

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Obsolete
Core Processor	S08
Core Size	8-Bit
Speed	40MHz
Connectivity	CANbus, I ² C, LINbus, SCI, SPI
Peripherals	LVD, POR, PWM, WDT
Number of I/O	39
Program Memory Size	96KB (96K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	4K x 8
Voltage - Supply (Vcc/Vdd)	2.7V ~ 5.5V
Data Converters	A/D 16x12b
Oscillator Type	External
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	48-LQFP
Supplier Device Package	48-LQFP (7x7)
Purchase URL	https://www.e-xfl.com/product-detail/nxp-semiconductors/mc9s08dv96mlf

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Revision History

To provide the most up-to-date information, the revision of our documents on the World Wide Web will be the most current. Your printed copy may be an earlier revision. To verify you have the latest information available, refer to:

http://freescale.com/

The following revision history table summarizes changes contained in this document.

Revision Number	Revision Date	Description of Changes
1	4/2008	Initial Release

© Freescale Semiconductor, Inc., 2007, 2008. All rights reserved. This product incorporates SuperFlash[®] Technology licensed from SST.

Table 1-2 provides the functional version of the on-chip modules.Table 1-2. Module Versions

Module						
Central Processor Unit	(CPU)	5				
Analog Comparator (5V)	(ACMP_5V)	3				
Analog-to-Digital Converter	(ADC)	1				
Debug Module	(DBG)	3				
Inter-Integrated Circuit	(IIC)	2				
Multi-Purpose Clock Generator	(MCG)	2				
Freescale's Controller Area Network	(MSCAN)	1				
Serial Peripheral Interface	(SPI)	3				
Serial Communications Interface	(SCI)	4				
Real-Time Counter	(RTC)	1				
Timer Pulse Width Modulator	(TPM)	3				

1.2 MCU Block Diagram

Figure 1-1 is the MC9S08DZ128 Series system-level block diagram.

Chapter 4 Memory

Figure 4-10. Linear Address Pointer Add Byte Register (LAPAB)

Table 4-11. Linear Address Pointer Add Byte Register Field Descriptions

Field	Description
7:0 D7:D0	The 2s complement value written to LAPAB will be added to contents of the linear address pointer register, LAP2:LAP0. Writing a value of 0x7f to LAPAB will increase LAP by 127, a value of 0x80 will decrease LAP by
	128, and a value of 0xff will decrease LAP by 1.

4.5 RAM

The MC9S08DZ128 Series includes static RAM. The locations in RAM below 0x0100 can be accessed using the more efficient direct addressing mode, and any single bit in this area can be accessed with the bit manipulation instructions (BCLR, BSET, BRCLR, and BRSET). Locating the most frequently accessed program variables in this area of RAM is preferred.

The RAM retains data while the MCU is in low-power wait, stop2, or stop3 mode. At power-on the contents of RAM are uninitialized. RAM data is unaffected by any reset if the supply voltage does not drop below the minimum value for RAM retention (V_{RAM}).

For compatibility with M68HC05 MCUs, the HCS08 resets the stack pointer to 0x00FF. In the MC9S08DZ128 Series, it is usually best to reinitialize the stack pointer to the top of the RAM so the direct page RAM can be used for frequently accessed RAM variables and bit-addressable program variables. Include the following 2-instruction sequence in your reset initialization routine (where RamLast is equated to the highest address of the RAM in the Freescale Semiconductor equate file).

LDHX #RamLast+1 ;point one past RAM TXS ;SP<-(H:X-1)

NOTE

On most devices in the MC9S08DZ128 Series, more than 4K of RAM is present in two separate address blocks.

When security is enabled, the RAM is considered a secure memory resource and is not accessible through BDM or code executing from non-secure memory. See Section 4.6.9, "Security", for a detailed description of the security feature.

Vector Number	Address (High/Low)	Vector Name	Module	Source	Enable	Description
6	0xFFF2/0xFFF3	Vtpm1ch1	TPM1	CH1F	CH1IE	TPM1 channel 1
5	0xFFF4/0xFFF5	Vtpm1ch0	TPM1	CH0F	CH0IE	TPM1 channel 0
4	0xFFF6/0xFFF7	Vlol	MCG	LOLS	LOLIE	MCG loss of lock
3	0xFFF8/0xFFF9	Vlvd	System control	LVWF	LVWIE	Low-voltage warning
2	0xFFFA/0xFFFB	Virq	IRQ	IRQF	IRQIE	IRQ pin
1	0xFFFC/0xFFFD	Vswi	Core	SWI Instruction	—	Software interrupt
0	0xFFFE/0xFFFF	Vreset	System control	COP, LOC, LVD, RESET, ILOP, ILAD, POR, BDFR	COPT CME LVDRE — — — — — — —	Watchdog timer Loss-of-clock Low-voltage detect External pin Illegal opcode Illegal address Power-on-reset BDM-forced reset

¹ Vector priority is shown from lowest (first row) to highest (last row). For example, Vreset is the highest priority vector.

