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Rev. 2, 07/2015

Addendum Rev.2 to Rev. 1 of the 
MC9S08DZ128 Series Data Sheet
This addendum identifies changes to Rev. 1 of the MC9S08DZ128 Series Data Sheet.  The changes 
described in this addendum have not been implemented in the specified pages.

1 MCG Control Register 3 Field Descriptions

The last sentence of bit 4 (DIV32) description should be changed from "Writes to this bit are ignored if 
PLLS bit is set." to "DIV32 must be cleared when the PLL is selected." The correct description should be:

2 Initializing the MCG

The last sentence in the note after step 6 should be removed. The note should be

Location: Table 8-7, Page 176

Field Description

4
DIV32

Divide-by-32 Enable — Controls an additional divide-by-32 factor to the external reference clock for the FLL 
when RANGE bit is set. When the RANGE bit is 0, this bit has no effect. DIV32 must be cleared when the PLL 
is selected.
0 Divide-by-32 is disabled.
1 Divide-by-32 is enabled when RANGE=1.

Location: Section 8.5.1.1, Page 186
© 2008-2015 Freescale Semiconductor, Inc. All rights reserved.



MC9S08DZ128 Series Data Sheet, Rev. 1

12 Freescale Semiconductor

Section Number Title Page

7.4.2 Interrupt Sequence ..........................................................................................................149
7.4.3 Wait Mode Operation ......................................................................................................150
7.4.4 Stop Mode Operation ......................................................................................................150
7.4.5 BGND Instruction ...........................................................................................................151

7.5 CALL and RTC Instructions ..........................................................................................................151
7.6 HCS08 Instruction Set Summary ...................................................................................................153

Chapter 8
Multi-Purpose Clock Generator (S08MCGV2)

8.1 Introduction ....................................................................................................................................165
8.1.1 Features ...........................................................................................................................167
8.1.2 Modes of Operation ........................................................................................................169

8.2 External Signal Description ...........................................................................................................169
8.3 Register Definition .........................................................................................................................170

8.3.1 MCG Control Register 1 (MCGC1) ...............................................................................170
8.3.2 MCG Control Register 2 (MCGC2) ...............................................................................172
8.3.3 MCG Trim Register (MCGTRM) ...................................................................................173
8.3.4 MCG Status and Control Register (MCGSC) .................................................................174
8.3.5 MCG Control Register 3 (MCGC3) ...............................................................................175
8.3.6 MCG Test and Control Register (MCGT) ......................................................................177

8.4 Functional Description ...................................................................................................................178
8.4.1 Operational Modes ..........................................................................................................178
8.4.2 Mode Switching ..............................................................................................................182
8.4.3 Bus Frequency Divider ...................................................................................................183
8.4.4 Low Power Bit Usage .....................................................................................................183
8.4.5 Internal Reference Clock ................................................................................................183
8.4.6 External Reference Clock ...............................................................................................183
8.4.7 Fixed Frequency Clock ...................................................................................................184

8.5 Initialization / Application Information .........................................................................................185
8.5.1 MCG Module Initialization Sequence ............................................................................185
8.5.2 Using a 32.768 kHz Reference .......................................................................................186
8.5.3 MCG Mode Switching ....................................................................................................187
8.5.4 Calibrating the Internal Reference Clock (IRC) .............................................................195

Chapter 9
5-V Analog Comparator (S08ACMPV3)

9.1 Introduction ....................................................................................................................................199
9.1.1 ACMP Configuration Information ..................................................................................199
9.1.2 Features ...........................................................................................................................201
9.1.3 Modes of Operation ........................................................................................................201
9.1.4 Block Diagram ................................................................................................................201

9.2 External Signal Description ...........................................................................................................203



Chapter 4 Memory

MC9S08DZ128 Series Data Sheet, Rev. 1

Freescale Semiconductor 77

Table 4-13. FCDIV Register Field Descriptions

Field Description

7
DIVLD

Divisor Loaded Status Flag — When set, this read-only status flag indicates that the FCDIV register has been
written since reset. Reset clears this bit and the first write to this register causes this bit to become set regardless
of the data written.
0 FCDIV has not been written since reset; erase and program operations disabled for FLASH and EEPROM.
1 FCDIV has been written since reset; erase and program operations enabled for FLASH and EEPROM.

