

Welcome to E-XFL.COM

Understanding <u>Embedded - DSP (Digital</u> <u>Signal Processors)</u>

Embedded - DSP (Digital Signal Processors) are specialized microprocessors designed to perform complex mathematical computations on digital signals in real-time. Unlike general-purpose processors, DSPs are optimized for high-speed numeric processing tasks, making them ideal for applications that require efficient and precise manipulation of digital data. These processors are fundamental in converting and processing signals in various forms, including audio, video, and communication signals, ensuring that data is accurately interpreted and utilized in embedded systems.

Applications of <u>Embedded - DSP (Digital</u> <u>Signal Processors)</u>

Details

E·XFl

Product Status	Active
Туре	Floating Point
Interface	DAI, SPI
Clock Rate	333MHz
Non-Volatile Memory	ROM (512kB)
On-Chip RAM	384kB
Voltage - I/O	3.30V
Voltage - Core	1.20V
Operating Temperature	0°C ~ 70°C (TA)
Mounting Type	Surface Mount
Package / Case	136-LFBGA, CSPBGA
Supplier Device Package	136-CSPBGA (12x12)
Purchase URL	https://www.e-xfl.com/product-detail/analog-devices/adsp-21364kbcz-1aa

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

TABLE OF CONTENTS

Summary	1
Dedicated Audio Components	1
General Description	3
SHARC Family Core Architecture	4
Family Peripheral Architecture	6
I/O Processor Features	8
System Design	8
Development Tools	9
Additional Information	10
Related Signal Chains	10
Pin Function Descriptions	11
Specifications	14
Operating Conditions	14
Electrical Characteristics	15
Package Information	16

REVISION HISTORY

7/13—Revision I to Revision J
Updated Development Tools9
Added Nominal Value column in Operating Conditions 14
Changed Max values in Table 30 in Pulse-Width Modulation Generators
Updated Ordering Guide

ESD Caution	. 16
Maximum Power Dissipation	. 16
Absolute Maximum Ratings	. 16
Timing Specifications	. 16
Output Drive Currents	. 46
Test Conditions	. 46
Capacitive Loading	. 46
Thermal Characteristics	. 47
144-Lead LQFP_EP Pin Configurations	. 48
136-Ball BGA Pin Configurations	. 50
Package Dimensions	. 53
Surface-Mount Design	. 54
Automotive Products	. 55
Ordering Guide	. 56

generate either center-aligned or edge-aligned PWM waveforms. In addition, it can generate complementary signals on two outputs in paired mode or independent signals in nonpaired mode (applicable to a single group of four PWM waveforms).

The PWM generator is capable of operating in two distinct modes while generating center-aligned PWM waveforms: single update mode or double update mode. In single update mode, the duty cycle values are programmable only once per PWM period. This results in PWM patterns that are symmetrical about the midpoint of the PWM period. In double update mode, a second updating of the PWM registers is implemented at the midpoint of the PWM period. In this mode, it is possible to produce asymmetrical PWM patterns that produce lower harmonic distortion in 3-phase PWM inverters.

Digital Audio Interface (DAI)

The digital audio interface (DAI) provides the ability to connect various peripherals to any of the DSP's DAI pins (DAI_P20-1). Programs make these connections using the signal routing unit (SRU, shown in Figure 1).

The SRU is a matrix routing unit (or group of multiplexers) that enables the peripherals provided by the DAI to be interconnected under software control. This allows easy use of the DAI-associated peripherals for a wider variety of applications by using a larger set of algorithms than is possible with nonconfigurable signal paths.

The DAI includes six serial ports, an S/PDIF receiver/transmitter, a DTCP cipher, a precision clock generator (PCG), eight channels of asynchronous sample rate converters, an input data port (IDP), an SPI port, six flag outputs and six flag inputs, and three timers. The IDP provides an additional input path to the ADSP-2136x core, configurable as either eight channels of I²S serial data or as seven channels plus a single 20-bit wide synchronous parallel data acquisition port. Each data channel has its own DMA channel that is independent from the processor's serial ports.

Serial Ports

The processor features six synchronous serial ports that provide an inexpensive interface to a wide variety of digital and mixedsignal peripheral devices such as Analog Devices' AD183x family of audio codecs, ADCs, and DACs. The serial ports are made up of two data lines, a clock, and a frame sync and they can operate at maximum $f_{PCLK}/4$. The data lines can be programmed to either transmit or receive and each data line has a dedicated DMA channel.

Serial ports are enabled via 12 programmable and simultaneous receive or transmit pins that support up to 24 transmit or 24 receive channels of audio data when all six SPORTs are enabled, or six full duplex TDM streams of 128 channels per frame.

Serial port data can be automatically transferred to and from on-chip memory via dedicated DMA channels. Each of the serial ports can work in conjunction with another serial port to provide TDM support. One SPORT provides two transmit signals while the other SPORT provides the two receive signals. The frame sync and clock are shared. Serial ports operate in four modes:

- Standard DSP serial mode
- Multichannel (TDM) mode
- I²S mode
- Left-justified sample pair mode

S/PDIF-Compatible Digital Audio Receiver/Transmitter

The S/PDIF transmitter has no separate DMA channels. It receives audio data in serial format and converts it into a biphase encoded signal. The serial data input to the transmitter can be formatted as left-justified, I²S, or right-justified with word widths of 16, 18, 20, or 24 bits.

The serial data, clock, and frame sync inputs to the S/PDIF transmitter are routed through the signal routing unit (SRU). They can come from a variety of sources such as the SPORTs, external pins, the precision clock generators (PCGs), or the sample rate converters (SRC) and are controlled by the SRU control registers.

Digital Transmission Content Protection (DTCP)

The DTCP specification defines a cryptographic protocol for protecting audio entertainment content from illegal copying, intercepting, and tampering as it traverses high performance digital buses, such as the IEEE 1394 standard. Only legitimate entertainment content delivered to a source device via another approved copy protection system (such as the DVD content scrambling system) is protected by this copy protection system. This feature is available on the ADSP-21362 and ADSP-21365 processors only. Licensing through DTLA is required for these products. Visit www.dtcp.com for more information.