5.6 Low-Voltage Detect (LVD) System

The MC9S08DZ128 Series includes a system to protect against low-voltage conditions in order to protect memory contents and control MCU system states during supply voltage variations. The system is comprised of a power-on reset (POR) circuit and a LVD circuit with trip voltages for warning and detection. The LVD circuit is enabled when LVDE in SPMSC1 is set to 1. The LVD is disabled upon entering any of the stop modes unless LVDSE is set in SPMSC1. If LVDSE and LVDE are both set, then the MCU cannot enter stop2 (it will enter stop3 instead), and the current consumption in stop3 with the LVD enabled will be higher.

5.6.1 Power-On Reset Operation

When power is initially applied to the MCU, or when the supply voltage drops below the power-on reset rearm voltage level, V_{POR} , the POR circuit will cause a reset condition. As the supply voltage rises, the LVD circuit will hold the MCU in reset until the supply has risen above the low-voltage detection low threshold, V_{LVDL} . Both the POR bit and the LVD bit in SRS are set following a POR.

5.6.2 Low-Voltage Detection (LVD) Reset Operation

The LVD can be configured to generate a reset upon detection of a low-voltage condition by setting LVDRE to 1. The low-voltage detection threshold is determined by the LVDV bit. After an LVD reset has occurred, the LVD system will hold the MCU in reset until the supply voltage has risen above the low-voltage detection threshold. The LVD bit in the SRS register is set following either an LVD reset or POR.

6.5.3.5 Port C Drive Strength Selection Register (PTCDS)

_	7	6	5	4	3	2	1	0
R W	PTCDS7	PTCDS6	PTCDS5	PTCDS4	PTCDS3	PTCDS2	PTCDS1	PTCDS0
Reset:	0	0	0	0	0	0	0	0

Figure 6-23. Drive Strength Selection for Port C Register (PTCDS)

Table 6-21. PTCDS Register Field Descriptions

Field	Description
7:0 PTCDS[7:0]	 Output Drive Strength Selection for Port C Bits — Each of these control bits selects between low and high output drive for the associated PTC pin. For port C pins that are configured as inputs, these bits have no effect. 0 Low output drive strength selected for port C bit n. 1 High output drive strength selected for port C bit n.

Chapter 6 Parallel Input/Output Control

6.5.4.5 Port D Drive Strength Selection Register (PTDDS)

Figure 6-28. Drive Strength Selection for Port D Register (PTDDS)

Table 6-26. PTDDS Register Field Descriptions

Field	Description
7:0 PTDDS[7:0]	 Output Drive Strength Selection for Port D Bits — Each of these control bits selects between low and high output drive for the associated PTD pin. For port D pins that are configured as inputs, these bits have no effect. 0 Low output drive strength selected for port D bit n. 1 High output drive strength selected for port D bit n.

6.5.4.6 Port D Interrupt Status and Control Register (PTDSC)

	7	6	5	4	3	2	1	0	
R	0	0	0	0	PTDIF	0		PTDMOD	
W						PTDACK	PIDE		
Reset:	0	0	0	0	0	0	0	0	
	= Unimplemented or Reserved								

Figure 6-29. Port D Interrupt Status and Control Register (PTDSC)

Table 6-27. PTDSC Register Field Descriptions

Field	Description
3 PTDIF	 Port D Interrupt Flag — PTDIF indicates when a port D interrupt is detected. Writes have no effect on PTDIF. 0 No port D interrupt detected. 1 Port D interrupt detected.
2 PTDACK	Port D Interrupt Acknowledge — Writing a 1 to PTDACK is part of the flag clearing mechanism. PTDACK always reads as 0.
1 PTDIE	 Port D Interrupt Enable — PTDIE determines whether a port D interrupt is requested. 0 Port D interrupt request not enabled. 1 Port D interrupt request enabled.
0 PTDMOD	 Port D Detection Mode — PTDMOD (along with the PTDES bits) controls the detection mode of the port D interrupt pins. 0 Port D pins detect edges only. 1 Port D pins detect both edges and levels.

