E·XFL

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Obsolete
Core Processor	S08
Core Size	8-Bit
Speed	40MHz
Connectivity	CANbus, I ² C, LINbus, SCI, SPI
Peripherals	LVD, POR, PWM, WDT
Number of I/O	53
Program Memory Size	96КВ (96К × 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	4K x 8
Voltage - Supply (Vcc/Vdd)	2.7V ~ 5.5V
Data Converters	A/D 24x12b
Oscillator Type	External
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	64-LQFP
Supplier Device Package	64-LQFP (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/nxp-semiconductors/mc9s08dv96mlh

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

NOTE

To avoid extra current drain from floating input pins, the reset initialization routine in the application program should either enable on-chip pull-up devices or change the direction of unused or non-bonded pins to outputs so they do not float.

Pin Number < Lowest						hest
100	64	48	Port Pin/Interrupt		Alt 1	Alt 2
1	1	1	PTB6	PIB6	ADP14	
2	2		PTC5		ADP21	
3	3	2	PTA7	PIA7	ADP7	IRQ
4	4		PTC6		ADP22	
5	5	3	PTB7	PIB7	ADP15	
6	6	_	PTC7		ADP23	
7		_	PTJ0	PIJ0	TPM3CH0	
8		_	PTJ1	PIJ1	TPM3CH1	
9		_	PTJ2	PIJ2	TPM3CH2	
10			PTJ3	PIJ3	ТРМЗСНЗ	
11	7	4				V _{DD}
12	8	5				V _{SS}
13	9	6	PTG0		EXTAL	
14	10	7	PTG1		XTAL	
15	11	8				RESET
16			PTL5			
17	12	9	PTF4			ACMP2+
18	13	10	PTF5			ACMP2-
19	14	_	PTF6			ACMP2O
20		_	PTJ4	PIJ4		
21		_	PTJ5	PIJ5		
22	—	_	PTJ6	PIJ6		
23	—	—	PTJ7	PIJ7	TPM3CLK	
24	15	11	PTE0			TxD1
25	16	12	PTE1 ¹			RxD1

Table 2-1. Pin Availability by Package Pin-Count

Chapter 2 Pins and Connections

6.5.2.5 Port B Drive Strength Selection Register (PTBDS)

Figure 6-15. Drive Strength Selection for Port B Register (PTBDS)

Table 6-13. PTBDS Register Field Descriptions

Field	Description
7:0 PTBDS[7:0]	 Output Drive Strength Selection for Port B Bits — Each of these control bits selects between low and high output drive for the associated PTB pin. For port B pins that are configured as inputs, these bits have no effect. 0 Low output drive strength selected for port B bit n. 1 High output drive strength selected for port B bit n.

6.5.2.6 Port B Interrupt Status and Control Register (PTBSC)

	7	6	5	4	3	2	1	0
R	0	0	0	0	PTBIF	0	DTDIE	
W						PTBACK	FIDIC	FIDINIOD
Reset:	0	0	0	0	0	0	0	0
	= Unimplemented or Reserved							

Figure 6-16. Port B Interrupt Status and Control Register (PTBSC)

Table 6-14. PTBSC Register Field Descriptions

Field	Description
3 PTBIF	 Port B Interrupt Flag — PTBIF indicates when a Port B interrupt is detected. Writes have no effect on PTBIF. 0 No Port B interrupt detected. 1 Port B interrupt detected.
2 PTBACK	Port B Interrupt Acknowledge — Writing a 1 to PTBACK is part of the flag clearing mechanism. PTBACK always reads as 0.
1 PTBIE	 Port B Interrupt Enable — PTBIE determines whether a port B interrupt is requested. 0 Port B interrupt request not enabled. 1 Port B interrupt request enabled.
0 PTBMOD	 Port B Detection Mode — PTBMOD (along with the PTBES bits) controls the detection mode of the port B interrupt pins. 0 Port B pins detect edges only. 1 Port B pins detect both edges and levels.

