Negated De-assertion high during debug_cpu_ads_n assertion or debug_cpu_ack_n assertion indicates transac- tion was generated from the CPU. Assertion low during debug_cpu_ads_n assertion or debug_cpu_ack_n assertion indicates transaction was generated from DMA. Alternate function: modebit[6].
debug_cpu_ack_n	I/O	Z	Low	Debug CPU Acknowledge Negated Indicates either a data acknowledge to the CPU or DMA. Alternate function: modebit[4].
debug_cpu_ads_n	I/O	Z	Low	Debug CPU Address/Data Strobe Negated Assertion indicates that either a CPU or a DMA transaction is beginning and that the mem_data[31:4] bus has the current block address. Alternate function: modebit[5].
debug_cpu_i_d_n	I/O	Z	Low	Debug CPU Instruction versus Data Negated Assertion during debug_cpu_ads_n assertion or debug_cpu_ack_n assertion indicates transaction is a CPU or DMA data transaction. De-assertion during debug_cpu_ads_n assertion or debug_cpu_ack_n assertion indicates transaction is a CPU instruction transaction. Alternate function: modebit[3].

Table 1 Pin Descriptions (Part 6 of 6)

Logic Diagram — RC32332

Mode Bit Settings to Configure Controller on Reset

The following table lists the mode bit settings to configure the controller on cold reset.

Pin	Mode Bit	Description	Value	Mode Setting
ejtag_pcst[2:0]	2:0 MSB (2)	Clock Multiplier	0	Multiply by 2
		MasterClock is multiplied internally to gener-	1	Multiply by 3
			2	Multiply by 4
			3	Reserved
			4	Reserved
			5	Reserved
			6	Reserved
			7	Reserved
debug_cpu_i_d_n	3	EndBit	0	Little-endian ordering
			1	Big-endian ordering
debug_cpu_ack_n	4	Reserved	0	
debug_cpu_ads_n	5	Reserved	0	
debug_cpu_dma_n	6	TmrIntEn	0	Enables timer interrupt
		Enables/Disables the timer interrupt on Int*[5]	1	Disables timer interrupt
mem_addr[17]	7	Reserved for future use	1	
mem_addr[19:18]	9:8 MSB (9)	Boot-Prom Width specifies the memory port	00	8 bits
		width of the memory space which contains the	01	16 bits
		boot prom.	10	32 bits
			11	Reserved

Table 2 Boot-Mode Configuration Settings

reset_boot_mode Settings

By using the non-boot mode cold reset initialization mode the user can change the internal register addresses from base 1800_0000 to base 1900_0000, as required. The RC32332 cold reset-boot mode initialization setting values and mode descriptions are listed below.

Pin	Reset Boot Mode	Description	Value	Mode Settings
mem_addr[22:21]	1:0 MSB (1)	Tri-state memory bus and EEPROM bus during coldreset_n assertion	11	Tri-state_bus_mode
		Reserved	10	
		PCI-boot mode (pci_host_mode must be in satellite mode) RC32332 will reset either from a cold reset or from a PCI reset. Boot code is provided via PCI.	01	PCI_boot_mode
		Standard-boot mode Boot from the RC32332's memory controller (typical system).	00	standard_boot_mode