Table 7-2. Instruction Set Summary (Sheet 9 of 9)

Source	Operation	dress lode	Object Code	Cycles	Cyc-by-Cyc Details	Affect on CCR	
		PA				V 11 H	INZC
TXS	Transfer Index Reg. to SP SP \leftarrow (H:X) – \$0001	INH	94	2	fp	- 1 1 -	
WAIT	Enable Interrupts; Wait for Interrupt I bit \leftarrow 0; Halt CPU	INH	8F	2+	fp	- 1 1 -	0

Source Form: Everything in the source forms columns, except expressions in *italic characters*, is literal information which must appear in the assembly source file exactly as shown. The initial 3- to 5-letter mnemonic and the characters (#, () and +) are always a literal characters.

- *n* Any label or expression that evaluates to a single integer in the range 0-7.
- *opr8i* Any label or expression that evaluates to an 8-bit immediate value.
- opr16i Any label or expression that evaluates to a 16-bit immediate value.
- opr8a Any label or expression that evaluates to an 8-bit direct-page address (\$00xx).
- opr16a Any label or expression that evaluates to a 16-bit address.
- oprx8 Any label or expression that evaluates to an unsigned 8-bit value, used for indexed addressing.
- oprx16 Any label or expression that evaluates to a 16-bit value, used for indexed addressing.
- rel Any label or expression that refers to an address that is within -128 to +127 locations from the start of the next instruction.

Operation Symbols:

- A Accumulator
- CCR Condition code register
- H Index register high byte
- M Memory location
- n Any bit
- opr Operand (one or two bytes)
- PC Program counter
- PCH Program counter high byte
- PCL Program counter low byte
- rel Relative program counter offset byte
- SP Stack pointer
- SPL Stack pointer low byte
- X Index register low byte
- & Logical AND
- Logical OR
- Example 2 Logical EXCLUSIVE OR
- () Contents of
- + Add
- Subtract, Negation (two's complement)
- × Multiply
- + Divide
- # Immediate value
- ← Loaded with
- : Concatenated with

CCR Bits:

- V Overflow bit
- H Half-carry bit
- I Interrupt mask
- N Negative bit
- Z Zero bit
- C Carry/borrow bit

- Addressing Modes: DIR Direct addressing
 - DIR Direct addressing mode EXT Extended addressing mode
 - EXT Extended addressing mode
- IMM Immediate addressing mode
- INH Inherent addressing mode
- IX Indexed, no offset addressing mode
- IX1 Indexed, 8-bit offset addressing mode
- IX2 Indexed, 16-bit offset addressing mode
- IX+ Indexed, no offset, post increment addressing mode
- IX1+ Indexed, 8-bit offset, post increment addressing mode
- REL Relative addressing mode
- SP1 Stack pointer, 8-bit offset addressing mode
- SP2 Stack pointer 16-bit offset addressing mode

Cycle-by-Cycle Codes:

- f Free cycle. This indicates a cycle where the CPU does not require use of the system buses. An f cycle is always one cycle of the system bus clock and is always a read cycle.
- p Program fetch; read from next consecutive
- r Read 8-bit operand
- rRead 8-bit operandsPush (write) one byte onto stack
- u Pop (read) one byte from stack
- v Read vector from \$FFxx (high byte first)
- Read vector from \$FFXX (high byte in Meita 2 bit an analytic
- w Write 8-bit operand

CCR Effects:

MC9S08DZ128 Series Data Sheet, Rev. 1

- \$\$ Set or cleared
- Not affected
- U Undefined

Chapter 7 Central Processor Unit (S08CPUV5)

8.3.6 MCG Test and Control Register (MCGT)

Figure 8-8. MCG Test and Control Register (MCGT)

Table 8-8. MCG Test and Control Register Field Descriptions

Field	Description
7:6	Reserved for test, user code should not write 1's to these bits.
5 DMX32	 DCO Maximum frequency with 32.768 kHz reference — The DMX32 bit controls whether or not the DCO frequency range is narrowed to its maximum frequency with a 32.768 kHz reference. See Table 8-9. 0 DCO has default range of 25%. 1 DCO is fined tuned for maximum frequency with 32.768 kHz reference.
4:1	Reserved for test, user code should not write 1's to these bits.
0 DRST DRS	DCO Range Status — The DRST read bit indicates the current frequency range for the FLL output, DCOOUT. See Table 8-9. The DRST bit does not update immediately after a write to the DRS field due to internal synchronization between clock domains. The DRST bit is not valid in BLPI, BLPE, PBE or PEE mode and it reads zero regardless of the DCO range selected by the DRS bit.
	 DCO Range Select — The DRS bit selects the frequency range for the FLL output, DCOOUT. Writes to the DRS bit while either the LP or PLLS bit is set are ignored. 0 Low range. 1 Mid range.