6.5.6.5 Port F Drive Strength Selection Register (PTFDS)

_	7	6	5	4	3	2	1	0
R W	PTFDS7	PTFDS6	PTFDS5	PTFDS4	PTFDS3	PTFDS2	PTFDS1	PTFDS0
Reset:	0	0	0	0	0	0	0	0

Figure 6-41. Drive Strength Selection for Port F Register (PTFDS)

Table 6-39. PTFDS Register Field Descriptions

Field	Description
7:0 PTFDS[7:0]	 Output Drive Strength Selection for Port F Bits — Each of these control bits selects between low and high output drive for the associated PTF pin. For port F pins that are configured as inputs, these bits have no effect. 0 Low output drive strength selected for port F bit n. 1 High output drive strength selected for port F bit n.

6.5.8.5 Port H Drive Strength Selection Register (PTHDS)

_	7	6	5	4	3	2	1	0
R W	PTHDS7	PTHDS6	PTHDS5	PTHDS4	PTHDS3	PTHDS2	PTHDS1	PTHDS0
Reset:	0	0	0	0	0	0	0	0

Figure 6-51. Drive Strength Selection for Port H Register (PTHDS)

Table 6-49. PTHDS Register Field Descriptions

Field	Description
7:0 PTHDS[7:0]	 Output Drive Strength Selection for Port H Bits — Each of these control bits selects between low and high output drive for the associated PTH pin. For port H pins that are configured as inputs, these bits have no effect. 0 Low output drive strength selected for port H bit n. 1 High output drive strength selected for port H bit n.

6.5.9.3 Port J Pull Enable Register (PTJPE)

Figure 6-54. Internal Pull Enable for Port J Register (PTJPE)

Table 6-52. PTJPE Register Field Descriptions

Field	Description
7:0 PTJPE[7:0]	 Internal Pull Enable for Port J Bits — Each of these control bits determines if the internal pull-up device is enabled for the associated PTJ pin. For port J pins that are configured as outputs, these bits have no effect and the internal pull devices are disabled. 0 Internal pull-up device disabled for port J bit n. 1 Internal pull-up device enabled for port J bit n.

NOTE

Pull-down devices only apply when using pin interrupt functions, when corresponding edge select and pin select functions are configured.

6.5.9.4 Port J Slew Rate Enable Register (PTJSE)

Figure 6-55. Slew Rate Enable for Port J Register (PTJSE)

Table 6-53. PTJSE Register Field Descriptions

Field	Description
7:0 PTJSE[7:0]	 Output Slew Rate Enable for Port J Bits — Each of these control bits determines if the output slew rate control is enabled for the associated PTJ pin. For port J pins that are configured as inputs, these bits have no effect. Output slew rate control disabled for port J bit n. Output slew rate control enabled for port J bit n.

Note: Slew rate reset default values may differ between engineering samples and final production parts. Always initialize slew rate control to the desired value to ensure correct operation.

8.3.2 MCG Control Register 2 (MCGC2)

Figure 8-4. MCG Control Register 2 (MCGC2)

Table 8-4.	. MCG Control	Register 2	Field Descri	ptions
------------	---------------	------------	--------------	--------

Field	Description
7:6 BDIV	Bus Frequency Divider — Selects the amount to divide down the clock source selected by the CLKS bits in the MCGC1 register. This controls the bus frequency. 00 Encoding 0 — Divides selected clock by 1 01 Encoding 1 — Divides selected clock by 2 (reset default) 10 Encoding 2 — Divides selected clock by 4 11 Encoding 3 — Divides selected clock by 8
5 RANGE	 Frequency Range Select — Selects the frequency range for the external oscillator or external clock source. 1 High frequency range selected for the external oscillator of 1 MHz to 16 MHz (1 MHz to 40 MHz for external clock source) 0 Low frequency range selected for the external oscillator of 32 kHz to 100 kHz (32 kHz to 1 MHz for external clock source)
4 HGO	 High Gain Oscillator Select — Controls the external oscillator mode of operation. Configure external oscillator for high gain operation Configure external oscillator for low power operation
3 LP	 Low Power Select — Controls whether the FLL (or PLL) is disabled in bypassed modes. 1 FLL (or PLL) is disabled in bypass modes (lower power). 0 FLL (or PLL) is not disabled in bypass modes.
2 EREFS	 External Reference Select — Selects the source for the external reference clock. 1 Oscillator requested 0 External Clock Source requested
1 ERCLKEN	External Reference Enable — Enables the external reference clock for use as MCGERCLK. 1 MCGERCLK active 0 MCGERCLK inactive
0 EREFSTEN	 External Reference Stop Enable — Controls whether or not the external reference clock remains enabled when the MCG enters stop mode. 1 External reference clock stays enabled in stop if ERCLKEN is set or if MCG is in FEE, FBE, PEE, PBE, or BLPE mode before entering stop 0 External reference clock is disabled in stop