Table 3 RC32332 reset_boot_mode Initialization Settings

Reset Specification

Figure 3 Mode Configuration Interface Cold Reset Sequence

			100	/Hz ¹	133N	//Hz ¹	150N	/Hz ¹		User Manual
Signal	Symbol	Reference Edge	Min	Мах	Min	Мах	Min	Max	Units	Timing Diagram Reference
pci_ad[31:0], pci_cbe_n[3:0], pci_par, pci_frame_n, pci_trdy_n, pci_irdy_n, pci_stop_n, pci_perr_n, pci_serr_n, pci_devsel_n	Tdo	pci_clk rising	2	7.5	2	7.5	2	7.5	ns	
pci_req_n[0], pci_gnt_[2], pci_gnt_n[1], pci_gnt_n[0], pci_inta_n	Tdo	pci_clk rising	2	7.5	2	7.5	2	7.5	ns	
SDRAM Controller				•	•	•		•		
sdram_245_dt_r_n	Tdo8	cpu_masterclk rising	—	15	—	12	—	10	ns	Chapter 11,
sdram_ras_n, sdram_cas_n, sdram_we_n, sdram_cs_n[3:0], sdram_s_n[1:0], sdram_bemask_n[3:0], sdram_cke	Tdo9	cpu_masterclk rising	_	12	_	9	_	8	ns	Figures 11.4 and 11.5
sdram_addr_12	Tdo10	cpu_masterclk rising	—	12	—	9	_	8	ns	
sdram_245_oe_n	Tdo11	cpu_masterclk rising	—	12	—	9	_	8	ns	
sdram_245_dt_r_n	Tdoh4	cpu_masterclk rising	1	_	1	_	1	—	ns	
sdram_ras_n, sdram_cas_n, sdram_we_n, sdram_cs_n[3:0], sdram_s_n[1:0], sdram_bemask_n[3:0] sdram_cke, sdram_addr_12, sdram_245_oe_n	Tdoh4	cpu_masterclk rising	2.5	_	2.5	_	2.5	_	ns	
DMA										
dma_ready_n[0], dma_done_n[0]	Tsu7	cpu_masterclk rising	9	—	7	—	6	—	ns	
dma_ready_n[0], dma_done_n[0]	Thld9	cpu_masterclk rising	1	—	1	—	1	—	ns	Chapter 13, Figure 13.4
Interrupt Handling			-		-				-	
cpu_int_n[1:0], cpu_nmi_n	Tsu9	cpu_masterclk rising	9	—	7	—	6	_	ns	Chapter 14,
cpu_int_n[1:0], cpu_nmi_n	Thld13	cpu_masterclk rising	1	—	1	—	1	—	ns	Figure 14.12
PIO										
PIO[7:0]	Tsu7	cpu_masterclk rising	9	—	7	—	6	—	ns	Chapter 15,
PIO[7:0]	Thld9	cpu_masterclk rising	1	—	1	—	1	—	ns	Figures 15.9 and 15.10
PIO[7:6], PIO[4:0]	Tdo16	cpu_masterclk rising	—	15	—	12		10	ns	
PIO[5]	Tdo19	cpu_masterclk rising	—	15	—	12		10	ns	
PIO[7:6], PIO[4:0]	Tdoh7	cpu_masterclk rising	1	_	1	_	1	_	ns	
PIO[5]	Tdoh7	cpu_masterclk rising	1	-	1		1	—	ns	
UARTs										
uart_rx[0], uart_tx[0]	Tsu7	cpu_masterclk rising	15	-	12		10	—	ns	
uart_rx[0], uart_tx[0]	Thld9	cpu_masterclk rising	15	_	12	—	10	—	ns	Chapter 17, Figure 17,16
uart_rx[0], uart_tx[0]	Tdo16	cpu_masterclk rising	_	15	_	12	_	10	ns	<u></u>
uart_rx[0], uart_tx[0]	Tdoh8	cpu_masterclk rising	1	—	1	—	1	_	ns	

Table 6 AC Timing Characteristics - RC32332 (Part 3 of 4)