Memory-to-Memory (MTM)

If the DTCP module is not used, the memory-to-memory DMA module allows internal memory copies for a standard DMA.

Synchronous/Asynchronous Sample Rate Converter (SRC)

The sample rate converter (SRC) contains four SRC blocks and is the same core as that used in the AD1896 192 kHz stereo asynchronous sample rate converter and provides up to 140 dB SNR. The SRC block is used to perform synchronous or asynchronous sample rate conversion across independent stereo channels, without using internal processor resources. The four SRC blocks can also be configured to operate together to convert multichannel audio data without phase mismatches. Finally, the SRC is used to clean up audio data from jittery clock sources such as the S/PDIF receiver.

The S/PDIF and SRC are not available on the ADSP-21363 models.

Input Data Port (IDP)

The IDP provides up to eight serial input channels—each with its own clock, frame sync, and data inputs. The eight channels are automatically multiplexed into a single 32-bit by eight-deep FIFO. Data is always formatted as a 64-bit frame and divided into two 32-bit words. The serial protocol is designed to receive

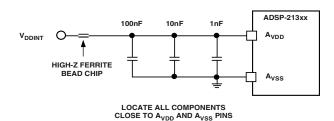


Figure 3. Analog Power (A_{VDD}) Filter Circuit

Target Board JTAG Emulator Connector

Analog Devices' DSP Tools product line of JTAG emulators uses the IEEE 1149.1 JTAG test access port of the processor to monitor and control the target board processor during emulation. Analog Devices' DSP Tools product line of JTAG emulators provides emulation at full processor speed, allowing inspection and modification of memory, registers, and processor stacks. The processor's JTAG interface ensures that the emulator does not affect target system loading or timing.

For complete information on Analog Devices' SHARC DSP Tools product line of JTAG emulator operation, refer to the appropriate emulator user's guide.

DEVELOPMENT TOOLS

Analog Devices supports its processors with a complete line of software and hardware development tools, including integrated development environments (which include CrossCore[®] Embedded Studio and/or VisualDSP++[®]), evaluation products, emulators, and a wide variety of software add-ins.

Integrated Development Environments (IDEs)

For C/C++ software writing and editing, code generation, and debug support, Analog Devices offers two IDEs.

The newest IDE, CrossCore Embedded Studio, is based on the Eclipse[™] framework. Supporting most Analog Devices processor families, it is the IDE of choice for future processors, including multicore devices. CrossCore Embedded Studio seamlessly integrates available software add-ins to support real time operating systems, file systems, TCP/IP stacks, USB stacks, algorithmic software modules, and evaluation hardware board support packages. For more information visit www.analog.com/cces.

The other Analog Devices IDE, VisualDSP++, supports processor families introduced prior to the release of CrossCore Embedded Studio. This IDE includes the Analog Devices VDK real time operating system and an open source TCP/IP stack. For more information visit www.analog.com/visualdsp. Note that VisualDSP++ will not support future Analog Devices processors.

EZ-KIT Lite Evaluation Board

For processor evaluation, Analog Devices provides wide range of EZ-KIT Lite[®] evaluation boards. Including the processor and key peripherals, the evaluation board also supports on-chip emulation capabilities and other evaluation and development

features. Also available are various EZ-Extenders[®], which are daughter cards delivering additional specialized functionality, including audio and video processing. For more information visit www.analog.com and search on "ezkit" or "ezextender".

EZ-KIT Lite Evaluation Kits

For a cost-effective way to learn more about developing with Analog Devices processors, Analog Devices offer a range of EZ-KIT Lite evaluation kits. Each evaluation kit includes an EZ-KIT Lite evaluation board, directions for downloading an evaluation version of the available IDE(s), a USB cable, and a power supply. The USB controller on the EZ-KIT Lite board connects to the USB port of the user's PC, enabling the chosen IDE evaluation suite to emulate the on-board processor in-circuit. This permits the customer to download, execute, and debug programs for the EZ-KIT Lite system. It also supports in-circuit programming of the on-board Flash device to store user-specific boot code, enabling standalone operation. With the full version of Cross-Core Embedded Studio or VisualDSP++ installed (sold separately), engineers can develop software for supported EZ-KITs or any custom system utilizing supported Analog Devices processors.

Software Add-Ins for CrossCore Embedded Studio

Analog Devices offers software add-ins which seamlessly integrate with CrossCore Embedded Studio to extend its capabilities and reduce development time. Add-ins include board support packages for evaluation hardware, various middleware packages, and algorithmic modules. Documentation, help, configuration dialogs, and coding examples present in these add-ins are viewable through the CrossCore Embedded Studio IDE once the add-in is installed.

Board Support Packages for Evaluation Hardware

Software support for the EZ-KIT Lite evaluation boards and EZ-Extender daughter cards is provided by software add-ins called Board Support Packages (BSPs). The BSPs contain the required drivers, pertinent release notes, and select example code for the given evaluation hardware. A download link for a specific BSP is located on the web page for the associated EZ-KIT or EZ-Extender product. The link is found in the *Product Download* area of the product web page.

Middleware Packages

Analog Devices separately offers middleware add-ins such as real time operating systems, file systems, USB stacks, and TCP/IP stacks. For more information see the following web pages:

- www.analog.com/ucos3
- www.analog.com/ucfs
- www.analog.com/ucusbd
- www.analog.com/lwip

Algorithmic Modules

To speed development, Analog Devices offers add-ins that perform popular audio and video processing algorithms. These are available for use with both CrossCore Embedded Studio and

Table 6. Pin Descriptions (Continued)