Chapter 9 5-V Analog Comparator (S08ACMPV3)

9.1 Introduction

The analog comparator module (ACMP) provides a circuit for comparing two analog input voltages or for comparing one analog input voltage to an internal reference voltage. The comparator circuit is designed to operate across the full range of the supply voltage (rail-to-rail operation).

All MC9S08DZ128 Series MCUs have two full function ACMPs. MCUs in the 48-pin package have two ACMPs, but the output of ACMP2 is not accessible.

NOTE

MC9S08DZ128 Series devices operate at a higher voltage range (2.7 V to 5.5 V) and do not include stop1 mode. Please ignore references to stop1.

ACMP2O is not available in the 48-pin package.

9.1.1 ACMP Configuration Information

When using the bandgap reference voltage for input to ACMP+, the user must enable the bandgap buffer by setting BGBE =1 in SPMSC1 see Section 5.8.7, "System Power Management Status and Control 1 Register (SPMSC1)." For value of bandgap voltage reference see Appendix A, "Electrical Characteristics"

Chapter 9 Analog Comparator (S08ACMPV3)

Figure 9-2. Analog Comparator 5V (ACMP5) Block Diagram

Field	Description
7 ADPC23	ADC Pin Control 23. ADPC23 controls the pin associated with channel AD23. 0 AD23 pin I/O control enabled 1 AD23 pin I/O control disabled
6 ADPC22	 ADC Pin Control 22. ADPC22 controls the pin associated with channel AD22. AD22 pin I/O control enabled AD22 pin I/O control disabled
5 ADPC21	ADC Pin Control 21. ADPC21 controls the pin associated with channel AD21. 0 AD21 pin I/O control enabled 1 AD21 pin I/O control disabled
4 ADPC20	ADC Pin Control 20. ADPC20 controls the pin associated with channel AD20. 0 AD20 pin I/O control enabled 1 AD20 pin I/O control disabled
3 ADPC19	ADC Pin Control 19. ADPC19 controls the pin associated with channel AD19. 0 AD19 pin I/O control enabled 1 AD19 pin I/O control disabled
2 ADPC18	ADC Pin Control 18. ADPC18 controls the pin associated with channel AD18. 0 AD18 pin I/O control enabled 1 AD18 pin I/O control disabled
1 ADPC17	ADC Pin Control 17. ADPC17 controls the pin associated with channel AD17. 0 AD17 pin I/O control enabled 1 AD17 pin I/O control disabled
0 ADPC16	ADC Pin Control 16. ADPC16 controls the pin associated with channel AD16. 0 AD16 pin I/O control enabled 1 AD16 pin I/O control disabled

Table 10-12. APCTL3 Register Field Descriptions

10.4 Functional Description

The ADC module is disabled during reset or when the ADCH bits are all high. The module is idle when a conversion has completed and another conversion has not been initiated. When idle, the module is in its lowest power state.

The ADC can perform an analog-to-digital conversion on any of the software selectable channels. In 12-bit and 10-bit mode, the selected channel voltage is converted by a successive approximation algorithm into a 12-bit digital result. In 8-bit mode, the selected channel voltage is converted by a successive approximation algorithm into a 9-bit digital result.