			100	/Hz ¹	133	//Hz ¹	150	/Hz ¹		User Manual
Signal	Symbol	Reference Edge	Min	Мах	Min	Мах	Min	Мах	Units	Timing Diagram Reference
Reset	I	L								1
mem_addr[19:17]	Tsu10	cpu_coldreset_n rising	10	—	10	—	10	_	ms	Chapter 19,
mem_addr[19:17]	Thld10	cpu_coldreset_n rising	1	_	1	_	1	—	ns	Figures 19.8 and
mem_addr[22:20]	Tsu22	cpu_masterclk rising	9	_	7	_	6	—	ns	. 10.0
mem_addr[22:20]	Thld22	cpu_masterclk rising	1	_	1	_	1	—	ns	
Debug Interface										I
debug_cpu_dma_n, debug_cpu_ack_n, debug_cpu_ads_n, debug_cpu_i_d_n, ejtag_pcst[2:0]	Tsu20	cpu_coldreset_n rising	10	_	10	_	10	_	ms	
debug_cpu_dma_n, debug_cpu_ack_n, debug_cpu_ads_n, debug_cpu_i_d_n, ejtag_pcst[2:0]	Thld20	cpu_coldreset_n rising	1	_	1	_	1	_	ns	Chapter 19, Figure 19.9 and Chapter 9, Figure 9.2
debug_cpu_dma_n, debug_cpu_ack_n, debug_cpu_ads_n, debug_cpu_i_d_n	Tdo20	cpu_masterclk rising	_	15	_	12	_	10	ns	
debug_cpu_dma_n, debug_cpu_ack_n, debug_cpu_ads_n, debug_cpu_i_d_n	Tdoh20	cpu_masterclk rising	1	_	1	_	1	_	ns	
JTAG Interface										
jtag_tms, jtag_tdi, jtag_trst_n	t ₅	jtag_tck rising	10	_	10	_	10	—	ns	
jtag_tms, jtag_tdi, jtag_trst_n	t ₆	jtag_tck rising	10	_	10	_	10	—	ns	See Figure 4 below.
jtag_tdo	t ₄	jtag_tck falling	_	10	_	10	—	10	ns	
EJTAG Interface										
ejtag_tms, ejtag_debugboot	t ₅	jtag_tclk rising	4	_	4	_	4	—	ns	
ejtag_tms, ejtag_debugboot	t ₆	jtag_clk rising	2	_	2	_	2	—	ns	
jtag_tdo Output Delay Time	t _{TDODO,} t ₄	jtag_tck falling	_	6	_	6	—	6	ns	
jtag_tdi Input Setup Time	t _{TDIS} , t ₅	jtag_tck rising	4	—	4	—	4	—	ns	See Figure 4 below.
jtag_tdi Input Hold Time	t _{TDIH,} t ₆	jtag_tck rising	2	—	2	—	2	—	ns	
jtag_trst_n Low Time	$t_{TRSTLow,} t_{12}$	_	100		100		100		ns	
jtag_trst_n Removal Time	t _{TRSTR} , t ₁₃	jtag_tck rising	3	—	3	—	3	—	ns	
ejtag_tpc Output Delay Time	t _{TPCDO,} t ₈	ejtag_dclk rising	-1	3	-1	3	-1	3	ns	
ejtag_pcst Output Delay Time	t _{PCSTDO} , t ₇	ejtag_dclk rising	-1	3	-1	3	-1	3	ns	

Table 6 AC Timing Characteristics - RC32332 (Part 4 of 4)

^{1.} At all pipeline frequencies.

^{2.} Guaranteed by design.

 $^{\rm 3.}$ This PCI interface conforms to the PCI Local Bus Specification, Rev 2.2 at 33MHz.

⁴. pci_rst_n is tested per PCI 2.2 as an asynchronous signal.

Output Loading for AC Testing

Figure 5 Output Loading for AC Testing

Note: PCI pins have been correlated to PCI 2.2.

Recommended Operation Temperature and Supply Voltage

3.3V Device

Grade	Ambient Temperature	Gnd	V _{cc} IO	V _{cc} Core	V _{cc} P
Commercial	0°C to +70°C Ambient	0V	3.3V±5%	3.3V±5%	3.3V±5%
Industrial	-40°C to +85°C Ambient	0V	3.3V±5%	3.3V±5%	3.3V±5%

Table 7 Temperature and Voltage — 3.3V Device

2.5V Device

Grade	Ambient Temperature	Gnd	V _{cc} IO	V _{cc} Core	V _{cc} P
Commercial	0°C to +70°C Ambient	0V	3.3V±5%	2.5V±5%	2.5V±5%
Industrial	-40°C to +85°C Ambient	0V	3.3V±5%	2.5V±5%	2.5V±5%