Туре	State During and After Reset	Function
l/O (pu)	Three-state with pull-up enabled, driven high in SPI- master boot mode	Serial Peripheral Interface Clock Signal. Driven by the master, this signal controls the rate at which data is transferred. The master can transmit data at a variety of baud rates. SPICLK cycles once for each bit transmitted. SPICLK is a gated clock active during data transfers, only for the length of the transferred word. Slave devices ignore the serial clock if the slave select input is driven inactive (high). SPICLK is used to shift out and shift in the data driven on the MISO and MOSI lines. The data is always shifted out on one clock edge and sampled on the opposite edge of the clock. Clock polarity and clock phase relative to data are programmable into the SPICTL control register and define the transfer format. SPICLK has a 22.5 k Ω internal pull-up resistor.
1	Input only	Serial Peripheral Interface Slave Device Select. An active low signal used to select the processor as an SPI slave device. This input signal behaves like a chip select, and is provided by the master device for the slave devices. In multimaster mode the processor's SPIDS signal can be driven by a slave device to signal to the processor (as SPI master) that an error has occurred, as some other device is also trying to be the master device. If asserted low when the device is in master mode, it is considered a multimaster error. For a single-master, multiple-slave configuration where flag pins are used, this pin must be tied or pulled high to V _{DDEXT} on the master device. For processor to processor SPI interaction, any of the master processor's flag pins can be used to drive the SPIDS signal on the SPI slave device.
I/O (O/D) (pu)	Three-state with pull-up enabled, driven low in SPI- master boot mode	SPI Master Out Slave In. If the ADSP-2136x is configured as a master, the MOSI pin becomes a data transmit (output) pin, transmitting output data. If the processor is configured as a slave, the MOSI pin becomes a data receive (input) pin, receiving input data. In an SPI interconnection, the data is shifted out from the MOSI output pin of the master and shifted into the MOSI input(s) of the slave(s). MOSI has a 22.5 k Ω internal pullup resistor.
I/O (O/D) (pu)	Three-state with pull-up enabled	SPI Master In Slave Out. If the ADSP-2136x is configured as a master, the MISO pin becomes a data receive (input) pin, receiving input data. If the processor is configured as a slave, the MISO pin becomes a data transmit (output) pin, transmitting output data. In an SPI interconnection, the data is shifted out from the MISO output pin of the slave and shifted into the MISO input pin of the master. MISO has a 22.5 k Ω internal pull-up resistor. MISO can be configured as O/D by setting the OPD bit in the SPICTL register. Note: <i>Only one slave is allowed to transmit data at any given time.</i> To enable broadcast transmission to multiple SPI slaves, the processor's MISO pin can be disabled by setting Bit 5 (DMISO) of the SPICTL register equal to 1.
1	Input only	Local Clock In. Used in conjunction with XTAL. CLKIN is the ADSP-2136x clock input. It configures the ADSP-2136x to use either its internal clock generator or an external clock source. Connecting the necessary components to CLKIN and XTAL enables the internal clock generator. Connecting the external clock to CLKIN while leaving XTAL unconnected configures the processors to use the external clock source such as an external clock oscillator. The core is clocked either by the PLL output or this clock input depending on the CLK_CFG1–0 pin settings. CLKIN should not be halted, changed, or operated below the specified frequency.
0	Output only ²	Crystal Oscillator Terminal. Used in conjunction with CLKIN to drive an external crystal
1	Input only	Core to CLKIN Ratio Control. These pins set the start up clock frequency. Note that the operating frequency can be changed by programming the PLL multiplier and divider in the PMCTL register at any time after the core comes out of reset. The allowed values are $00 = 6:1$ 01 = 32:1 10 = 16:1 11 = reserved.
	I/O (pu) I I/O (O/D) (pu) I/O (O/D) (pu) I/O (O/D)	TypeAfter ResetI/O (pu)Three-state with pull-up enabled, driven high in SPI- master boot modeIInput onlyIInput onlyI/O (O/D) (pu)Three-state with pull-up enabled, driven low in SPI- master boot modeI/O (O/D) (pu)Three-state with pull-up enabledI/O (O/D) (pu)Three-state with pull-up enabledIInput only

The following symbols appear in the Type column of Table 6: A = asynchronous, G = ground, I = input, O = output, P = power supply, S = synchronous, (A/D) = active drive, (O/D) = open drain, and T = three-state, (pd) = pull-down resistor, (pu) = pull-up resistor.

Table 6. Pin Descriptions (Continued)

Pin	Туре	State During and After Reset	Function	
BOOT_CFG1-0	1	Input only	Boot Configuration Select. This pin is used to select the boot mode for the processor. The BOOT_CFG pins must be valid before reset is asserted. For a description of the boot mode, refer to Table 5, Boot Mode Selection.	
RESETOUT	0	Output only	Reset Out. Drives out the core reset signal to an external device.	
RESET	I/A	Input only	Processor Reset. Resets the ADSP-2136x to a known state. Upon deassertion, there is a 4096 CLKIN cycle latency for the PLL to lock. After this time, the core begins program execution from the hardware reset vector address. The RESET input must be asserted (low) at power-up.	
ТСК	I	Input only ³	Test Clock (JTAG). Provides a clock for JTAG boundary scan. TCK must be asserted (pulsed low) after power-up or held low for proper operation of the processors.	
TMS	I/S (pu)	Three-state with pull-up enabled	Test Mode Select (JTAG). Used to control the test state machine. TMS has a 22.5 $k\Omega$ internal pull-up resistor.	
TDI	I/S (pu)	Three-state with pull-up enabled	Test Data Input (JTAG). Provides serial data for the boundary scan logic. TDI has a 22.5 k internal pull-up resistor.	
TDO	0	Three-state ⁴	Test Data Output (JTAG). Serial scan output of the boundary scan path.	
TRST	I/A (pu)	Three-state with pull-up enabled	Test Reset (JTAG). Resets the test state machine. TRST must be asserted (pulsed low) after power-up or held low for proper operation of the ADSP-2136x. TRST has a 22.5 k Ω internal pull-up resistor.	
EMU	O (O/D) (pu)	Three-state with pull-up enabled	Emulation Status. Must be connected to the processor's JTAG emulators target board connector only. EMU has a 22.5 k Ω internal pull-up resistor.	
V _{DDINT}	Р		Core Power Supply. Supplies the processor's core.	
V _{DDEXT}	Р		I/O Power Supply.	
A _{VDD}	Ρ		Analog Power Supply. Supplies the processor's internal PLL (clock generator). This pin has the same specifications as V _{DDINT} , except that added filtering circuitry is required. For more information, see Power Supplies on Page 8.	
A _{VSS}	G		Analog Power Supply Return.	
GND	G		Power Supply Return.	

power supply, column of lable isynchronous, G = Input, **U** output, P S = synchronous, (A/D) = active drive, (O/D) = open drain, and T = three-state, (pd) = pull-down resistor, (pu) = pull-up resistor.