When the conversion is completed, the result is placed in the data registers (ADCRH and ADCRL). In 10-bit mode, the result is rounded to 10 bits and placed in the data registers (ADCRH and ADCRL). In 8-bit mode, the result is rounded to 8 bits and placed in ADCRL. The conversion complete flag (COCO) is then set and an interrupt is generated if the conversion complete interrupt has been enabled (AIEN = 1).

The ADC module has the capability of automatically comparing the result of a conversion with the contents of its compare registers. The compare function is enabled by setting the ACFE bit and operates with any of the conversion modes and configurations.

10.6 Application Information

This section contains information for using the ADC module in applications. The ADC has been designed to be integrated into a microcontroller for use in embedded control applications requiring an A/D converter.

10.6.1 External Pins and Routing

The following sections discuss the external pins associated with the ADC module and how they should be used for best results.

10.6.1.1 Analog Supply Pins

The ADC module has analog power and ground supplies (V_{DDAD} and V_{SSAD}) available as separate pins on some devices. V_{SSAD} is shared on the same pin as the MCU digital V_{SS} on some devices. On other devices, V_{SSAD} and V_{DDAD} are shared with the MCU digital supply pins. In these cases, there are separate pads for the analog supplies bonded to the same pin as the corresponding digital supply so that some degree of isolation between the supplies is maintained.

When available on a separate pin, both V_{DDAD} and V_{SSAD} must be connected to the same voltage potential as their corresponding MCU digital supply (V_{DD} and V_{SS}) and must be routed carefully for maximum noise immunity and bypass capacitors placed as near as possible to the package.

If separate power supplies are used for analog and digital power, the ground connection between these supplies must be at the V_{SSAD} pin. This should be the only ground connection between these supplies if possible. The V_{SSAD} pin makes a good single point ground location.

10.6.1.2 Analog Reference Pins

In addition to the analog supplies, the ADC module has connections for two reference voltage inputs. The high reference is V_{REFH} , which may be shared on the same pin as V_{DDAD} on some devices. The low reference is V_{REFL} , which may be shared on the same pin as V_{SSAD} on some devices.

When available on a separate pin, V_{REFH} may be connected to the same potential as V_{DDAD} , or may be driven by an external source between the minimum V_{DDAD} spec and the V_{DDAD} potential (V_{REFH} must never exceed V_{DDAD}). When available on a separate pin, V_{REFL} must be connected to the same voltage potential as V_{SSAD} . V_{REFH} and V_{REFL} must be routed carefully for maximum noise immunity and bypass capacitors placed as near as possible to the package.

AC current in the form of current spikes required to supply charge to the capacitor array at each successive approximation step is drawn through the V_{REFH} and V_{REFL} loop. The best external component to meet this current demand is a 0.1 μ F capacitor with good high frequency characteristics. This capacitor is connected between V_{REFH} and V_{REFL} and must be placed as near as possible to the package pins. Resistance in the path is not recommended because the current causes a voltage drop that could result in conversion errors. Inductance in this path must be minimum (parasitic only).

ICR (hex)	SCL Divider	SDA Hold Value	SCL Hold (Start) Value	SDA Hold (Stop) Value
00	20	7	6	11
01	22	7	7	12
02	24	8	8	13
03	26	8	9	14
04	28	9	10	15
05	30	9	11	16
06	34	10	13	18
07	40	10	16	21
08	28	7	10	15
09	32	7	12	17
0A	36	9	14	19
0B	40	9	16	21
0C	44	11	18	23
0D	48	11	20	25
0E	56	13	24	29
0F	68	13	30	35
10	48	9	18	25
11	56	9	22	29
12	64	13	26	33
13	72	13	30	37
14	80	17	34	41
15	88	17	38	45
16	104	21	46	53
17	128	21	58	65
18	80	9	38	41
19	96	9	46	49
1A	112	17	54	57
1B	128	17	62	65
1C	144	25	70	73
1D	160	25	78	81
1E	192	33	94	97
1F	240	33	118	121