DRS	DMX32 Reference range		ce range FLL factor	
0	0	31.25 - 39.0625 kHz	512	16 - 20 MHz
U	1	32.768 kHz	608	19.92 MHz
1	0	31.25 - 39.0625 kHz	1024	32 - 40 MHz
	1	32.768 kHz	1216	39.85 MHz

Table 8-9. DCO frequency range¹

¹ The resulting bus clock frequency should not exceed the maximum specified bus clock frequency of the device.

8.5.3.2 Example # 2: Moving from PEE to BLPI Mode: Bus Frequency =16 kHz

In this example, the MCG will move through the proper operational modes from PEE mode with an 8MHz crystal configured for an 16 MHz bus frequency (see previous example) to BLPI mode with a 16 kHz bus frequency. First, the code sequence will be described. Then a flowchart will be included which illustrates the sequence.

- 1. First, PEE must transition to PBE mode:
 - a) MCGC1 = 0x98 (%10011000)
 - CLKS (bits 7 and 6) set to %10 in order to switch the system clock source to the external reference clock
 - b) Loop until CLKST (bits 3 and 2) in MCGSC are %10, indicating that the external reference clock is selected to feed MCGOUT
- 2. Then, PBE must transition either directly to FBE mode or first through BLPE mode and then to FBE mode:
 - a) BLPE: If a transition through BLPE mode is desired, first set LP (bit 3) in MCGC2 to 1
 - b) BLPE/FBE: MCGC3 = 0x18(%00011000)
 - PLLS (bit 6) clear to 0 to select the FLL. At this time, with an RDIV value of %011, the PLL reference divider of 8 is switched to an FLL divider of 256 (see Table 8-2), resulting in a reference frequency of 8 MHz / 256 = 31.25 kHz. If RDIV was not previously set to %011 (necessary to achieve required 31.25-39.06 kHz FLL reference frequency with an 8 MHz external source frequency), it must be changed prior to clearing the PLLS bit. In BLPE mode, changing this bit only prepares the MCG for FLL usage in FBE mode. With PLLS = 0, the VDIV value does not matter.
 - DIV32 (bit 4) set to 1 (if previously cleared), automatically switches RDIV bits to the proper reference divider for the FLL clock (divide-by-256)
 - c) BLPE: If transitioning through BLPE mode, clear LP (bit 3) in MCGC2 to 0 here to switch to FBE mode
 - d) FBE: Loop until PLLST (bit 5) in MCGSC is clear, indicating that the current source for the PLLS clock is the FLL
 - e) FBE: Optionally, loop until LOCK (bit 6) in the MCGSC is set, indicating that the FLL has acquired lock. Although the FLL is bypassed in FBE mode, it is still enabled and running.
- 3. Next, FBE mode transitions into FBI mode:
 - a) MCGC1 = 0x5C (%01011100)
 - CLKS (bits7 and 6) in MCGSC1 set to %01 in order to switch the system clock to the internal reference clock

Chapter 8 Multi-Purpose Clock Generator (S08MCGV2)

12.3.14 MSCAN Transmit Error Counter (CANTXERR)

This register reflects the status of the MSCAN transmit error counter.

Figure 12-18. MSCAN Transmit Error Counter (CANTXERR)

Read: Only when in sleep mode (SLPRQ = 1 and SLPAK = 1) or initialization mode (INITRQ = 1 and INITAK = 1)

Write: Unimplemented

NOTE

Reading this register when in any other mode other than sleep or initialization mode, may return an incorrect value. For MCUs with dual CPUs, this may result in a CPU fault condition.

Writing to this register when in special modes can alter the MSCAN functionality.

12.3.15 MSCAN Identifier Acceptance Registers (CANIDAR0-7)

On reception, each message is written into the background receive buffer. The CPU is only signalled to read the message if it passes the criteria in the identifier acceptance and identifier mask registers (accepted); otherwise, the message is overwritten by the next message (dropped).

The acceptance registers of the MSCAN are applied on the IDR0–IDR3 registers (see Section 12.4.1, "Identifier Registers (IDR0–IDR3)") of incoming messages in a bit by bit manner (see Section 12.5.3, "Identifier Acceptance Filter").

For extended identifiers, all four acceptance and mask registers are applied. For standard identifiers, only the first two (CANIDAR0/1, CANIDMR0/1) are applied.