 $^1\overline{\text{RD}}, \overline{\text{WR}}, \text{and ALE}$ are three-stated (and not driven) only when $\overline{\text{RESET}}$ is active.

² Output only is a three-state driver with its output path always enabled. ³ Input only is a three-state driver with both output path and pull-up disabled.

⁴Three-state is a three-state driver with pull-up disabled.

- The product of CLKIN and PLLM must never exceed 1/2 f_{VCO} (max) in Table 11 if the input divider is not enabled (INDIV = 0).
- The product of CLKIN and PLLM must never exceed f_{VCO} (max) in Table 11 if the input divider is enabled (INDIV = 1).

The VCO frequency is calculated as follows:

 $f_{VCO} = 2 \times PLLM \times f_{INPUT}$ $f_{CCLK} = (2 \times PLLM \times f_{INPUT}) \div (2 \times PLLN)$

where:

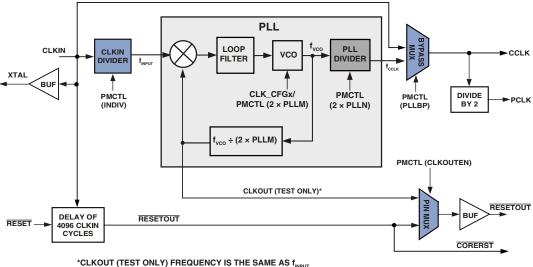
 $f_{VCO} = VCO$ output

PLLM = Multiplier value programmed in the PMCTL register. During reset, the PLLM value is derived from the ratio selected using the CLK_CFG pins in hardware.

PLLN = 1, 2, 4, 8 based on the PLLD value programmed on the PMCTL register. During reset this value is 1.

 f_{INPUT} = Input frequency to the PLL.

 f_{INPUT} = CLKIN when the input divider is disabled or


 f_{INPUT} = CLKIN ÷ 2 when the input divider is enabled

Note the definitions of the clock periods that are a function of CLKIN and the appropriate ratio control shown in Table 9. All of the timing specifications for the ADSP-2136x peripherals are defined in relation to tPCLK. Refer to the peripheral specific section for each peripheral's timing information.

Table 9. Clock Periods

Timing Requirements	Description
t _{CK}	CLKIN Clock Period
t _{CCLK}	Processor Core Clock Period
t _{PCLK}	Peripheral Clock Period = $2 \times t_{CCLK}$

Figure 5 shows core to CLKIN relationships with external oscillator or crystal. The shaded divider/multiplier blocks denote where clock ratios can be set through hardware or software using the power management control register (PMCTL). For more information, refer to the ADSP-2136x SHARC Processor Hardware Reference.

*CLKOUT (TEST ONLY) FREQUENCY IS THE SAME AS f_{INPUT.} THIS SIGNAL IS NOT SPECIFIED OR SUPPORTED FOR ANY DESIGN.

Figure 5. Core Clock and System Clock Relationship to CLKIN

Power-Up Sequencing

The timing requirements for processor startup are given in Table 10. Note that during power-up, when the V_{DDINT} power supply comes up after V_{DDEXT} , a leakage current of the order of

three-state leakage current pull-up, pull-down, may be observed on any pin, even if that is an input only (for example the $\overline{\text{RESET}}$ pin) until the V_{DDINT} rail has powered up.

Table 10. Power-Up Sequencing Timing Requirements (Processor Startup)

Parameter		Min	Max	Unit
Timing Requiren	nents			
t _{RSTVDD}	RESET Low Before V _{DDINT} /V _{DDEXT} On	0		ns
t _{IVDDEVDD}	V _{DDINT} On Before V _{DDEXT}	-50	+200	ms
t _{CLKVDD} 1	CLKIN Valid After V _{DDINT} /V _{DDEXT} Valid	0	200	ms
t _{CLKRST}	CLKIN Valid Before RESET Deasserted	10 ²		μs
t _{PLLRST}	PLL Control Setup Before RESET Deasserted	20		μs
Switching Chara	acteristic			
t _{CORERST}	Core Reset Deasserted After RESET Deasserted	4096t _{CK} + 2 t _C	CLK ^{3, 4}	

¹Valid V_{DDINT}/V_{DDEXT} assumes that the supplies are fully ramped to their 1.2 V rails and 3.3 V rails. Voltage ramp rates can vary from microseconds to hundreds of milliseconds, depending on the design of the power supply subsystem.

² Assumes a stable CLKIN signal, after meeting worst-case start-up timing of crystal oscillators. Refer to your crystal oscillator manufacturer's data sheet for start-up time. Assume a 25 ms maximum oscillator start-up time if using the XTAL pin and internal oscillator circuit in conjunction with an external crystal.

³Applies after the power-up sequence is complete. Subsequent resets require a minimum of 4 CLKIN cycles for RESET to be held low to properly initialize and propagate default states at all I/O pins.

⁴ The 4096 cycle count depends on t_{SRST} specification in Table 12. If setup time is not met, 1 additional CLKIN cycle can be added to the core reset time, resulting in 4097 cycles maximum.

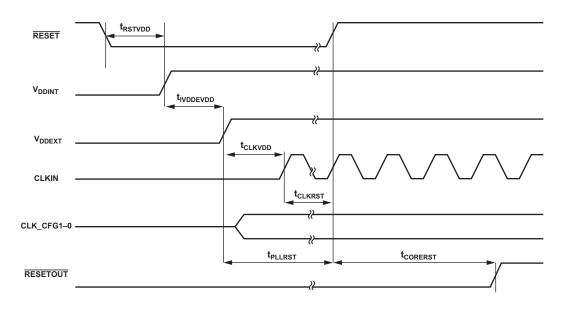
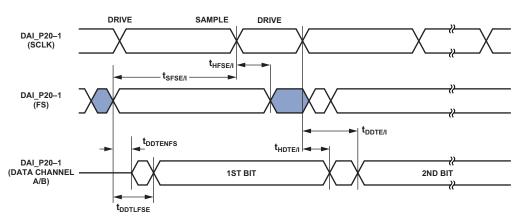
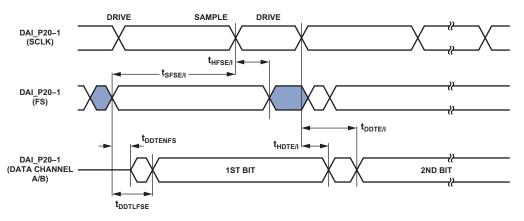
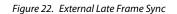