ICR (hex)	SCL Divider	SDA Hold Value	SCL Hold (Start) Value	SCL Hold (Stop) Value
20	160	17	78	81
21	192	17	94	97
22	224	33	110	113
23	256	33	126	129
24	288	49	142	145
25	320	49	158	161
26	384	65	190	193
27	480	65	238	241
28	320	33	158	161
29	384	33	190	193
2A	448	65	222	225
2B	512	65	254	257
2C	576	97	286	289
2D	640	97	318	321
2E	768	129	382	385
2F	960	129	478	481
30	640	65	318	321
31	768	65	382	385
32	896	129	446	449
33	1024	129	510	513
34	1152	193	574	577
35	1280	193	638	641
36	1536	257	766	769
37	1920	257	958	961
38	1280	129	638	641
39	1536	129	766	769
3A	1792	257	894	897
3B	2048	257	1022	1025
3C	2304	385	1150	1153
3D	2560	385	1278	1281
3E	3072	513	1534	1537
3F	3840	513	1918	1921

Table 11-5. IIC Divider and Hold Values

Chapter 11 Inter-Integrated Circuit (S08IICV2)

Figure 11-9. IIC Bus Transmission Signals

11.4.1.1 Start Signal

When the bus is free, no master device is engaging the bus (SCL and SDA lines are at logical high), a master may initiate communication by sending a start signal. As shown in Figure 11-9, a start signal is defined as a high-to-low transition of SDA while SCL is high. This signal denotes the beginning of a new data transfer (each data transfer may contain several bytes of data) and brings all slaves out of their idle states.

11.4.1.2 Slave Address Transmission

The first byte of data transferred immediately after the start signal is the slave address transmitted by the master. This is a seven-bit calling address followed by a R/\overline{W} bit. The R/\overline{W} bit tells the slave the desired direction of data transfer.

- 1 =Read transfer, the slave transmits data to the master.
- 0 = Write transfer, the master transmits data to the slave.

Only the slave with a calling address that matches the one transmitted by the master responds by sending back an acknowledge bit. This is done by pulling the SDA low at the ninth clock (see Figure 11-9).

No two slaves in the system may have the same address. If the IIC module is the master, it must not transmit an address equal to its own slave address. The IIC cannot be master and slave at the same time. However, if arbitration is lost during an address cycle, the IIC reverts to slave mode and operates correctly even if it is being addressed by another master. Chapter 11 Inter-Integrated Circuit (S08IICV2)

11.7 Initialization/Application Information

		Madula Initialization (Clave)				
1	Write: IIC	Module Initialization (Slave)				
1.		nable or disable general call				
	— to se	elect 10-bit or 7-bit addressing mode				
2.	Write: IIC	CA				
	— to se	et the slave address				
3.	Write: IIC	CC1				
	 to er 	nable IIC and interrupts				
4.	Initialize	RAM variables (IICEN = 1 and IICIE = 1) for transmit data				
5.	Initialize	RAM variables used to achieve the routine shown in Figure 11-12				
		Module Initialization (Master)				
1.	Write: IIC	CF /				
	— to se	et the IIC baud rate (example provided in this chapter)				
2.	Write: IIC	CC1				
-	— to er	hable IIC and interrupts				
3.	Initialize	RAM variables (IICEN = 1 and IICIE = 1) for transmit data				
4. 5	Mrito: IIC	RAM variables used to achieve the routine shown in Figure 11-12				
5.		nable TX				
6.	Write: IIC	CC1				
	— to er	nable MST (master mode)				
7.	Write: IIC	CD				
	— with	the address of the target slave. (The lsb of this byte determines whether the communication is				
	master receive or transmit.)					
	Module Use					
	incoming IIC message that contains the proper address begins IIC communication. For slave operation, an					
	communication must be initiated by writing to the IICD register					
	commun	ioalion must be initiated by whiling to the nob register.				
		Register Model				
	IICA	AD[7:1] 0				
		When addressed as a slave (in slave mode), the module responds to this address				
	IICF					
		Baud rate = BUSCLK / (2 x MULI x (SCL DIVIDER))				
	IICC1	IICEN IICIE MST TX TXAK RSTA 0 0				
		Module configuration				
	105					
	IICD	DATA				
		Data register; Write to transmit IIC data read to read IIC data				
	IICC2	GCAEN ADEXT 0 0 0 AD10 AD9 AD8				
		Address configuration				
		Address configuration				