6
PRDIV8

Prescale (Divide) FLASH and EEPROM Clock by 8 (This bit is write once.)
0 Clock input to the FLASH and EEPROM clock divider is the bus rate clock.
1 Clock input to the FLASH and EEPROM clock divider is the bus rate clock divided by 8.

5:0
DIV

Divisor for FLASH and EEPROM Clock Divider — The FLASH and EEPROM clock divider divides the bus rate
clock (or the bus rate clock divided by 8 if PRDIV8 = 1) by the value in the 6-bit DIV field plus one. The resulting
frequency of the internal FLASH and EEPROM clock must fall within the range of 200 kHz to 150 kHz for proper
FLASH and EEPROM operations. Program/Erase timing pulses are one cycle of this internal FLASH and
EEPROM clock which corresponds to a range of 5 μs to 6.7 μs. The automated programming logic uses an
integer number of these pulses to complete an erase or program operation. See Equation 4-1 and Equation 4-2.
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4.6.11.3 FLASH and EEPROM Configuration Register (FCNFG)

5
EPGMOD

EEPROM Sector Mode — When this bit is 0, each sector is split into two pages (4-byte mode). When this bit is
1, each sector is in a single page (8-byte mode).
0 Half of each EEPROM sector is in Page 0 and the other half is in Page 1.
1 Each sector is in a single page.

1:0
SEC

Security State Code — This 2-bit field determines the security state of the MCU as shown in Table 4-16. When
the MCU is secure, the contents of RAM, EEPROM and FLASH memory cannot be accessed by instructions
from any unsecured source including the background debug interface. SEC changes to 1:0 after successful
backdoor key entry or a successful blank check of FLASH. For more detailed information about security, refer to
Section 4.6.9, “Security.”

Table 4-16. Security States1

1 SEC changes to 1:0 after successful backdoor key entry
or a successful blank check of FLASH.

SEC[1:0] Description

0:0 secure

0:1 secure

1:0 unsecured

1:1 secure

7 6 5 4 3 2 1 0

R 0
EPGSEL KEYACC

1 0 0 0 1

W

Reset 0 0 0 1 0 0 0 1

= Unimplemented or Reserved

Figure 4-16. FLASH and EEPROM Configuration Register (FCNFG)

Table 4-17. FCNFG Register Field Descriptions

Field Description

6
EPGSEL

EEPROM Page Select — This bit selects which EEPROM page is accessed in the memory map.
0 Page 0 is in foreground of memory map. Page 1 is in background and can not be accessed.
1 Page 1 is in foreground of memory map. Page 0 is in background and can not be accessed.

5
KEYACC

Enable Writing of Access Key — This bit enables writing of the backdoor comparison key. For more detailed
information about the backdoor key mechanism, refer to Section 4.6.9, “Security.”
0 Writes to 0xFFB0–0xFFB7 are interpreted as the start of a FLASH programming or erase command.
1 Writes to NVBACKKEY (0xFFB0–0xFFB7) are interpreted as comparison key writes.

Table 4-15. FOPT Register Field Descriptions

Field Description
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6.5.10.5 Port K Drive Strength Selection Register (PTKDS)

7 6 5 4 3 2 1 0

R
PTKDS7 PTKDS6 PTKDS5 PTKDS4 PTKDS3 PTKDS2 PTKDS1 PTKDS0

W

Reset: 0 0 0 0 0 0 0 0

Figure 6-64. Drive Strength Selection for Port K Register (PTKDS)

Table 6-62. PTKDS Register Field Descriptions

Field Description

7:0
PTKDS[7:0]

Output Drive Strength Selection for Port K Bits — Each of these control bits selects between low and high
output drive for the associated PTK pin. For port K pins that are configured as inputs, these bits have no effect.
0 Low output drive strength selected for port K bit n.
1 High output drive strength selected for port K bit n.
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a) BLPE: If a transition through BLPE mode is desired, first set LP (bit 3) in MCGC2 to 1.

b) BLPE/PBE: MCGC3 = 0x58 (%01011000)

– PLLS (bit 6) set to 1, selects the PLL. At this time, with an RDIV value of %011, the FLL
reference divider of 256 is switched to the PLL reference divider of 8 (see Table 8-3),
resulting in a reference frequency of 8 MHz/ 8 = 1 MHz. In BLPE mode,changing the PLLS
bit only prepares the MCG for PLL usage in PBE mode

– DIV32 (bit 4) still set at 1. Because the MCG is in a PLL mode, the DIV32 bit is ignored.
Keeping it set at 1 makes transitions back into an FLL external mode easier.