Figure 6. Power-Up Sequencing

Table 26. Serial Ports—External Late Frame Sync


			K and B Grade	Y Grade	
Parameter		Min	Max	Max	Unit
Switching Cha	aracteristics				
t _{DDTLFSE} 1	Data Delay from Late External Transmit Frame Sync or External Receive FS with MCE = 1, MFD = 0		9	10.5	ns
t _{DDTENFS} ¹	Data Enable for MCE = 1, MFD = 0	0.5			ns


¹The t_{DDTLFSE} and t_{DDTENFS} parameters apply to left-justified sample pair as well as serial mode, and MCE = 1, MFD = 0.

EXTERNAL RECEIVE FS WITH MCE = 1, MFD = 0

Table 27. Serial Ports—Enable and Three-State

			K and B Grade	Y Grade	
Paramete	r	Min	Max	Мах	Unit
Switching	Characteristics				
t _{DDTEN} 1	Data Enable from External Transmit SCLK	2			ns
t _{DDTTE} 1	Data Disable from External Transmit SCLK		7	8.5	ns
t _{DDTIN} ¹	Data Enable from Internal Transmit SCLK	-1			ns

¹Referenced to drive edge.

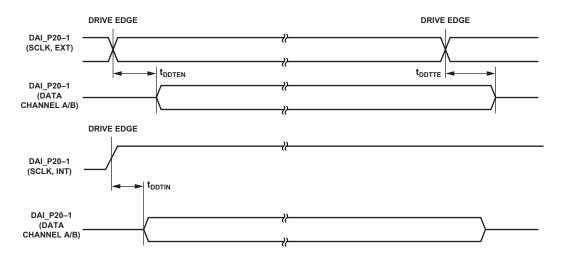


Figure 23. Enable and Three-State

Input Data Port (IDP)

The timing requirements for the IDP are given in Table 28. IDP signals are routed to the DAI_P20-1 pins using the SRU. Therefore, the timing specifications provided below are valid at the DAI_P20-1 pins.

Table 28. IDP

Parameter		Min	Unit
Timing Require	ements		
t _{SISFS} 1	Frame Sync Setup Before Clock Rising Edge	3	ns
t _{SIHFS} 1	Frame Sync Hold After Clock Rising Edge	3	ns
t _{SISD} ¹	Data Setup Before Clock Rising Edge	3	ns
t _{SIHD} 1	Data Hold After Clock Rising Edge	3	ns
t _{IDPCLKW}	Clock Width	$(t_{PCLK} \times 4) \div 2 - 1$	ns
t _{IDPCLK}	Clock Period	$t_{PCLK} \times 4$	ns

¹ The data, clock, and frame sync signals can come from any of the DAI pins. Clock and frame sync can also come via the PCGs or SPORTs. The PCG's input can be either CLKIN or any of the DAI pins.

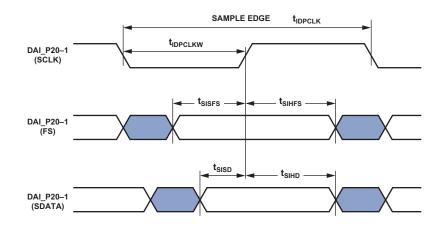


Figure 24. IDP Master Timing

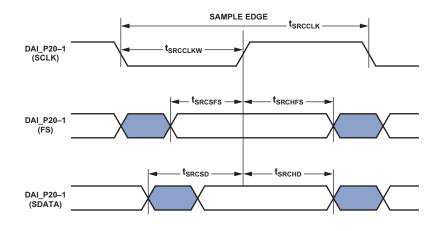


Figure 27. SRC Serial Input Port Timing

S/PDIF Receiver

The following section describes timing as it relates to the S/PDIF receiver. This feature is not available on the ADSP-21363 processors.

Internal Digital PLL Mode

In the internal digital phase-locked loop mode the internal PLL (digital PLL) generates the $512 \times FS$ clock.

Table 38. S/PDIF Receiver Output Timing (Internal Digital PLL Mode)

Parameter		Min	Max	Unit
Switching Charac	teristics			
t _{DFSI}	Frame Sync Delay After Serial Clock		5	ns
t _{HOFSI}	Frame Sync Hold After Serial Clock	-2		ns
t _{DDTI}	Transmit Data Delay After Serial Clock		5	ns
t _{HDTI}	Transmit Data Hold After Serial Clock	-2		ns
t _{SCLKIW} ¹	Transmit Serial Clock Width	38		ns

¹Serial clock frequency is $64 \times FS$ where FS = the frequency of frame sync.

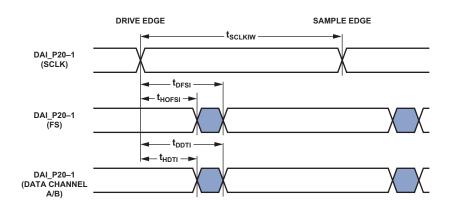


Figure 33. S/PDIF Receiver Internal Digital PLL Mode Timing

SPI Interface—Master

The processor contains two SPI ports. The primary has dedicated pins and the secondary is available through the DAI. The timing provided in Table 39 and Table 40 applies to both ports.