Figure 11-11. IIC Module Quick Start

MC9S08DZ128 Series Data Sheet, Rev. 1

Field				Descr	iption			
7:0 AC[7:0]	Acceptance Code Bits — AC[7:0] comprise a user-defined sequence of bits with which the corresponding bits of the related identifier register (IDRn) of the receive message buffer are compared. The result of this comparison is then masked with the corresponding identifier mask register.							
	7	6	5	4	3	2	1	0
R	AC7	AC6	AC5	AC4	AC3	AC2	AC1	AC0

0

0

0

0

0

Table 12-20. CANIDAR0–CANIDAR3 Register Field Descriptions

Figure 12-20. MSCAN Identifier Acceptance Registers (Second Bank) — CANIDAR4–CANIDAR7

Read: Anytime

W

Reset

0

Write: Anytime in initialization mode (INITRQ = 1 and INITAK = 1)

0

0

Table 12-21. CANIDAR4–CANIDAR7 Register Field Descriptions

Field	Description
7:0	Acceptance Code Bits — AC[7:0] comprise a user-defined sequence of bits with which the corresponding bits
AC[7:0]	of the related identifier register (IDRn) of the receive message buffer are compared. The result of this comparison
	is then masked with the corresponding identifier mask register.

MSCAN Identifier Mask Registers (CANIDMR0–CANIDMR7) 12.3.16

The identifier mask register specifies which of the corresponding bits in the identifier acceptance register are relevant for acceptance filtering. To receive standard identifiers in 32 bit filter mode, it is required to program the last three bits (AM[2:0]) in the mask registers CANIDMR1 and CANIDMR5 to "don't care." To receive standard identifiers in 16 bit filter mode, it is required to program the last three bits (AM[2:0]) in the mask registers CANIDMR1, CANIDMR3, CANIDMR5, and CANIDMR7 to "don't care."

Read: Anytime Write: Anytime in initialization mode (INITRQ = 1 and INITAK = 1)

MC9S08DZ128 Series Data Sheet, Rev. 1

Figure 14-5. SCI Baud Rate Register (SCIxBDL)

Table 14-3. SCIxBDL Field Descriptions

Field	Description
7:0 SBR[7:0]	Baud Rate Modulo Divisor — These 13 bits in SBR[12:0] are referred to collectively as BR, and they set the modulo divide rate for the SCI baud rate generator. When BR = 0, the SCI baud rate generator is disabled to reduce supply current. When BR = 1 to 8191, the SCI baud rate = BUSCLK/(16×BR). See also BR bits in Table 14-2.

14.2.2 SCI Control Register 1 (SCIxC1)

This read/write register is used to control various optional features of the SCI system.

_	7	6	5	4	3	2	1	0
R W	LOOPS	SCISWAI	RSRC	М	WAKE	ILT	PE	РТ
Reset	0	0	0	0	0	0	0	0

Figure 14-6. SCI Control Register 1 (SCIxC1)