Table 8 Temperature and Voltage — 2.5V Device

IDT 79RC32332

DC Electrical Characteristics — RC32332

Ta Commercial = 0°C to +70°C; Ta Industrial = -40°C to +85°C

<u>3.3V version</u>: V_{cc} Core = +3.3V±5%; V_{cc} I/O = +3.3V±5%

<u>2.5V version</u>: V_{cc} Core = +2.5V \pm 5%; V_{cc} I/O = +3.3V \pm 5%

	Parameter	RC32332 ¹		Pin Numbers	Conditions		
		Minimum	Maximum		Conditions		
Input Pads	V _{IL}	—	0.8V	52, 64, 95, 160, 161, 164, 166-169, 176, 191	—		
	V _{IH}	2.0V	_		_		
LOW Drive	V _{OL}	_	0.4V	41-45, 48, 170, 171, 174, 175, 177-180, 185-190, 195-200, 207,	I _{OUT} = 6mA		
Output Pads	V _{OH}	V _{cc} - 0.4V	_	208	I _{OUT} = 8mA		
	V _{IL}	_	0.8V		_		
	V _{IH}	2.0V	_		_		
HIGH	V _{OL}	—	0.4V	1-5, 8, 13-15, 18-25, 28-35, 38-40, 49-51, 53-57, 60, 61, 63, 65-	I _{OUT} = 7mA		
Drive Out- put Pads	V _{OH}	V _{cc} - 0.4V	—	7 67,70-76, 79,80,83-87,90-94,153,154,156,158,165,194, 201,204,205,206	I _{OUT} = 16mA		
	V _{IL}	_	0.8V		_		
	V _{IH}	2.0V	_		—		
PCI Drive	V _{IL}	—	_	123, 155, 157, 159	Per PCI 2.2		
Input Pads	V _{IH}	_	—				
PCI Drive	V _{OL}	_	_	96, 97, 100-109, 112-119, 122, 124-129, 132-139, 142-149, 152	Per PCI 2.2		
Output Pads	V _{OH}	—	—				
	V _{IL}	_	_				
	V _{IH}	_	_				
All Pads	C _{IN}	—	10pF	All input pads except 155 and 156	—		
	C _{IN} ²	5pf	12pF	155	Per PCI 2.2		
	C _{IN} ³		8pF	156	Per PCI 2.2		
	C _{OUT}	—	10pF	All output pads	—		
	I/O _{LEAK}	—	10µA	All non-internal pull-up pins	Input/Output Leakage		
	I/O _{LEAK}	—	50µA	All internal pull-up pins	Input/Output Leakage		

Table 9 DC Electrical Characteristics - RC32332

^{1.} At all pipeline frequencies.

^{2.} Applies only to pad 155.

^{3.} Applies only to pad 156.

Capacitive Load Deration — RC32332

Refer to the IDT document 79RC32332 IBIS Model located on the company's web site.

Power Consumption

3.3V Device

Note: This table is based on a 2:1 pipeline-to-bus clock ratio.

Parameter		100MHz		133MHz		150MHz		Unit	Conditions	
		Typical	Max.	Typical	Max.	Typical	Max.			
I _{CC}	Normal mode	360	480	480	630	550	700	mA	C _L = (See Figure 5, Output Loading	
	Standby mode ¹	250	370	330	480	390	540	mA	for AC Testing) $T_a = 25^{\circ}C$ V_{cc} Core = 3.46V (for max. values) V_{cc} I/O = 3.46V (for max. values) V_{cc} Core = 3.3V (for typical values) V_{cc} I/O = 3.3V (for typical values)	
Power Dissipation	Normal mode	1.2	1.7	1.5	2.2	1.7	2.4	W		
	Standby mode ¹	0.83	1.3	1.1	1.7	1.3	1.9	W		

Table 10 Power Consumption — 3.3V Device

^{1.} RISCore 32300 CPU core enters Standby mode by executing WAIT instructions. On-chip logic outside the CPU core continues to function.

2.5V Device

Note: This table is based on a 2:1 pipeline-to-bus clock ratio.

Parameter		100MHz		133MHz		150MHz		Unit	Conditions	
		Typical	Max.	Typical	Max.	Typical	Max.			
I _{CC} I/O	Normal mode	24	81	32	93	35	104	mA	C _L = (See Figure 5, Output Loading	
	Standby mode ¹	2	81	2	93	2	104	mA	$T_a = 25^{\circ}C$	
I _{CC} core	Normal mode	232	301	298	392	333	438	mA	V_{cc}^{u} Core = 2.625V (for max. values)	
	Standby mode ¹	120	269	151	319	168	345	mA	V_{cc} Core = 2.5V (for typical values)	
Power	Normal mode	0.66	1.07	0.85	1.35	0.95	1.51	W	V_{cc} I/O = 3.3V (for typical values)	
Dissipation	Standby mode ¹	0.31	0.94	0.38	1.10	0.43	1.21	W		

Table 11 Power Consumption — 2.5V Device

^{1.} RISCore 32300 CPU core enters Standby mode by executing WAIT instructions. On-chip logic outside the CPU core continues to function.

Power Ramp-up

3.3V Device

There is no special requirement for how fast V_{cc} I/O ramps up to 3.3V. However, all timing references are based on a stable V_{cc} I/O.

2.5V Device

The 2.5V core supply (and 2.5V $V_{cc}P$ supply) can be fully powered without the 3.3V I/O supply. However, the 3.3V I/O supply cannot exceed the 2.5V core supply by more than 1 volt during power up. A sustained large power difference could potentially damage the part. Inputs should not be driven until the part is fully powered. Specifically, the input high voltages should not be applied until the 3.3V I/O supply is powered.