Table 39. SPI Interface Protocol—Master Switching and Timing Specifications

		K and B Gra	de	Y Gra	de	
Paramete	r	Min N	lax	Min	Max	Unit
Timing Red	quirements					
t _{SSPIDM}	Data Input Valid to SPICLK Edge (Data Input Setup Time)	5.2		6.2		ns
t _{SSPIDM}	Data Input Valid to SPICLK Edge (Data Input Setup Time) (SPI2)	8.2		9.5		ns
t _{HSPIDM}	SPICLK Last Sampling Edge to Data Input Not Valid	2		2		ns
Switching	Characteristics					
t _{SPICLKM}	Serial Clock Cycle	$8 \times t_{PCLK} - 2$		$8 \times t_{PCLK} - 2$		ns
t _{SPICHM}	Serial Clock High Period	$4 \times t_{PCLK} - 2$		$4 \times t_{PCLK} - 2$		ns
t _{SPICLM}	Serial Clock Low Period	$4 \times t_{PCLK} - 2$		$4 \times t_{PCLK} - 2$		ns
t _{DDSPIDM}	SPICLK Edge to Data Out Valid (Data Out Delay Time)	3	.0		3.0	ns
t DDSPIDM	SPICLK Edge to Data Out Valid (Data Out Delay Time) (SPI2)	8	.0		9.5	ns
t _{hdspidm}	SPICLK Edge to Data Out Not Valid (Data Out Hold Time)	$4 \times t_{PCLK} - 2$		$4 \times t_{PCLK} - 2$		ns
t _{SDSCIM}	FLAG3–0IN (SPI Device Select) Low to First SPICLK Edge	$4 \times t_{PCLK} - 2.5$		$4 \times t_{PCLK} - 3.0$)	ns
t _{SDSCIM}	FLAG3-0IN (SPI Device Select) Low to First SPICLK Edge (SPI2)	$4 \times t_{PCLK} - 2.5$		$4 \times t_{PCLK} - 3.0$)	ns
t _{HDSM}	Last SPICLK Edge to FLAG3–0IN High	$4 \times t_{PCLK} - 2$		$4 \times t_{PCLK} - 2$		ns
t _{SPITDM}	Sequential Transfer Delay	$4 \times t_{PCLK} - 1$		$4 \times t_{PCLK} - 1$		ns

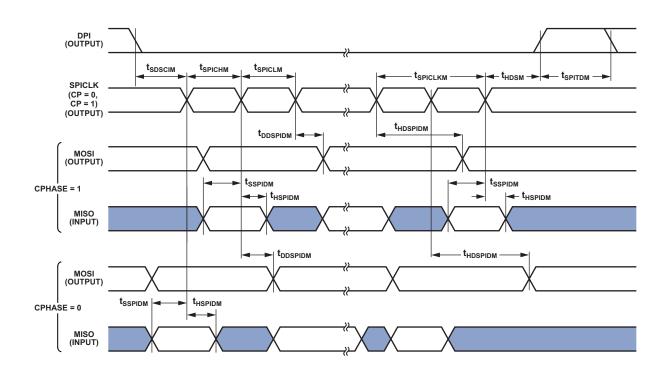


Figure 34. SPI Master Timing

SPI Interface—Slave

Table 40. SPI Interface Protocol—Slave Switching and Timing Specifications

		K aı	nd B Grade	Y Grade	
Parameter		Min	Max	Max	Unit
Timing Requi	rements				
t _{SPICLKS}	Serial Clock Cycle	$4 \times t_{PCLK} - 2$			ns
t _{SPICHS}	Serial Clock High Period	$2 \times t_{PCLK} - 2$			ns
t _{SPICLS}	Serial Clock Low Period	$2 \times t_{PCLK} - 2$			ns
t _{SDSCO}	SPIDS Assertion to First SPICLK Edge				
	CPHASE = 0	$2 \times t_{PCLK}$			ns
	CPHASE = 1	$2 \times t_{PCLK}$			ns
t _{HDS}	Last SPICLK Edge to SPIDS Not Asserted, CPHASE = 0	$2 \times t_{PCLK}$			ns
t _{SSPIDS}	Data Input Valid to SPICLK Edge (Data Input Setup Time)	2			ns
t _{HSPIDS}	SPICLK Last Sampling Edge to Data Input Not Valid	2			ns
t _{SDPPW}	<u>SPIDS</u> Deassertion Pulse Width (CPHASE = 0)	$2 \times t_{PCLK}$			ns
Switching Ch	aracteristics				
t _{DSOE}	SPIDS Assertion to Data Out Active	0	5	5	ns
t _{DSOE} 1	SPIDS Assertion to Data Out Active (SPI2)	0	8	9	ns
t _{DSDHI}	SPIDS Deassertion to Data High Impedance	0	5	5.5	ns
t _{DSDHI} 1	SPIDS Deassertion to Data High Impedance (SPI2)	0	8.6	10	ns
t _{DDSPIDS}	SPICLK Edge to Data Out Valid (Data Out Delay Time)		9.5	11.0	ns
t _{HDSPIDS}	SPICLK Edge to Data Out Not Valid (Data Out Hold Time)	$2 \times t_{PCLK}$			ns
t _{DSOV}	$\overline{\text{SPIDS}}$ Assertion to Data Out Valid (CPHASE = 0)		$5 \times t_{PCLK}$	$5 \times t_{PCLK}$	ns

¹The timing for these parameters applies when the SPI is routed through the signal routing unit. For more information, refer to the *ADSP-2136x SHARC Processor Hardware Reference*, "Serial Peripheral Interface Port" chapter.

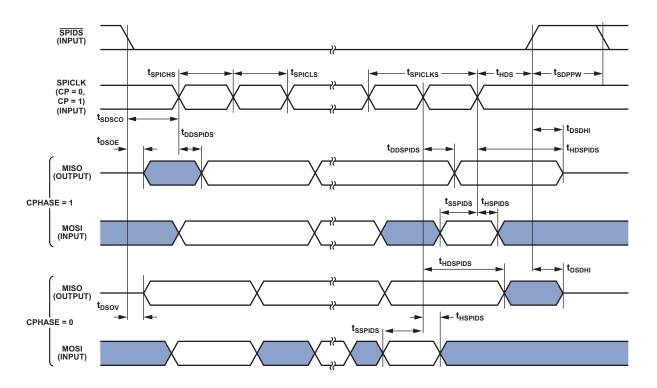


Figure 35. SPI Slave Timing

JTAG Test Access Port and Emulation

Parameter			Min Max		
Timing Requ	uirements				
t _{TCK}	TCK Period	t _{CK}		ns	
t _{STAP}	TDI, TMS Setup Before TCK High	5		ns	
t _{HTAP}	TDI, TMS Hold After TCK High	6		ns	
t _{SSYS} ¹	System Inputs Setup Before TCK High	7		ns	
t _{HSYS} ¹	System Inputs Hold After TCK High	18		ns	
t _{TRSTW}	TRST Pulse Width	$4 \times t_{CK}$		ns	
Switching Cl	haracteristics				
t _{DTDO}	TDO Delay from TCK Low		7	ns	
t _{DSYS} ²	System Outputs Delay After TCK Low		t _{CK} ÷ 2 + 7	ns	

¹ System Inputs = ADDR15-0, <u>SPIDS</u>, CLK_CFG1-0, <u>RESET</u>, BOOT_CFG1-0, MISO, MOSI, SPICLK, DAI_Px, and FLAG3-0. ² System Outputs = MISO, MOSI, SPICLK, DAI_Px, ADDR15-0, <u>RD</u>, <u>WR</u>, FLAG3-0, <u>EMU</u>, and ALE.

