
Freescale Semiconductor - S9S08DZ96F2VLL Datasheet

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated
circuits designed to perform specific tasks within larger
systems. These microcontrollers are essentially compact
computers on a single chip, containing a processor core,
memory, and programmable input/output peripherals.
They are called "embedded" because they are embedded
within electronic devices to control various functions,
rather than serving as standalone computers.
Microcontrollers are crucial in modern electronics,
providing the intelligence and control needed for a wide
range of applications.

Applications of "Embedded -
Microcontrollers"

Embedded microcontrollers are used in virtually every
sector of electronics, providing the necessary control and
processing power for a multitude of applications. In
consumer electronics, they manage the operations of
smartphones, home appliances, and wearable devices. In
automotive systems, microcontrollers control engine
functions, safety features, and infotainment systems.
Industrial applications rely on microcontrollers for
automation, robotics, and process control. Additionally,
microcontrollers are integral in medical devices, handling
functions such as monitoring, diagnostics, and control of
therapeutic equipment. Their versatility and
programmability make them essential components in
creating efficient, responsive, and intelligent electronic
systems.

Common Subcategories of "Embedded -
Microcontrollers"

Embedded microcontrollers can be categorized based on
their architecture, performance, and application focus.
Common subcategories include 8-bit, 16-bit, and 32-bit
microcontrollers, differentiated by their processing power
and memory capacity. 8-bit microcontrollers are typically
used in simple applications like basic control systems and
small devices. 16-bit microcontrollers offer a balance
between performance and complexity, suitable for
medium-scale applications like industrial automation. 32-
bit microcontrollers provide high performance and are
used in complex applications requiring advanced
processing, such as automotive systems and sophisticated
consumer electronics. Each subcategory serves a specific
range of applications, providing tailored solutions for
different performance and complexity needs.

Types of "Embedded - Microcontrollers"

There are various types of embedded microcontrollers,
each designed to meet specific application requirements.
General-purpose microcontrollers are versatile and used in
a wide range of applications, offering a balance of
performance, memory, and peripheral options. Special-
purpose microcontrollers are tailored for specific tasks,
such as automotive controllers, which include features like
built-in motor control peripherals and automotive-grade

Details

Product Status Active

Core Processor S08

Core Size 8-Bit

Speed 40MHz

Connectivity CANbus, I²C, LINbus, SCI, SPI

Peripherals LVD, POR, PWM, WDT

Number of I/O 87

Program Memory Size 96KB (96K x 8)

Program Memory Type FLASH

EEPROM Size 2K x 8

RAM Size 6K x 8

Voltage - Supply (Vcc/Vdd) 2.7V ~ 5.5V

Data Converters A/D 24x12b

Oscillator Type Internal

Operating Temperature -40°C ~ 105°C (TA)

Mounting Type Surface Mount

Package / Case 100-LQFP

Supplier Device Package 100-LQFP (14x14)

Purchase URL https://www.e-xfl.com/pro/item?MUrl=&PartUrl=s9s08dz96f2vll

Email: info@E-XFL.COM Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

https://www.e-xfl.com/product/pdf/s9s08dz96f2vll-4419886
https://www.e-xfl.com
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers

Chapter 6 Parallel Input/Output Control

MC9S08DZ128 Series Data Sheet, Rev. 1

Freescale Semiconductor 117

6.5.4.3 Port D Pull Enable Register (PTDPE)

NOTE
Pull-down devices only apply when using pin interrupt functions, when
corresponding edge select and pin select functions are configured.

6.5.4.4 Port D Slew Rate Enable Register (PTDSE)

Note: Slew rate reset default values may differ between engineering samples and final production parts. Always initialize slew
rate control to the desired value to ensure correct operation.

7 6 5 4 3 2 1 0

R
PTDPE7 PTDPE6 PTDPE5 PTDPE4 PTDPE3 PTDPE2 PTDPE1 PTDPE0

W

Reset: 0 0 0 0 0 0 0 0

Figure 6-26. Internal Pull Enable for Port D Register (PTDPE)

Table 6-24. PTDPE Register Field Descriptions

Field Description

7:0
PTDPE[7:0]

Internal Pull Enable for Port D Bits — Each of these control bits determines if the internal pull-up or pull-down
device is enabled for the associated PTD pin. For port D pins that are configured as outputs, these bits have no
effect and the internal pull devices are disabled.
0 Internal pull-up/pull-down device disabled for port D bit n.
1 Internal pull-up/pull-down device enabled for port D bit n.