There is no special requirement for how fast V_{cc} I/O ramps up to 3.3V. However, all timing references are based on a stable V_{cc} I/O.

Power Curves

The following four graphs contain the simulated power curves that show power consumption at various bus frequencies. Figures 6 and 7 apply to the 3.3V device, while Figures 8 and 9 apply to the 2.5V device.

Figure 6 Typical Power Usage — RC32V332 Device

Figure 7 Maximum Power Usage — RC32V332 Device

Absolute Maximum Ratings

Symbol	Parameter	Min ¹	Max ¹	Unit
V _{cc} Core 3.3V Device	Supply Voltage	-0.3	4.0	V
V _{cc} Core 2.5V Device	Supply Voltage	-0.3	3.0	V
V _{cc} I/O	I/O Supply Voltage	-0.3	4.0	V
Vi 3.3V Device	Input Voltage	-0.3	5.5	V
Vi 2.5V Device	Input Voltage	-0.3	V _{CC} I/O+0.3	V
Vimin	Input Voltage - undershoot ²	-0.6	—	V
Tstg	Storage Temperature	-40	125	degrees C

Table 12 Absolute Maximum Ratings

^{1.} Functional and tested operating conditions are given in Table 7. Absolute maximum ratings are stress ratings only, and functional operation is not guaranteed beyond recommended operating voltages and temperatures. Stresses beyond those listed may affect device reliability or cause permanent damage to the device.

^{2.} All PCI pads are fully compatible with PCI Specification version 2.2.

Package Pin-out — 208-PQFP for RC32332

The following table lists the pin numbers and signal names for the RC32332. Signal names ending with an _n are active when low.

Pin	Function	Alt	Pin	Function	Alt	Pin	Function	Alt	Pin	Function	Alt
1	sdram_245_oe_n		53	mem_data[12]		105	pci_ad[7]		157	pci_req_n[2]	1
2	sdram_we_n		54	mem_data[19]		106	pci_cbe_n[0]		158	pci_gnt_n[2]	1
3	sdram_cas_n		55	mem_data[13]		107	pci_ad[8]		159	pci_rst_n	
4	sdram_bemask_n[0]		56	mem_data[18]		108	pci_ad[9]		160	cpu_int_n[0]	
5	sdram_bemask_n[1]		57	mem_data[14]		109	pci_ad[10]		161	cpu_int_n[1]	
6	V _{ss}		58	V _{ss}		110	V _{ss}		162	V _{ss}	
7	V _{cc} I/O		59	V _{cc} I/O		111	V _{cc} I/O		163	V _{cc} I/O	
8	sdram_cs_n[0]		60	mem_data[17]		112	pci_ad[11]		164	jtag_tdi	
9	sdram_cs_n[1]		61	mem_data[16]		113	pci_ad[12]		165	jtag_tdo	
10	sdram_ras_n		62	V _{cc} core		114	pci_ad[13]		166	jtag_tms	
11	sdram_s_n[0]		63	mem_data[15]		115	pci_ad[14]		167	ejtag_tms	
12	sdram_s_n[1]		64	cpu_masterclk		116	pci_ad[15]		168	jtag_tck	
13	mem_addr[2]	1	65	mem_data[31]		117	pci_cbe_n[1]		169	jtag_trst_n	
14	mem_addr[3]	1	66	mem_data[0]		118	pci_par		170	ejtag_pcst[0]	1
15	mem_addr[4]	1	67	mem_data[30]		119	pci_serr_n		171	ejtag_pcst[1]	1
16	V _{ss}		68	V _{ss}		120	V _{ss}		172	V _{ss}	
17	V _{cc} I/O		69	V _{cc} I/O		121	V _{cc} I/O		173	V _{cc} I/O	
18	mem_addr[5]	1	70	mem_data[1]		122	pci_perr_n		174	ejtag_pcst[2]	1
19	mem_addr[6]	1	71	mem_data[29]		123	pci_lock_n		175	ejtag_dclk	

Table 13 RC32332 208-pin QFP Package Pin-Out (Part 1 of 2)