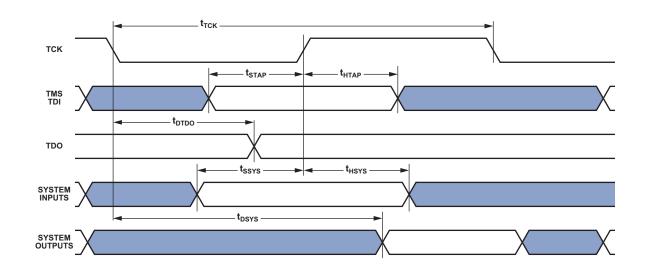


Figure 36. IEEE 1149.1 JTAG Test Access Port

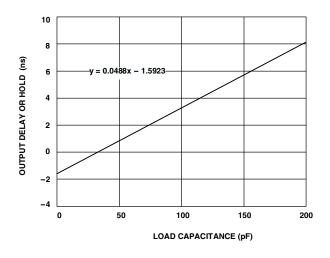


Figure 42. Typical Output Delay or Hold versus Load Capacitance (at Ambient Temperature)

THERMAL CHARACTERISTICS

The processor is rated for performance over the temperature range specified in Operating Conditions on Page 14.

Table 42 through Table 44 airflow measurements comply with JEDEC standards JESD51-2 and JESD51-6 and the junction-toboard measurement complies with JESD51-8. Test board and thermal via design comply with JEDEC standards JESD51-9 (BGA) and JESD51-5 (LQFP_EP). The junction-to-case measurement complies with MIL-STD-883. All measurements use a 2S2P JEDEC test board.

Industrial applications using the BGA package require thermal vias, to an embedded ground plane, in the PCB. Refer to JEDEC standard JESD51-9 for printed circuit board thermal ball land and thermal via design information.

Industrial applications using the LQFP_EP package require thermal trace squares and thermal vias, to an embedded ground plane, in the PCB. Refer to JEDEC standard JESD51-5 for more information.

To determine the junction temperature of the device while on the application PCB, use:

$$T_J = T_T + (\Psi_{JT} \times P_D)$$

where:

 T_I = junction temperature (°C)

 T_T = case temperature (°C) measured at the top center of the package

 Ψ_{JT} = junction-to-top (of package) characterization parameter is the typical value from Table 42 through Table 44.

 P_D = power dissipation. See the Engineer-to-Engineer Note "*Estimating Power for the ADSP-21362 SHARC Processors*" (EE-277) for more information.

Values of θ_{JA} are provided for package comparison and PCB design considerations.

Values of θ_{JC} are provided for package comparison and PCB design considerations when an exposed pad is required. Note that the thermal characteristics values provided in Table 42 through Table 44 are modeled values.

Table 42. Thermal Characteristics for BGA (No Thermal viasin PCB)

Parameter	Condition	Typical	Unit
θ_{JA}	Airflow = 0 m/s	25.40	°C/W
θ _{JMA}	Airflow = 1 m/s	21.90	°C/W
θ _{JMA}	Airflow = 2 m/s	20.90	°C/W
θ _{JC}		5.07	°C/W
Ψ _{JT}	Airflow = 0 m/s	0.140	°C/W
Ψ_{JMT}	Airflow = 1 m/s	0.330	°C/W
Ψ_{JMT}	Airflow = 2 m/s	0.410	°C/W

Table 43.	Thermal Characteristics for BGA (Thermal vias in
PCB)	

Parameter	Condition	Typical	Unit
θ _{JA}	Airflow = 0 m/s	23.40	°C/W
θ _{JMA}	Airflow = 1 m/s	20.00	°C/W
θ _{JMA}	Airflow = 2 m/s	19.20	°C/W
θ _{JC}		5.00	°C/W
Ψ_{JT}	Airflow = 0 m/s	0.130	°C/W
Ψ_{JMT}	Airflow = 1 m/s	0.300	°C/W
Ψ_{JMT}	Airflow = 2 m/s	0.360	°C/W

Table 44. Thermal Characteristics for LQFP_EP (withExposed Pad Soldered to PCB)

Parameter	Condition	Typical	Unit
θ_{JA}	Airflow = 0 m/s	16.80	°C/W
θ _{JMA}	Airflow = 1 m/s	14.20	°C/W
θ _{JMA}	Airflow = 2 m/s	13.50	°C/W
θ _{JC}		7.25	°C/W
Ψ _{JT}	Airflow = 0 m/s	0.51	°C/W
Ψ_{JMT}	Airflow = 1 m/s	0.72	°C/W
Ψ_{JMT}	Airflow = 2 m/s	0.80	°C/W

144-LEAD LQFP_EP PIN CONFIGURATIONS

The following table shows the processor's pin names and, when applicable, their default function after reset in parentheses.