7 6 5 4 3 2 1 0

R
PTDSE7 PTDSE6 PTDSE5 PTDSE4 PTDSE3 PTDSE2 PTDSE1 PTDSE0

W

Reset: 0 0 0 0 0 0 0 0

Figure 6-27. Slew Rate Enable for Port D Register (PTDSE)

Table 6-25. PTDSE Register Field Descriptions

Field Description

7:0
PTDSE[7:0]

Output Slew Rate Enable for Port D Bits — Each of these control bits determines if the output slew rate control
is enabled for the associated PTD pin. For port D pins that are configured as inputs, these bits have no effect.
0 Output slew rate control disabled for port D bit n.
1 Output slew rate control enabled for port D bit n.

Chapter 6 Parallel Input/Output Control

MC9S08DZ128 Series Data Sheet, Rev. 1

128 Freescale Semiconductor

6.5.7.5 Port G Drive Strength Selection Register (PTGDS)

7 6 5 4 3 2 1 0

R
PTGDS7 PTGDS6 PTGDS5 PTGDS4 PTGDS3 PTGDS2 PTGDS1 PTGDS0

W

Reset: 0 0 0 0 0 0 0 0

Figure 6-46. Drive Strength Selection for Port G Register (PTGDS)

Table 6-44. PTGDS Register Field Descriptions

Field Description

7:0
PTGDS[7:0]

Output Drive Strength Selection for Port G Bits — Each of these control bits selects between low and high
output drive for the associated PTG pin. For port G pins that are configured as inputs, these bits have no effect.
0 Low output drive strength selected for port G bit n.
1 High output drive strength selected for port G bit n.

Chapter 6 Parallel Input/Output Control

MC9S08DZ128 Series Data Sheet, Rev. 1

132 Freescale Semiconductor

6.5.9 Port J Registers

Port J is controlled by the registers listed below.

6.5.9.1 Port J Data Register (PTJD)

6.5.9.2 Port J Data Direction Register (PTJDD)

7 6 5 4 3 2 1 0

R
PTJD7 PTJD6 PTJD5 PTJD4 PTJD3 PTJD2 PTJD1 PTJD0

W

Reset: 0 0 0 0 0 0 0 0

Figure 6-52. Port J Data Register (PTJD)

Table 6-50. PTJD Register Field Descriptions

Field Description

7:0
PTJD[7:0]

Port J Data Register Bits — For port J pins that are inputs, reads return the logic level on the pin. For port J
pins that are configured as outputs, reads return the last value written to this register.
Writes are latched into all bits of this register. For port J pins that are configured as outputs, the logic level is
driven out the corresponding MCU pin.
Reset forces PTJD to all 0s, but these 0s are not driven out the corresponding pins because reset also configures
all port pins as high-impedance inputs with pull-ups disabled.

7 6 5 4 3 2 1 0

R
PTJDD7 PTJDD6 PTJDD5 PTJDD4 PTJDD3 PTJDD2 PTJDD1 PTJDD0

W

Reset: 0 0 0 0 0 0 0 0

Figure 6-53. Port J Data Direction Register (PTJDD)

Table 6-51. PTJDD Register Field Descriptions

Field Description

7:0
PTJDD[7:0]

Data Direction for Port J Bits — These read/write bits control the direction of port J pins and what is read for
PTJD reads.
0 Input (output driver disabled) and reads return the pin value.
1 Output driver enabled for port J bit n and PTJD reads return the contents of PTJDn.

Chapter 7 Central Processor Unit (S08CPUV5)

MC9S08DZ128 Series Data Sheet, Rev. 1

148 Freescale Semiconductor

the high-order byte is located in the next memory location after the opcode, and the low-order byte is
located in the next memory location after that.