– VDIV (bits 3-0) set to %1000, or multiply-by-32 because 1 MHz reference * 32= 32MHz.
In BLPE mode, the configuration of the VDIV bits does not matter because the PLL is
disabled. Changing them only sets up the multiply value for PLL usage in PBE mode

c) BLPE: If transitioning through BLPE mode, clear LP (bit 3) in MCGC2 to 0 here to switch to
PBE mode

d) PBE: Loop until PLLST (bit 5) in MCGSC is set, indicating that the current source for the
PLLS clock is the PLL

e) PBE: Then loop until LOCK (bit 6) in MCGSC is set, indicating that the PLL has acquired lock

3. Lastly, PBE mode transitions into PEE mode:

a) MCGC1 = 0x18 (%00011000)

– CLKS (bits7 and 6) in MCGSC1 set to %00 in order to select the output of the PLL as the
system clock source

b) Loop until CLKST (bits 3 and 2) in MCGSC are %11, indicating that the PLL output is selected
to feed MCGOUT in the current clock mode

– Now, With an RDIV of divide-by-8, a BDIV of divide-by-1, and a VDIV of multiply-by-32,
MCGOUT = [(8 MHz / 8) * 32] / 1 = 32 MHz, and the bus frequency is MCGOUT / 2, or
16 MHz
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trimming approach to search for the best trim value is recommended. In Example #4: Internal Reference
Clock Trim later in this section, this approach will be demonstrated.

If a user specified trim value has been found for a device (to replace the factory trim value), this value can
be stored in FLASH memory to save the value. If power is removed from the device, the IRC can easily
be re-trimmed to the user specified value by copying the saved value from FLASH to the MCG registers.
Freescale identifies recommended FLASH locations for storing the trim value for each MCU. Consult the
memory map in the data sheet for these locations.

8.5.4.1 Example #4: Internal Reference Clock Trim

For applications that require a user specified tight frequency tolerance, a trimming procedure is provided
that will allow a very accurate internal clock source. This section outlines one example of trimming the
internal oscillator. Many other possible trimming procedures are valid and can be used.

In the example below, the MCG trim will be calibrated for the 9-bit MCGTRM and FTRIM collective
value. This value will be referred to as TRMVAL.
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Figure 9-1. MC9S08DZ128 Block Diagram with ACMP Highlighted
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10.1.6 Features

Features of the ADC module include:

• Linear successive approximation algorithm with 12-bit resolution

• Up to 28 analog inputs

• Output formatted in 12-, 10-, or 8-bit right-justified unsigned format

• Single or continuous conversion (automatic return to idle after single conversion)

• Configurable sample time and conversion speed/power

• Conversion complete flag and interrupt

• Input clock selectable from up to four sources

• Operation in wait or stop3 modes for lower noise operation

• Asynchronous clock source for lower noise operation

• Selectable asynchronous hardware conversion trigger

• Automatic compare with interrupt for less-than, or greater-than or equal-to, programmable value

• Temperature sensor

10.1.7 ADC Module Block Diagram

Figure 10-2 provides a block diagram of the ADC module.
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10.6.2.3 Noise-Induced Errors

System noise that occurs during the sample or conversion process can affect the accuracy of the
conversion. The ADC accuracy numbers are guaranteed as specified only if the following conditions are
met:

• There is a 0.1 μF low-ESR capacitor from VREFH to VREFL.

• There is a 0.1 μF low-ESR capacitor from VDDAD to VSSAD.

• If inductive isolation is used from the primary supply, an additional 1 μF capacitor is placed from
VDDAD to VSSAD.

• VSSAD (and VREFL, if connected) is connected to VSS at a quiet point in the ground plane.