	7	6	5	4	3	2	1	0
R W	AC7	AC6	AC5	AC4	AC3	AC2	AC1	AC0
Reset	0	0	0	0	0	0	0	0

Figure 12-19. MSCAN Identifier Acceptance Registers (First Bank) — CANIDAR0–CANIDAR3

Read: Anytime

Write: Anytime in initialization mode (INITRQ = 1 and INITAK = 1)

Chapter 12 Freescale's Controller Area Network (S08MSCANV1)

bit position in the filter register. Finally, registers CANIDAR0/1/2/3 determine the value of those bits determined by CANIDMR0/1/2/3.

For instance in the case of the filter value of:

0001x1001x0

The CANIDMR0/1/2/3 register would be configured as:

00001000010

and so all message identifier bits except bit 1 and bit 6 would be compared against the CANIDAR0/1/2/3 registers. These would be configured as:

00010100100

In this case bits 1 and 6 are set to '0', but since they are ignored it is equally valid to set them to '1'.

12.5.3.1 Identifier Acceptance Filters example

As described above, filters work by comparisons to individual bits in the CAN message identifier field. The filter will check each one of the eleven bits of a standard CAN message identifier. Suppose a filter value of 0001x1001x0. In this simple example, there are only three possible CAN messages.

Filter value: 0001x1001x0

Message 1: 00011100110

Message 2: 00110100110

Message 3: 00010100100

Message 2 will be rejected since its third most significant bit is not '0' - 001. The filter is simply a convenient way of defining the set of messages that the CPU must receive. For full 29-bits of an extended CAN message identifier, the filter identifies two sets of messages: one set that it receives and one set that it rejects. Alternatively, the filter may be split into two. This allows the MSCAN to examine only the first 16 bits of a message identifier, but allows two separate filters to perform the checking. See the example below:

Filter value A: 0001x1001x0

Filter value B: 00x101x01x0

Message 1: 00011100110

Message 2: 00110100110

Message 3: 00010100100

MSCAN will accept all three messages. Filter A will accept messages 1 and 3 as before and filter B will accept message 2. In practice, it is unimportant which filter accepts the message - messages accepted by either will be placed in the input buffer. A message may be accepted by more than one filter.

pin from a master and the MISO waveform applies to the MISO output from a slave. The \overline{SS} OUT waveform applies to the slave select output from a master (provided MODFEN and SSOE = 1). The master \overline{SS} output goes to active low one-half SPSCK cycle before the start of the transfer and goes back high at the end of the eighth bit time of the transfer. The \overline{SS} IN waveform applies to the slave select input of a slave.

Figure 13-10. SPI Clock Formats (CPHA = 1)

When CPHA = 1, the slave begins to drive its MISO output when \overline{SS} goes to active low, but the data is not defined until the first SPSCK edge. The first SPSCK edge shifts the first bit of data from the shifter onto the MOSI output of the master and the MISO output of the slave. The next SPSCK edge causes both the master and the slave to sample the data bit values on their MISO and MOSI inputs, respectively. At the third SPSCK edge, the SPI shifter shifts one bit position which shifts in the bit value that was just sampled, and shifts the second data bit value out the other end of the shifter to the MOSI and MISO outputs of the master and slave, respectively. When CHPA = 1, the slave's \overline{SS} input is not required to go to its inactive high level between transfers.

Figure 13-11 shows the clock formats when CPHA = 0. At the top of the figure, the eight bit times are shown for reference with bit 1 starting as the slave is selected (\overline{SS} IN goes low), and bit 8 ends at the last SPSCK edge. The MSB first and LSB first lines show the order of SPI data bits depending on the setting

message characters. At the end of a message, or at the beginning of the next message, all receivers automatically force RWU to 0 so all receivers wake up in time to look at the first character(s) of the next message.

14.3.3.2.1 Idle-Line Wakeup

When WAKE = 0, the receiver is configured for idle-line wakeup. In this mode, RWU is cleared automatically when the receiver detects a full character time of the idle-line level. The M control bit selects 8-bit or 9-bit data mode that determines how many bit times of idle are needed to constitute a full character time (10 or 11 bit times because of the start and stop bits).

When RWU is one and RWUID is zero, the idle condition that wakes up the receiver does not set the IDLE flag. The receiver wakes up and waits for the first data character of the next message which will set the RDRF flag and generate an interrupt if enabled. When RWUID is one, any idle condition sets the IDLE flag and generates an interrupt if enabled, regardless of whether RWU is zero or one.

The idle-line type (ILT) control bit selects one of two ways to detect an idle line. When ILT = 0, the idle bit counter starts after the start bit so the stop bit and any logic 1s at the end of a character count toward the full character time of idle. When ILT = 1, the idle bit counter does not start until after a stop bit time, so the idle detection is not affected by the data in the last character of the previous message.