Pin	Function	Alt									
20	mem_addr[7]	1	72	mem_data[2]		124	pci_stop_n		176	ejtag_debugboot	
21	mem_addr[8]	1	73	mem_data[28]		125	pci_devsel_n		177	debug_cpu_i_d_n	1
22	mem_addr[9]	1	74	mem_data[3]		126	pci_trdy_n		178	debug_cpu_ads_n	1
23	mem_addr[10]	1	75	mem_data[27]		127	pci_irdy_n		179	debug_cpu_ack_n	1
24	mem_addr[11]	1	76	mem_data[4]		128	pci_frame_n		180	debug_cpu_dma_n	1
25	output_clk		77	V _{cc} p		129	pci_cbe_n[2]		181	V _{cc} I/O	
26	V _{ss}		78	V _{ss} p		130	V _{ss}		182	V _{ss}	
27	V _{cc} core		79	mem_data[26]		131	V _{cc} core		183	V _{cc} core	
28	mem_addr_12		80	mem_data[5]		132	pci_ad[16]		184	V _{cc} I/O	
29	sdram_addr_12		81	V _{ss}		133	pci_ad[17]		185	spi_ss_n	1
30	sdram_cke		82	V _{cc} core		134	pci_ad[18]		186	spi_sck	2
31	sdram_cs_n[2]		83	cpu_dt_r_n	2	135	pci_ad[19]		187	spi_miso	2
32	sdram_cs_n[3]		84	mem_data[25]		136	pci_ad[20]		188	spi_mosi	2
33	sdram_bemask_n[2]		85	mem_data[6]		137	pci_ad[21]		189	dma_ready_n[0]	2
34	sdram_bemask_n[3]		86	mem_data[24]		138	pci_ad[22]		190	mem_245_oe_n	
35	mem_addr[13]		87	mem_data[7]		139	pci_ad[23]		191	mem_wait_n	2
36	V _{ss}		88	V _{ss}		140	V _{ss}		192	V _{ss}	
37	V _{cc} I/O		89	V _{cc} I/O		141	V _{cc} I/O		193	V _{cc} I/O	
38	mem_addr[14]		90	mem_data[23]		142	pci_cbe_n[3]		194	mem_oe_n	
39	mem_addr[15]	1	91	mem_data[8]		143	pci_ad[24]		195	mem_cs_n[0]	
40	mem_addr[16]	1	92	mem_data[22]		144	pci_ad[25]		196	mem_cs_n[1]	
41	mem_addr[17]	1	93	mem_data[9]		145	pci_ad[26]		197	mem_cs_n[2]	
42	mem_addr[18]	1	94	mem_data[21]		146	pci_ad[27]		198	mem_cs_n[3]	
43	mem_addr[19]	1	95	cpu_nmi_n		147	pci_ad[28]		199	mem_cs_n[4]	
44	mem_addr[20]	1	96	pci_ad[0]		148	pci_ad[29]		200	mem_cs_n[5]	
45	mem_addr[21]	1	97	pci_ad[1]		149	pci_ad[30]		201	mem_we_n[0]	
46	V _{ss}		98	V _{ss}		150	V _{ss}		202	V _{ss}	
47	V _{cc} I/O		99	V _{cc} I/O		151	V _{cc} I/O		203	V _{cc} I/O	
48	mem_addr[22]	1	100	pci_ad[2]		152	pci_ad[31]		204	mem_we_n[1]	
49	mem_data[10]		101	pci_ad[3]		153	pci_req_n[0]		205	mem_we_n[2]	
50	mem_data[11]		102	pci_ad[4]		154	pci_gnt_n[0]		206	mem_we_n[3]	
51	mem_data[20]		103	pci_ad[5]		155	pci_clk		207	uart_tx[0]	1
52	cpu_coldreset_n		104	pci_ad[6]		156	pci_gnt_n[1]	2	208	uart_rx[0]	1

Table 13 RC32332 208-pin QFP Package Pin-Out (Part 2 of 2)

RC32332 Package Drawing — Page Two

IDT 79RC32332

Ordering Information

79RC32 = 32-bit family product

Valid Combinations

3.3V Device

79RC32V332 - 100DH, 133DH, 150DH	Commercial
79RC32V332 - 100DHI, 133DHI, 150DHI	Industrial
2.5V Device	
79RC32T332 - 100DH, 133DH, 150DH	Commercial
79RC32T332 - 100DHI, 133DHI, 150DHI	Industrial

CORPORATE HEADQUARTERS 6024 Silver Creek Valley Road San Jose, CA 95138

for SALES: 800-345-7015 or 408-284-8200 fax: 408-284-2775 www.idt.com

for Tech Support: email: rischelp@idt.com phone: 408-284-8208