• Operate the MCU in wait or stop3 mode before initiating (hardware triggered conversions) or
immediately after initiating (hardware or software triggered conversions) the ADC conversion.

— For software triggered conversions, immediately follow the write to ADCSC1 with a wait
instruction or stop instruction.

— For stop3 mode operation, select ADACK as the clock source. Operation in stop3 reduces VDD
noise but increases effective conversion time due to stop recovery.

• There is no I/O switching, input or output, on the MCU during the conversion.

There are some situations where external system activity causes radiated or conducted noise emissions or
excessive VDD noise is coupled into the ADC. In these situations, or when the MCU cannot be placed in
wait or stop3 or I/O activity cannot be halted, these recommended actions may reduce the effect of noise
on the accuracy:

• Place a 0.01 μF capacitor (CAS) on the selected input channel to VREFL or VSSAD (this improves
noise issues, but affects the sample rate based on the external analog source resistance).

• Average the result by converting the analog input many times in succession and dividing the sum
of the results. Four samples are required to eliminate the effect of a 1LSB, one-time error.

• Reduce the effect of synchronous noise by operating off the asynchronous clock (ADACK) and
averaging. Noise that is synchronous to ADCK cannot be averaged out.

10.6.2.4 Code Width and Quantization Error

The ADC quantizes the ideal straight-line transfer function into 4096 steps (in 12-bit mode). Each step
ideally has the same height (1 code) and width. The width is defined as the delta between the transition
points to one code and the next. The ideal code width for an N bit converter (in this case N can be 8, 10 or
12), defined as 1LSB, is:

1 lsb = (VREFH - VREFL) / 2N Eqn. 10-2

There is an inherent quantization error due to the digitization of the result. For 8-bit or 10-bit conversions
the code transitions when the voltage is at the midpoint between the points where the straight line transfer
function is exactly represented by the actual transfer function. Therefore, the quantization error will be ±
1/2 lsb in 8- or 10-bit mode. As a consequence, however, the code width of the first (0x000) conversion is
only 1/2 lsb and the code width of the last (0xFF or 0x3FF) is 1.5 lsb.
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For 12-bit conversions the code transitions only after the full code width is present, so the quantization
error is −1 lsb to 0 lsb and the code width of each step is 1 lsb.

10.6.2.5 Linearity Errors

The ADC may also exhibit non-linearity of several forms. Every effort has been made to reduce these
errors but the system should be aware of them because they affect overall accuracy. These errors are:

• Zero-scale error (EZS) (sometimes called offset) — This error is defined as the difference between
the actual code width of the first conversion and the ideal code width (1/2 lsb in 8-bit or 10-bit
modes and 1 lsb in 12-bit mode). If the first conversion is 0x001, the difference between the actual
0x001 code width and its ideal (1 lsb) is used.

• Full-scale error (EFS) — This error is defined as the difference between the actual code width of
the last conversion and the ideal code width (1.5 lsb in 8-bit or 10-bit modes and 1LSB in 12-bit
mode). If the last conversion is 0x3FE, the difference between the actual 0x3FE code width and its
ideal (1LSB) is used.

• Differential non-linearity (DNL) — This error is defined as the worst-case difference between the
actual code width and the ideal code width for all conversions.

• Integral non-linearity (INL) — This error is defined as the highest-value the (absolute value of the)
running sum of DNL achieves. More simply, this is the worst-case difference of the actual
transition voltage to a given code and its corresponding ideal transition voltage, for all codes.

• Total unadjusted error (TUE) — This error is defined as the difference between the actual transfer
function and the ideal straight-line transfer function and includes all forms of error.

10.6.2.6 Code Jitter, Non-Monotonicity, and Missing Codes

Analog-to-digital converters are susceptible to three special forms of error. These are code jitter,
non-monotonicity, and missing codes.

Code jitter is when, at certain points, a given input voltage converts to one of two values when sampled
repeatedly. Ideally, when the input voltage is infinitesimally smaller than the transition voltage, the
converter yields the lower code (and vice-versa). However, even small amounts of system noise can cause
the converter to be indeterminate (between two codes) for a range of input voltages around the transition
voltage. This range is normally around 1/2lsb in 8-bit or 10-bit mode, or around 2 lsb in 12-bit mode, and
increases with noise.