14.3.3.2.2 Address-Mark Wakeup

When WAKE = 1, the receiver is configured for address-mark wakeup. In this mode, RWU is cleared automatically when the receiver detects a logic 1 in the most significant bit of a received character (eighth bit in M = 0 mode and ninth bit in M = 1 mode).

Address-mark wakeup allows messages to contain idle characters but requires that the MSB be reserved for use in address frames. The logic 1 MSB of an address frame clears the RWU bit before the stop bit is received and sets the RDRF flag. In this case the character with the MSB set is received even though the receiver was sleeping during most of this character time.

14.3.4 Interrupts and Status Flags

The SCI system has three separate interrupt vectors to reduce the amount of software needed to isolate the cause of the interrupt. One interrupt vector is associated with the transmitter for TDRE and TC events. Another interrupt vector is associated with the receiver for RDRF, IDLE, RXEDGIF and LBKDIF events, and a third vector is used for OR, NF, FE, and PF error conditions. Each of these ten interrupt sources can be separately masked by local interrupt enable masks. The flags can still be polled by software when the local masks are cleared to disable generation of hardware interrupt requests.

The SCI transmitter has two status flags that optionally can generate hardware interrupt requests. Transmit data register empty (TDRE) indicates when there is room in the transmit data buffer to write another transmit character to SCIxD. If the transmit interrupt enable (TIE) bit is set, a hardware interrupt will be requested whenever TDRE = 1. Transmit complete (TC) indicates that the transmitter is finished transmitting all data, preamble, and break characters and is idle with TxD at the inactive level. This flag is often used in systems with modems to determine when it is safe to turn off the modem. If the transmit complete interrupt enable (TCIE) bit is set, a hardware TC = 1.

Figure 17-3 shows the host receiving a logic 1 from the target HCS08 MCU. Because the host is asynchronous to the target MCU, there is a 0-to-1 cycle delay from the host-generated falling edge on BKGD to the perceived start of the bit time in the target MCU. The host holds the BKGD pin low long enough for the target to recognize it (at least two target BDC cycles). The host must release the low drive before the target MCU drives a brief active-high speedup pulse seven cycles after the perceived start of the bit time. The host should sample the bit level about 10 cycles after it started the bit time.

Figure 17-3. BDC Target-to-Host Serial Bit Timing (Logic 1)

18.3.3.9 Debug Comparator A Extension Register (DBGCAX)

Module Base + 0x0008

_	7	6	5	4	3	2	1	0
R			DAOOFI	0	0	0	0	
w	RWAEN	N RVVA	PAGSEL					- Bit 16
POR or non- end-run	0	0	0	0	0	0	0	0
Reset end-run ¹	U	U	U	0	0	0	0	U

= Unimplemented or Reserved

Figure 18-10. Debug Comparator A Extension Register (DBGCAX)

¹ In the case of an end-trace to reset where DBGEN=1 and BEGIN=0, the bits in this register do not change after reset.

Field	Description
7 RWAEN	 Read/Write Comparator A Enable Bit — The RWAEN bit controls whether read or write comparison is enabled for Comparator A. 0 Read/Write is not used in comparison 1 Read/Write is used in comparison
6 RWA	 Read/Write Comparator A Value Bit — The RWA bit controls whether read or write is used in compare for Comparator A. The RWA bit is not used if RWAEN = 0. 0 Write cycle will be matched 1 Read cycle will be matched
5 PAGSEL	 Comparator A Page Select Bit — This PAGSEL bit controls whether Comparator A will be qualified with the internal signal (mmu_ppage_sel) that indicates an extended access through the PPAGE mechanism. When mmu_ppage_sel = 1, the 17-bit core address is a paged program access, and the 17-bit core address is made up of PPAGE[2:0]:addr[13:0]. When mmu_ppage_sel = 0, the 17-bit core address is either a 16-bit CPU address with a leading 0 in bit 16, or a 17-bit linear address pointer value. Match qualified by mmu_ppage_sel = 0 so address bits [16:0] correspond to a 17-bit CPU address with a leading zero at bit 16, or a 17-bit linear address pointer address Match qualified by mmu_ppage_sel = 1 so address bits [16:0] compare to flash memory address made up of PPAGE[2:0]:addr[13:0]
0 Bit 16	 Comparator A Extended Address Bit 16 Compare Bit — The Comparator A bit 16 compare bit controls whether Comparator A will compare the core address bus bit 16 to a logic 1 or logic 0. 0 Compare corresponding address bit to a logic 0 1 Compare corresponding address bit to a logic 1

A.6 DC Characteristics

This section includes information about power supply requirements, I/O pin characteristics, and power supply current in various operating modes.