Table 14-4. SCIxC1 Field Descriptions

Field	Description
7 LOOPS	 Loop Mode Select — Selects between loop back modes and normal 2-pin full-duplex modes. When LOOPS = 1, the transmitter output is internally connected to the receiver input. 0 Normal operation — RxD and TxD use separate pins. 1 Loop mode or single-wire mode where transmitter outputs are internally connected to receiver input. (See RSRC bit.) RxD pin is not used by SCI.
6 SCISWAI	 SCI Stops in Wait Mode SCI clocks continue to run in wait mode so the SCI can be the source of an interrupt that wakes up the CPU. SCI clocks freeze while CPU is in wait mode.
5 RSRC	 Receiver Source Select — This bit has no meaning or effect unless the LOOPS bit is set to 1. When LOOPS = 1, the receiver input is internally connected to the TxD pin and RSRC determines whether this connection is also connected to the transmitter output. Provided LOOPS = 1, RSRC = 0 selects internal loop back mode and the SCI does not use the RxD pins. Single-wire SCI mode where the TxD pin is connected to the transmitter output.
4 M	 9-Bit or 8-Bit Mode Select 0 Normal — start + 8 data bits (LSB first) + stop. 1 Receiver and transmitter use 9-bit data characters start + 8 data bits (LSB first) + 9th data bit + stop.

Field	Description
3 WAKE	 Receiver Wakeup Method Select — Refer to Section 14.3.3.2, "Receiver Wakeup Operation" for more information. 0 Idle-line wakeup. 1 Address-mark wakeup.
2 ILT	Idle Line Type Select — Setting this bit to 1 ensures that the stop bit and logic 1 bits at the end of a character do not count toward the 10 or 11 bit times of logic high level needed by the idle line detection logic. Refer to Section 14.3.3.2.1, "Idle-Line Wakeup" for more information. 0 Idle character bit count starts after start bit. 1 Idle character bit count starts after stop bit.
1 PE	 Parity Enable — Enables hardware parity generation and checking. When parity is enabled, the most significant bit (MSB) of the data character (eighth or ninth data bit) is treated as the parity bit. 0 No hardware parity generation or checking. 1 Parity enabled.
0 PT	 Parity Type — Provided parity is enabled (PE = 1), this bit selects even or odd parity. Odd parity means the total number of 1s in the data character, including the parity bit, is odd. Even parity means the total number of 1s in the data character, including the parity bit, is even. 0 Even parity. 1 Odd parity.

14.2.3 SCI Control Register 2 (SCIxC2)

This register can be read or written at any time.

Figure 14-7. SCI Control Register 2 (SCIxC2)

Table 14-5. SCIxC2 Field Descriptions

Field	Description
7 TIE	Transmit Interrupt Enable (for TDRE)0Hardware interrupts from TDRE disabled (use polling).1Hardware interrupt requested when TDRE flag is 1.
6 TCIE	Transmission Complete Interrupt Enable (for TC) 0 Hardware interrupts from TC disabled (use polling). 1 Hardware interrupt requested when TC flag is 1.
5 RIE	Receiver Interrupt Enable (for RDRF) 0 Hardware interrupts from RDRF disabled (use polling). 1 Hardware interrupt requested when RDRF flag is 1.
4 ILIE	Idle Line Interrupt Enable (for IDLE)0Hardware interrupts from IDLE disabled (use polling).1Hardware interrupt requested when IDLE flag is 1.

18.3.3.6 Debug Comparator C Low Register (DBGCCL)

Module Base + 0x0005

_	7	6	5	4	3	2	1	0
R W	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
POR or non- end-run	0	0	0	0	0	0	0	0
Reset end-run ¹	U	U	U	U	U	U	U	U

Figure 18-7. Debug Comparator C Low Register (DBGCCL)

¹ In the case of an end-trace to reset where DBGEN=1 and BEGIN=0, the bits in this register do not change after reset.

Table	18-8.	DBGCCL	Field	Descriptions
-------	-------	--------	-------	--------------

Field	Description
Bits 7–0	 Comparator C Low Compare Bits — The Comparator C Low compare bits control whether Comparator C will compare the address bus bits [7:0] to a logic 1 or logic 0. 0 Compare corresponding address bit to a logic 0 1 Compare corresponding address bit to a logic 1

18.3.3.7 Debug FIFO High Register (DBGFH)

Figure 18-8. Debug FIFO High Register (DBGFH)

¹ In the case of an end-trace to reset where DBGEN=1 and BEGIN=0, the bits in this register do not change after reset.

A.6 DC Characteristics

This section includes information about power supply requirements, I/O pin characteristics, and power supply current in various operating modes.