This error may be reduced by repeatedly sampling the input and averaging the result. Additionally the
techniques discussed in Section 10.6.2.3 reduces this error.

Non-monotonicity is defined as when, except for code jitter, the converter converts to a lower code for a
higher input voltage. Missing codes are those values never converted for any input value.

In 8-bit or 10-bit mode, the ADC is guaranteed to be monotonic and have no missing codes.
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11.3.3 IIC Control Register (IICxC1)

7 6 5 4 3 2 1 0

R
IICEN IICIE MST TX TXAK

0 0 0

W RSTA

Reset 0 0 0 0 0 0 0 0

= Unimplemented or Reserved

Figure 11-5. IIC Control Register (IICxC1)

Table 11-6. IICxC1 Field Descriptions

Field Description

7
IICEN

IIC Enable. The IICEN bit determines whether the IIC module is enabled.
0 IIC is not enabled
1 IIC is enabled

6
IICIE

IIC Interrupt Enable. The IICIE bit determines whether an IIC interrupt is requested.
0 IIC interrupt request not enabled
1 IIC interrupt request enabled

5
MST

Master Mode Select. The MST bit changes from a 0 to a 1 when a start signal is generated on the bus and
master mode is selected. When this bit changes from a 1 to a 0 a stop signal is generated and the mode of
operation changes from master to slave.
0 Slave mode
1 Master mode

4
TX

Transmit Mode Select. The TX bit selects the direction of master and slave transfers. In master mode, this bit
should be set according to the type of transfer required. Therefore, for address cycles, this bit is always high.
When addressed as a slave, this bit should be set by software according to the SRW bit in the status register.
0 Receive
1 Transmit

3
TXAK

Transmit Acknowledge Enable. This bit specifies the value driven onto the SDA during data acknowledge
cycles for master and slave receivers.
0 An acknowledge signal is sent out to the bus after receiving one data byte
1 No acknowledge signal response is sent

2
RSTA

Repeat start. Writing a 1 to this bit generates a repeated start condition provided it is the current master. This
bit is always read as cleared. Attempting a repeat at the wrong time results in loss of arbitration.



Chapter 12 Freescale’s Controller Area Network (S08MSCANV1)

MC9S08DZ128 Series Data Sheet, Rev. 1

Freescale Semiconductor 273

12.3.14 MSCAN Transmit Error Counter (CANTXERR)

This register reflects the status of the MSCAN transmit error counter.

Read: Only when in sleep mode (SLPRQ = 1 and SLPAK = 1) or initialization mode (INITRQ = 1 and
INITAK = 1)

Write: Unimplemented

NOTE
Reading this register when in any other mode other than sleep or
initialization mode, may return an incorrect value. For MCUs with dual
CPUs, this may result in a CPU fault condition.

Writing to this register when in special modes can alter the MSCAN
functionality.

12.3.15 MSCAN Identifier Acceptance Registers (CANIDAR0-7)

On reception, each message is written into the background receive buffer. The CPU is only signalled to
read the message if it passes the criteria in the identifier acceptance and identifier mask registers
(accepted); otherwise, the message is overwritten by the next message (dropped).

The acceptance registers of the MSCAN are applied on the IDR0–IDR3 registers (see Section 12.4.1,
“Identifier Registers (IDR0–IDR3)”) of incoming messages in a bit by bit manner (see Section 12.5.3,
“Identifier Acceptance Filter”).

For extended identifiers, all four acceptance and mask registers are applied. For standard identifiers, only
the first two (CANIDAR0/1, CANIDMR0/1) are applied.