Num	С	Characteristic	Symbol	Condition	Min	Typ ¹	Max	Unit
1	_	Operating voltage	V _{DD}	—	2.7	_	5.5	V
	С	All I/O pins,		5 V, I _{Load} = -4 mA	V _{DD} – 1.5		—	
	Ρ	low-drive strength		5 V, I _{Load} = –2 mA	V _{DD} – 0.8		—	
2	С	Output high	V _{OH}	3 V, I _{Load} = -1 mA	V _{DD} – 0.8		—	V
2	С	voltage		5 V, I _{Load} = -20 mA	V _{DD} – 1.5		—	
	Ρ	All I/O pins,		5 V, I _{Load} = -10 mA	V _{DD} – 0.8		—	
	С	high-drive strength		3 V, I _{Load} = -5 mA	V _{DD} – 0.8		—	
3	D	Output high Max total I _{OH} for current all ports	I _{OHT}	V _{OUT} < V _{DD}	0	_	-100	mA
	С	All I/O pins		5 V, I _{Load} = 4 mA	_		1.5	
	Ρ	low-drive strength		5 V, I _{Load} = 2 mA	_		0.8	
	С	Output low	V _{OL}	3 V, I _{Load} = 1 mA	_		0.8	V
-	С	voltage	-	5 V, I _{Load} = 20 mA	—	_	1.5	
	Ρ	All I/O pins		5 V, I _{Load} = 10 mA	—	_	0.8	
	С	high-drive strength		3 V, I _{Load} = 5 mA	_	_	0.8	
5	С	Output low Max total I _{OL} for all ports current	I _{OLT}	V _{OUT} > V _{SS}	0		100	mA
6	Ρ	Input high voltage; all digital inputs	V _{IH}	5V	0.65 x V _{DD}	_	—	V
	С			3V	0.7 x V _{DD}	_	—	
7	Ρ	Input low voltage; all digital inputs	V _{IL}	5V	—		0.35 x V _{DD}	V
<u> </u>	С			3V	—		0.35 x V _{DD}	
8	С	Input hysteresis	V _{hys}		0.06 x V _{DD}			V
9	Ρ	Input leakage current (per pin)	I _{In}	$V_{In} = V_{DD} \text{ or } V_{SS}$	—	0.1	1	μA
	Ρ	Hi-Z (off-state) leakage current (per pin)						
10		input/output port pins	loz	$V_{In} = V_{DD} \text{ or } V_{SS},$	—	0.1	1	μA
		PTG1/XTAL/PTE1/		$V_{In} = V_{DD} \text{ or } V_{SS}$	—	0.2	2	μA
		Pullup or Pulldown ² resistors; when enabled						
11	Ρ	I/O pins	R _{PU} ,R _{PD}		17	37	52	kΩ
	С	PTE1/ ³	R _{PU}		17	37	52	kΩ
	D	DC injection current ^{4, 5, 6, 7}						
		Single pin limit		$V_{IN} > V_{DD}$	0	—	2	mA
12			I _{IC}	V _{IN} < V _{SS} ,	0	_	-0.2	mA
		Total MCU limit, includes	1	$V_{IN} > V_{DD}$	0	—	25	mA
		sum of all stressed pins		V _{IN} < V _{SS} ,	0	—	-5	mA
13	D	Input Capacitance, all pins	C _{In}				8	pF

Table A-6. DC Characteristics

Num	С	Characteristic	Symbol	Condition	Min	Typ ¹	Max	Unit
14	D	RAM retention voltage	V _{RAM}		_	0.6	1.0	V
15	D	POR re-arm voltage ⁸	V _{POR}		0.9	1.4	2.0	V
16	D	POR re-arm time ⁹	t _{POR}		10	—	_	μs
17	Ρ	Low-voltage detection threshold — high range V _{DD} falling V _{DD} rising	V _{LVD1}		3.9 4.0	4.0 4.1	4.1 4.2	V
18	Ρ	Low-voltage detection threshold — low range V _{DD} falling V _{DD} rising	V _{LVD0}		2.48 2.54	2.56 2.62	2.64 2.70	V
19	Ρ	Low-voltage warning threshold — high range 1 V _{DD} falling V _{DD} rising	V _{LVW3}		4.5 4.6	4.6 4.7	4.7 4.8	V
20	Ρ	Low-voltage warning threshold — high range 0 V _{DD} falling V _{DD} rising	V _{LVW2}		4.2 4.3	4.3 4.4	4.4 4.5	V
21	Ρ	Low-voltage warning threshold low range 1 V _{DD} falling V _{DD} rising	V _{LVW1}		2.84 2.90	2.92 2.98	3.00 3.06	V
22	Ρ	Low-voltage warning threshold — low range 0 V _{DD} falling V _{DD} rising	V _{LVW0}		2.66 2.72	2.74 2.80	2.82 2.88	V
23	Т	Low-voltage inhibit reset/recover hysteresis	V _{lvihys}	5 V		100		mV
24	Ρ	Bandgap Voltage Reference ¹⁰	V _{BG}	5 V	1.19	1.20	1.21	V