7.3.4 Direct Addressing Mode (DIR)

In direct addressing mode, the instruction includes the low-order eight bits of an address in the direct page
(0x0000–0x00FF). During execution a 16-bit address is formed by concatenating an implied 0x00 for the
high-order half of the address and the direct address from the instruction to get the 16-bit address where
the desired operand is located. This is faster and more memory efficient than specifying a complete 16-bit
address for the operand.

7.3.5 Extended Addressing Mode (EXT)

In extended addressing mode, the full 16-bit address of the operand is located in the next two bytes of
program memory after the opcode (high byte first).

7.3.6 Indexed Addressing Mode

Indexed addressing mode has seven variations including five that use the 16-bit H:X index register pair and
two that use the stack pointer as the base reference.

7.3.6.1 Indexed, No Offset (IX)

This variation of indexed addressing uses the 16-bit value in the H:X index register pair as the address of
the operand needed to complete the instruction.

7.3.6.2 Indexed, No Offset with Post Increment (IX+)

This variation of indexed addressing uses the 16-bit value in the H:X index register pair as the address of
the operand needed to complete the instruction. The index register pair is then incremented
(H:X = H:X + 0x0001) after the operand has been fetched. This addressing mode is only used for MOV
and CBEQ instructions.

7.3.6.3 Indexed, 8-Bit Offset (IX1)

This variation of indexed addressing uses the 16-bit value in the H:X index register pair plus an unsigned
8-bit offset included in the instruction as the address of the operand needed to complete the instruction.

7.3.6.4 Indexed, 8-Bit Offset with Post Increment (IX1+)

This variation of indexed addressing uses the 16-bit value in the H:X index register pair plus an unsigned
8-bit offset included in the instruction as the address of the operand needed to complete the instruction.
The index register pair is then incremented (H:X = H:X + 0x0001) after the operand has been fetched. This
addressing mode is used only for the CBEQ instruction.

Chapter 7 Central Processor Unit (S08CPUV5)

MC9S08DZ128 Series Data Sheet, Rev. 1

164 Freescale Semiconductor

Chapter 8 Multi-Purpose Clock Generator (S08MCGV2)

MC9S08DZ128 Series Data Sheet, Rev. 1

174 Freescale Semiconductor

8.3.4 MCG Status and Control Register (MCGSC)

7 6 5 4 3 2 1 0

R LOLS LOCK PLLST IREFST CLKST OSCINIT
FTRIM1

1 A value for FTRIM is loaded during reset from a factory programmed location when not in any BDM mode. If in a BDM
mode, a default value of 0x0 is loaded.

W

Reset: 0 0 0 1 0 0 0

Figure 8-6. MCG Status and Control Register (MCGSC)

Table 8-6. MCG Status and Control Register Field Descriptions

Field Description

7
LOLS

Loss of Lock Status — This bit is a sticky indication of lock status for the FLL or PLL. LOLS is set when lock
detection is enabled and after acquiring lock, the FLL or PLL output frequency has fallen outside the lock exit
frequency tolerance, Dunl. LOLIE determines whether an interrupt request is made when set. LOLS is cleared by
reset or by writing a logic 1 to LOLS when LOLS is set. Writing a logic 0 to LOLS has no effect.
0 FLL or PLL has not lost lock since LOLS was last cleared.
1 FLL or PLL has lost lock since LOLS was last cleared.

6
LOCK

Lock Status — Indicates whether the FLL or PLL has acquired lock. Lock detection is disabled when both the
FLL and PLL are disabled. If the lock status bit is set, changing the value of DMX32, DRS and IREFS bits in FBE,
FBI, FEE and FEI modes; DIV32 bit in FBE and FEE modes; TRIM[7:0] bits in FBI and FEI modes; RDIV[2:0]
bits in FBE, FEE, PBE and PEE modes; VDIV[3:0] bits in PBE and PEE modes; and PLLS bit, causes the lock
status bit to clear and stay clear until the FLL or PLL has reacquired lock. Entry into BLPI, BLPE or stop mode
also causes the lock status bit to clear and stay cleared until the exit of these modes and the FLL or PLL has
reacquired lock.
0 FLL or PLL is currently unlocked.
1 FLL or PLL is currently locked.