Num	С	Characteristic	Symbol	Condition	Min	Typ ¹	Max	Unit	
1	—	Operating voltage	V _{DD}	—	2.7	_	5.5	V	
	С	All I/O pins,		5 V, I _{Load} = -4 mA	V _{DD} – 1.5		—		
	Р	low-drive strength		5 V, I _{Load} = –2 mA	V _{DD} – 0.8		—		
2	С	Output high	V _{OH}	3 V, I _{Load} = -1 mA	V _{DD} – 0.8		—	V	
	С	voltage		5 V, I _{Load} = -20 mA	V _{DD} – 1.5		—		
	Р	All I/O pins,		5 V, I _{Load} = -10 mA	V _{DD} – 0.8		—		
	С	high-drive strength		3 V, I _{Load} = -5 mA	V _{DD} – 0.8		—		
3	D	Output high Max total I _{OH} for current all ports	I _{OHT}	V _{OUT} < V _{DD}	0	_	-100	mA	
	С	All I/O pins		5 V, I _{Load} = 4 mA	_		1.5		
	Р	low-drive strength		5 V, I _{Load} = 2 mA	_		0.8		
	С	Output low	V _{OL}	3 V, I _{Load} = 1 mA	_		0.8	V	
-	С	voltage	-	5 V, I _{Load} = 20 mA	—	_	1.5		
	Р	All I/O pins		5 V, I _{Load} = 10 mA	—	_	0.8		
	С	high-drive strength		3 V, I _{Load} = 5 mA	_	_	0.8		
5	С	Output low Max total I _{OL} for all ports current	I _{OLT}	V _{OUT} > V _{SS}	0		100	mA	
6	Р	Input high voltage; all digital inputs	V _{IH}	5V	0.65 x V _{DD}	_	—	V	
	С			3V	0.7 x V _{DD}	_	—		
7	Р	Input low voltage; all digital inputs	V _{IL}	5V	—		0.35 x V _{DD}	V	
,	С			3V	—		0.35 x V _{DD}		
8	С	Input hysteresis	V _{hys}		0.06 x V _{DD}			V	
9	Ρ	Input leakage current (per pin)	I _{In}	$V_{In} = V_{DD} \text{ or } V_{SS}$	—	0.1	1	μA	
	Р	Hi-Z (off-state) leakage current (per pin)							
10		input/output port pins	loz	$V_{In} = V_{DD} \text{ or } V_{SS},$	—	0.1	1	μA	
		PTG1/XTAL/PTE1/		$V_{In} = V_{DD} \text{ or } V_{SS}$	—	0.2	2	μA	
		Pullup or Pulldown ² resistors; when enabled							
11	Р	I/O pins	R _{PU} ,R _{PD}		17	37	52	kΩ	
	С	PTE1/ ³	R _{PU}		17	37	52	kΩ	
	D	DC injection current ^{4, 5, 6, 7}							
		Single pin limit		$V_{IN} > V_{DD}$	0	—	2	mA	
12			I _{IC}	$V_{IN} < V_{SS},$	0	_	-0.2	mA	
		Total MCU limit, includes		V _{IN} > V _{DD}	0		25	mA	
		sum of all stressed pins		$V_{IN} < V_{SS},$	0		-5	mA	
13	D	Input Capacitance, all pins	C _{In}				8	pF	

Table A-6. DC Characteristics

Appendix A Electrical Characteristics

Num	С	Rating	Symbol	Min	Typical	Мах	Unit
2	D	Supply current (active)	I _{DDAC}	_	20	35	μΑ
3	D	Analog input voltage	V _{AIN}	V _{SS} – 0.3		V _{DD}	V
4	D	Analog input offset voltage	V _{AIO}		20	40	mV
5	D	Analog Comparator hysteresis	V _H	3.0	6.0	20.0	mV
6	D	Analog input leakage current	I _{ALKG}			1.0	μΑ
7	D	Analog Comparator initialization delay	t _{AINIT}	—		1.0	μs

Table A-8. Analog Comparator Electrical Specifications