Table A-6. DC Characteristics (continued)

¹ Typical values are measured at 25°C. Characterized, not tested.

- ² When a pin interrupt is configured to detect rising edges, pulldown resistors are used in place of pullup resistors.
- ³ The specified resistor value is the actual value internal to the device. The pullup value may measure higher when measured externally on the pin.
- ⁴ Power supply must maintain regulation within operating V_{DD} range during instantaneous and operating maximum current conditions. If positive injection current (V_{In} > V_{DD}) is greater than I_{DD}, the injection current may flow out of V_{DD} and could result in external power supply going out of regulation. Ensure external V_{DD} load will shunt current greater than maximum injection current. This will be the greatest risk when the MCU is not consuming power. Examples are: if no system clock is present, or if clock rate is very low (which would reduce overall power consumption).
- ⁵ All functional non-supply pins are internally clamped to V_{SS} and V_{DD} .
- ⁶ Input must be current limited to the value specified. To determine the value of the required current-limiting resistor, calculate resistance values for positive and negative clamp voltages, then use the larger of the two values.
- ⁷ The PTE1 pin does not have a clamp diode to V_{DD} . Do not drive this pin above V_{DD} .
- ⁸ Maximum is highest voltage that POR will occur.
- ⁹ Simulated, not tested
- 10 Factory trimmed at V_{DD} = 5.0 V, Temp = 25°C

A.13 FLASH and EEPROM

This section provides details about program/erase times and program-erase endurance for the FLASH and EEPROM memory.

Program and erase operations do not require any special power sources other than the normal V_{DD} supply. For more detailed information about program/erase operations, see Chapter 4, "Memory."

NOTE

All values shown in Table A-17 are preliminary and subject to further characterization.

Num	с	Rating	Symbol	Min	Typical	Max	Unit	
1	_	Supply voltage for program/erase	V _{prog/erase}	2.7		5.5	V	
2	_	Supply voltage for read operation	V _{Read}	2.7		5.5	V	
3	_	Internal FCLK frequency ¹	f _{FCLK}	150		200	kHz	
4	_	Internal FCLK period (1/FCLK)	t _{Fcyc}	5		6.67	μs	
5	_	Byte program time (random location) ⁽²⁾	t _{prog}		t _{Fcyc}			
6	_	Byte program time (burst mode) ⁽²⁾	t _{Burst}		t _{Fcyc}			
7	_	Page erase time ²	t _{Page}		4000			
8	_	Mass erase time ⁽²⁾	t _{Mass}		t _{Fcyc}			
9	с	FLASH Program/erase endurance ³ T _L to T _H = -40° C to + 125°C T = 25°C	N _{FLPE}	10,000	100,000	_	cycles	
10	С	EEPROM Program/erase endurance ³ T_L to $T_H = -40^{\circ}$ C to + 0°C T_L to $T_H = 0^{\circ}$ C to + 125°C $T = 25^{\circ}$ C	N _{EEPE}	10,000 50,000	300,000	 	cycles	
11	С	Data retention ⁴	t _{D_ret}	15	100		years	

Table A-17. FLASH and EEPROM Characteristics

¹ The frequency of this clock is controlled by a software setting.

² These values are hardware state machine controlled. User code does not need to count cycles. This information supplied for calculating approximate time to program and erase.

³ Typical endurance for FLASH and EEPROM is based on the intrinsic bitcell performance. For additional information on how Freescale Semiconductor defines typical endurance, please refer to Engineering Bulletin EB619, *Typical Endurance for Nonvolatile Memory*.

⁴ Typical data retention values are based on intrinsic capability of the technology measured at high temperature and de-rated to 25°C using the Arrhenius equation. For additional information on how Freescale Semiconductor defines typical data retention, please refer to Engineering Bulletin EB618, *Typical Data Retention for Nonvolatile Memory.*