Read: Anytime

Write: Anytime in initialization mode (INITRQ = 1 and INITAK = 1)

7 6 5 4 3 2 1 0

R TXERR7 TXERR6 TXERR5 TXERR4 TXERR3 TXERR2 TXERR1 TXERR0

W

Reset: 0 0 0 0 0 0 0 0

= Unimplemented

Figure 12-18. MSCAN Transmit Error Counter (CANTXERR)

7 6 5 4 3 2 1 0

R
AC7 AC6 AC5 AC4 AC3 AC2 AC1 AC0

W

Reset 0 0 0 0 0 0 0 0

Figure 12-19. MSCAN Identifier Acceptance Registers (First Bank) — CANIDAR0–CANIDAR3
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Read: Anytime

Write: Anytime in initialization mode (INITRQ = 1 and INITAK = 1)

12.3.16 MSCAN Identifier Mask Registers (CANIDMR0–CANIDMR7)

The identifier mask register specifies which of the corresponding bits in the identifier acceptance register
are relevant for acceptance filtering. To receive standard identifiers in 32 bit filter mode, it is required to
program the last three bits (AM[2:0]) in the mask registers CANIDMR1 and CANIDMR5 to “don’t care.”
To receive standard identifiers in 16 bit filter mode, it is required to program the last three bits (AM[2:0])
in the mask registers CANIDMR1, CANIDMR3, CANIDMR5, and CANIDMR7 to “don’t care.”

Read: Anytime
Write: Anytime in initialization mode (INITRQ = 1 and INITAK = 1)

Table 12-20. CANIDAR0–CANIDAR3 Register Field Descriptions

Field Description

7:0
AC[7:0]

Acceptance Code Bits — AC[7:0] comprise a user-defined sequence of bits with which the corresponding bits
of the related identifier register (IDRn) of the receive message buffer are compared. The result of this comparison
is then masked with the corresponding identifier mask register.

7 6 5 4 3 2 1 0

R
AC7 AC6 AC5 AC4 AC3 AC2 AC1 AC0

W

Reset 0 0 0 0 0 0 0 0

Figure 12-20. MSCAN Identifier Acceptance Registers (Second Bank) — CANIDAR4–CANIDAR7

Table 12-21. CANIDAR4–CANIDAR7 Register Field Descriptions

Field Description

7:0
AC[7:0]

Acceptance Code Bits — AC[7:0] comprise a user-defined sequence of bits with which the corresponding bits
of the related identifier register (IDRn) of the receive message buffer are compared. The result of this comparison
is then masked with the corresponding identifier mask register.

7 6 5 4 3 2 1 0

R
AM7 AM6 AM5 AM4 AM3 AM2 AM1 AM0

W

Reset 0 0 0 0 0 0 0 0

Figure 12-21. MSCAN Identifier Mask Registers (First Bank) — CANIDMR0–CANIDMR3
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12.4.3 Data Segment Registers (DSR0-7)

The eight data segment registers, each with bits DB[7:0], contain the data to be transmitted or received.
The number of bytes to be transmitted or received is determined by the data length code in the
corresponding DLR register.

Table 12-30. IDR1 Register Field Descriptions

Field Description

7:5
ID[2:0]

Standard Format Identifier — The identifiers consist of 11 bits (ID[10:0]) for the standard format. ID10 is the
most significant bit and is transmitted first on the CAN bus during the arbitration procedure. The priority of an
identifier is defined to be highest for the smallest binary number. See also ID bits in Table 12-29.

4
RTR

Remote Transmission Request — This flag reflects the status of the Remote Transmission Request bit in the
CAN frame. In the case of a receive buffer, it indicates the status of the received frame and supports the
transmission of an answering frame in software. In the case of a transmit buffer, this flag defines the setting of
the RTR bit to be sent.
0 Data frame
1 Remote frame

3
IDE

ID Extended — This flag indicates whether the extended or standard identifier format is applied in this buffer. In
the case of a receive buffer, the flag is set as received and indicates to the CPU how to process the buffer
identifier registers. In the case of a transmit buffer, the flag indicates to the MSCAN what type of identifier to send.
0 Standard format (11 bit)
1 Extended format (29 bit)

7 6 5 4 3 2 1 0

R

W

Reset: x x x x x x x x

= Unused; always read ‘x’

Figure 12-31. Identifier Register 2 — Standard Mapping

7 6 5 4 3 2 1 0

R

W

Reset: x x x x x x x x

= Unused; always read ‘x’

Figure 12-32. Identifier Register 3 — Standard Mapping
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message characters. At the end of a message, or at the beginning of the next message, all receivers
automatically force RWU to 0 so all receivers wake up in time to look at the first character(s) of the next
message.