Table 45. LQFP_EP Pin Assignments

Pin Name	Pin No.						
V _{DDINT}	1	V _{DDINT}	37	V _{DDEXT}	73	GND	109
CLK_CFG0	2	GND	38	GND	74	V _{DDINT}	110
CLK_CFG1	3	RD	39	V _{DDINT}	75	GND	111
BOOT_CFG0	4	ALE	40	GND	76	V _{DDINT}	112
BOOT_CFG1	5	AD15	41	DAI_P10 (SD2B)	77	GND	113
GND	6	AD14	42	DAI_P11 (SD3A)	78	V _{DDINT}	114
V _{DDEXT}	7	AD13	43	DAI_P12 (SD3B)	79	GND	115
GND	8	GND	44	DAI_P13 (SCLK3)	80	V _{DDEXT}	116
V _{DDINT}	9	V _{DDEXT}	45	DAI_P14 (SFS3)	81	GND	117
GND	10	AD12	46	DAI_P15 (SD4A)	82	V _{DDINT}	118
V _{DDINT}	11	V _{DDINT}	47	V _{DDINT}	83	GND	119
GND	12	GND	48	GND	84	V _{DDINT}	120
V _{DDINT}	13	AD11	49	GND	85	RESET	121
GND	14	AD10	50	DAI_P16 (SD4B)	86	SPIDS	122
FLAG0	15	AD9	51	DAI_P17 (SD5A)	87	GND	123
FLAG1	16	AD8	52	DAI_P18 (SD5B)	88	V _{DDINT}	124
AD7	17	DAI_P1 (SD0A)	53	DAI_P19 (SCLK5)	89	SPICLK	125
GND	18	V _{DDINT}	54	V _{DDINT}	90	MISO	126
V _{DDINT}	19	GND	55	GND	91	MOSI	127
GND	20	DAI_P2 (SD0B)	56	GND	92	GND	128
V _{DDEXT}	21	DAI_P3 (SCLK0)	57	V _{DDEXT}	93	V _{DDINT}	129
GND	22	GND	58	DAI_P20 (SFS5)	94	V _{DDEXT}	130
V _{DDINT}	23	V _{DDEXT}	59	GND	95	A _{vdd}	131
AD6	24	V _{DDINT}	60	V _{DDINT}	96	A _{vss}	132
AD5	25	GND	61	FLAG2	97	GND	133
AD4	26	DAI_P4 (SFS0)	62	FLAG3	98	RESETOUT	134
V _{DDINT}	27	DAI_P5 (SD1A)	63	V _{DDINT}	99	EMU	135
GND	28	DAI_P6 (SD1B)	64	GND	100	TDO	136
AD3	29	DAI_P7 (SCLK1)	65	V _{DDINT}	101	TDI	137
AD2	30	V _{DDINT}	66	GND	102	TRST	138
V _{DDEXT}	31	GND	67	V _{DDINT}	103	TCK	139
GND	32	V _{DDINT}	68	GND	104	TMS	140
AD1	33	GND	69	V _{DDINT}	105	GND	141
AD0	34	DAI_P8 (SFS1)	70	GND	106	CLKIN	142
WR	35	DAI_P9 (SD2A)	71	V _{DDINT}	107	XTAL	143
V _{DDINT}	36	V _{DDINT}	72	V _{DDINT}	108	V _{DDEXT}	144
						GND	145*

*The ePAD is electrically connected to GND inside the chip (see Figure 43 and Figure 44), therefore connecting the pad to GND is optional. For better thermal performance the ePAD should be soldered to the board and thermally connected to the GND plane with vias.

ORDERING GUIDE

Model ¹	Notes	Temperature Range ²	Instruction Rate	On-Chip SRAM	ROM	Package Description	Package Option
ADSP-21363KBC-1AA		0°C to +70°C	333 MHz	3M Bit	4M Bit	136-Ball CSP_BGA	BC-136-1
ADSP-21363KBCZ-1AA		0°C to +70°C	333 MHz	3M Bit	4M Bit	136-Ball CSP_BGA	BC-136-1
ADSP-21363KSWZ-1AA		0°C to +70°C	333 MHz	3M Bit	4M Bit	144-Lead LQFP_EP	SW-144-1
ADSP-21363BBC-1AA		–40°C to +85°C	333 MHz	3M Bit	4M Bit	136-Ball CSP_BGA	BC-136-1
ADSP-21363BBCZ-1AA		–40°C to +85°C	333 MHz	3M Bit	4M Bit	136-Ball CSP_BGA	BC-136-1
ADSP-21363BSWZ-1AA		–40°C to +85°C	333 MHz	3M Bit	4M Bit	144-Lead LQFP_EP	SW-144-1
ADSP-21363YSWZ-2AA	3	–40°C to +105°C	200 MHz	3M Bit	4M Bit	144-Lead LQFP_EP	SW-144-1
ADSP-21364KBCZ-1AA		0°C to +70°C	333 MHz	3M Bit	4M Bit	136-Ball CSP_BGA	BC-136-1
ADSP-21364KSWZ-1AA		0°C to +70°C	333 MHz	3M Bit	4M Bit	144-Lead LQFP_EP	SW-144-1
ADSP-21364BBCZ-1AA		–40°C to +85°C	333 MHz	3M Bit	4M Bit	136-Ball CSP_BGA	BC-136-1
ADSP-21364BSWZ-1AA		–40°C to +85°C	333 MHz	3M Bit	4M Bit	144-Lead LQFP_EP	SW-144-1
ADSP-21364YSWZ-2AA		–40°C to +105°C	200 MHz	3M Bit	4M Bit	144-Lead LQFP_EP	SW-144-1
ADSP-21366KBCZ-1AR	3, 4, 5	0°C to +70°C	333 MHz	3M Bit	4M Bit	136-Ball CSP_BGA	BC-136-1
ADSP-21366KBCZ-1AA	3, 4	0°C to +70°C	333 MHz	3M Bit	4M Bit	136-Ball CSP_BGA	BC-136-1
ADSP-21366KSWZ-1AA	3, 4	0°C to +70°C	333 MHz	3M Bit	4M Bit	144-Lead LQFP_EP	SW-144-1

 1 Z = RoHS compliant part.

² Referenced temperature is ambient temperature. The ambient temperature is not a specification. Please see Operating Conditions on Page 14 for junction temperature (T_j) specification which is the only temperature specification.

³License from Dolby Laboratories, Inc., and Digital Theater Systems (DTS) required for these products.

⁴ Available with a wide variety of audio algorithm combinations sold as part of a chipset and bundled with necessary software. For a complete list, visit our website at www.analog.com/sharc.

 ${}^{5}R = Tape and reel.$