14.3.3.2.1 Idle-Line Wakeup

When WAKE = 0, the receiver is configured for idle-line wakeup. In this mode, RWU is cleared
automatically when the receiver detects a full character time of the idle-line level. The M control bit selects
8-bit or 9-bit data mode that determines how many bit times of idle are needed to constitute a full character
time (10 or 11 bit times because of the start and stop bits).

When RWU is one and RWUID is zero, the idle condition that wakes up the receiver does not set the IDLE
flag. The receiver wakes up and waits for the first data character of the next message which will set the
RDRF flag and generate an interrupt if enabled. When RWUID is one, any idle condition sets the IDLE
flag and generates an interrupt if enabled, regardless of whether RWU is zero or one.

The idle-line type (ILT) control bit selects one of two ways to detect an idle line. When ILT = 0, the idle
bit counter starts after the start bit so the stop bit and any logic 1s at the end of a character count toward
the full character time of idle. When ILT = 1, the idle bit counter does not start until after a stop bit time,
so the idle detection is not affected by the data in the last character of the previous message.

14.3.3.2.2 Address-Mark Wakeup

When WAKE = 1, the receiver is configured for address-mark wakeup. In this mode, RWU is cleared
automatically when the receiver detects a logic 1 in the most significant bit of a received character (eighth
bit in M = 0 mode and ninth bit in M = 1 mode).

Address-mark wakeup allows messages to contain idle characters but requires that the MSB be reserved
for use in address frames. The logic 1 MSB of an address frame clears the RWU bit before the stop bit is
received and sets the RDRF flag. In this case the character with the MSB set is received even though the
receiver was sleeping during most of this character time.

14.3.4 Interrupts and Status Flags

The SCI system has three separate interrupt vectors to reduce the amount of software needed to isolate the
cause of the interrupt. One interrupt vector is associated with the transmitter for TDRE and TC events.
Another interrupt vector is associated with the receiver for RDRF, IDLE, RXEDGIF and LBKDIF events,
and a third vector is used for OR, NF, FE, and PF error conditions. Each of these ten interrupt sources can
be separately masked by local interrupt enable masks. The flags can still be polled by software when the
local masks are cleared to disable generation of hardware interrupt requests.

The SCI transmitter has two status flags that optionally can generate hardware interrupt requests. Transmit
data register empty (TDRE) indicates when there is room in the transmit data buffer to write another
transmit character to SCIxD. If the transmit interrupt enable (TIE) bit is set, a hardware interrupt will be
requested whenever TDRE = 1. Transmit complete (TC) indicates that the transmitter is finished
transmitting all data, preamble, and break characters and is idle with TxD at the inactive level. This flag is
often used in systems with modems to determine when it is safe to turn off the modem. If the transmit
complete interrupt enable (TCIE) bit is set, a hardware interrupt will be requested whenever TC = 1.
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Figure 17-4 shows the host receiving a logic 0 from the target HCS08 MCU. Because the host is
asynchronous to the target MCU, there is a 0-to-1 cycle delay from the host-generated falling edge on
BKGD to the start of the bit time as perceived by the target MCU. The host initiates the bit time but the
target HCS08 finishes it. Because the target wants the host to receive a logic 0, it drives the BKGD pin low
for 13 BDC clock cycles, then briefly drives it high to speed up the rising edge. The host samples the bit
level about 10 cycles after starting the bit time.

Figure 17-4. BDM Target-to-Host Serial Bit Timing (Logic 0)
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This section refers to registers and control bits only by their names. A Freescale-provided equate or header
file is used to translate these names into the appropriate absolute addresses.

17.3.1 BDC Registers and Control Bits

The BDC has two registers:

• The BDC status and control register (BDCSCR) is an 8-bit register containing control and status
bits for the background debug controller.

• The BDC breakpoint match register (BDCBKPT) holds a 16-bit breakpoint match address.

These registers are accessed with dedicated serial BDC commands and are not located in the memory
space of the target MCU (so they do not have addresses and cannot be accessed by user programs).

Some of the bits in the BDCSCR have write limitations; otherwise, these registers may be read or written
at any time. For example, the ENBDM control bit may not be written while the MCU is in active
background mode. (This prevents the ambiguous condition of the control bit forbidding active background
mode while the MCU is already in active background mode.) Also, the four status bits (BDMACT, WS,
WSF, and DVF) are read-only status indicators and can never be written by the WRITE_CONTROL serial
BDC command. The clock switch (CLKSW) control bit may be read or written at any time.
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17.3.1.1 BDC Status and Control Register (BDCSCR)

This register can be read or written by serial BDC commands (READ_STATUS and WRITE_CONTROL)
but is not accessible to user programs because it is not located in the normal memory map of the MCU.

7 6 5 4 3 2 1 0

R
ENBDM

BDMACT
BKPTEN FTS CLKSW

WS WSF DVF

W

Normal
Reset

0 0 0 0 0 0 0 0

Reset in
Active BDM:

1 1 0 0 1 0 0 0

= Unimplemented or Reserved

Figure 17-5. BDC Status and Control Register (BDCSCR)

Table 17-2. BDCSCR Register Field Descriptions

Field Description

7
ENBDM

Enable BDM (Permit Active Background Mode) — Typically, this bit is written to 1 by the debug host shortly
after the beginning of a debug session or whenever the debug host resets the target and remains 1 until a normal
reset clears it.
0 BDM cannot be made active (non-intrusive commands still allowed)
1 BDM can be made active to allow active background mode commands

6
BDMACT

Background Mode Active Status — This is a read-only status bit.
0 BDM not active (user application program running)
1 BDM active and waiting for serial commands

5
BKPTEN

BDC Breakpoint Enable — If this bit is clear, the BDC breakpoint is disabled and the FTS (force tag select)
control bit and BDCBKPT match register are ignored.
0 BDC breakpoint disabled
1 BDC breakpoint enabled

4
FTS

Force/Tag Select — When FTS = 1, a breakpoint is requested whenever the CPU address bus matches the
BDCBKPT match register. When FTS = 0, a match between the CPU address bus and the BDCBKPT register
causes the fetched opcode to be tagged. If this tagged opcode ever reaches the end of the instruction queue,
the CPU enters active background mode rather than executing the tagged opcode.
0 Tag opcode at breakpoint address and enter active background mode if CPU attempts to execute that

instruction
1 Breakpoint match forces active background mode at next instruction boundary (address need not be an

opcode)

3
CLKSW

Select Source for BDC Communications Clock — CLKSW defaults to 0, which selects the alternate BDC
clock source.
0 Alternate BDC clock source
1 MCU bus clock
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where K is a constant pertaining to the particular part. K can be determined from equation 3 by measuring
PD (at equilibrium) for a known TA. Using this value of K, the values of PD and TJ can be obtained by
solving equations 1 and 2 iteratively for any value of TA.

A.5 ESD Protection and Latch-Up Immunity
Although damage from electrostatic discharge (ESD) is much less common on these devices than on early
CMOS circuits, normal handling precautions should be used to avoid exposure to static discharge.
Qualification tests are performed to ensure that these devices can withstand exposure to reasonable levels
of static without suffering any permanent damage.

All ESD testing is in conformity with AEC-Q100 Stress Test Qualification for Automotive Grade
Integrated Circuits. During the device qualification ESD stresses were performed for the Human Body
Model (HBM) and the Charge Device Model (CDM).

A device is defined as a failure if after exposure to ESD pulses the device no longer meets the device
specification. Complete DC parametric and functional testing is performed per the applicable device
specification at room temperature followed by hot temperature, unless specified otherwise in the device
specification.

Table A-4. ESD and Latch-up Test Conditions

Model Description Symbol Value Unit

Human Body

Series Resistance R1 1500 Ω
Storage Capacitance C 100 pF

Number of Pulse per pin — 3

Latch-up
Minimum input voltage limit — –2.5 V

Maximum input voltage limit — 7.5 V

Table A-5. ESD and Latch-Up Protection Characteristics

Num Rating1

1 Parameter is achieved by design characterization on a small sample size from typical devices under typical
conditions unless otherwise noted.

Symbol Min Max Unit

1 Human Body Model (HBM) VHBM ±2000 – V

2 Charge Device Model (CDM) VCDM ±500 – V

3 Latch-up Current at TA = 125°C ILAT ±100 – mA