5
PLLST

PLL Select Status — The PLLST bit indicates the current source for the PLLS clock. The PLLST bit does not
update immediately after a write to the PLLS bit due to internal synchronization between clock domains.
0 Source of PLLS clock is FLL clock.
1 Source of PLLS clock is PLL clock.

4
IREFST

Internal Reference Status — The IREFST bit indicates the current source for the reference clock. The IREFST
bit does not update immediately after a write to the IREFS bit due to internal synchronization between clock
domains.
0 Source of reference clock is external reference clock (oscillator or external clock source as determined by the

EREFS bit in the MCGC2 register).
1 Source of reference clock is internal reference clock.

3:2
CLKST

Clock Mode Status — The CLKST bits indicate the current clock mode. The CLKST bits do not update
immediately after a write to the CLKS bits due to internal synchronization between clock domains.
00 Encoding 0 — Output of FLL is selected.
01 Encoding 1 — Internal reference clock is selected.
10 Encoding 2 — External reference clock is selected.
11 Encoding 3 — Output of PLL is selected.

Chapter 11 Inter-Integrated Circuit (S08IICV2)

MC9S08DZ128 Series Data Sheet, Rev. 1

250 Freescale Semiconductor

11.7 Initialization/Application Information

Figure 11-11. IIC Module Quick Start

Module Initialization (Slave)
1. Write: IICC2

— to enable or disable general call
— to select 10-bit or 7-bit addressing mode

2. Write: IICA
— to set the slave address

3. Write: IICC1
— to enable IIC and interrupts

4. Initialize RAM variables (IICEN = 1 and IICIE = 1) for transmit data
5. Initialize RAM variables used to achieve the routine shown in Figure 11-12

Module Initialization (Master)
1. Write: IICF

— to set the IIC baud rate (example provided in this chapter)
2. Write: IICC1

— to enable IIC and interrupts
3. Initialize RAM variables (IICEN = 1 and IICIE = 1) for transmit data
4. Initialize RAM variables used to achieve the routine shown in Figure 11-12
5. Write: IICC1

— to enable TX
6. Write: IICC1

— to enable MST (master mode)
7. Write: IICD

— with the address of the target slave. (The lsb of this byte determines whether the communication is
master receive or transmit.)

Module Use
The routine shown in Figure 11-12 can handle both master and slave IIC operations. For slave operation, an
incoming IIC message that contains the proper address begins IIC communication. For master operation,
communication must be initiated by writing to the IICD register.

0

IICF

IICA

Baud rate = BUSCLK / (2 x MULT x (SCL DIVIDER))

TX TXAK RSTA 0 0IICC1 IICEN IICIE MST

Module configuration

ARBL 0 SRW IICIF RXAKIICS TCF IAAS BUSY

Module status flags

Register Model

AD[7:1]

When addressed as a slave (in slave mode), the module responds to this address

MULT ICR

IICD DATA

Data register; Write to transmit IIC data read to read IIC data

0 AD10 AD9 AD8IICC2 GCAEN ADEXT

Address configuration

00

MC9S08DZ128 Series Data Sheet, Rev. 1

Freescale Semiconductor 253

Chapter 12
Freescale’s Controller Area Network (S08MSCANV1)

12.1 Introduction
Freescale’s controller area network (MSCAN) is a communication controller implementing the CAN
2.0A/B protocol as defined in the Bosch specification dated September 1991. To fully understand the
MSCAN specification, it is recommended that the Bosch specification be read first to gain familiarity with
the terms and concepts contained within this document.

Though not exclusively intended for automotive applications, CAN protocol is designed to meet the
specific requirements of a vehicle serial data bus: real-time processing, reliable operation in the EMI
environment of a vehicle, cost-effectiveness, and required bandwidth.

MSCAN uses an advanced buffer arrangement resulting in predictable real-time behavior and simplified
application software.

The MSCAN module is available in all devices in the MC9S08DZ128 Series.

Chapter 12 Freescale’s Controller Area Network (S08MSCANV1)

MC9S08DZ128 Series Data Sheet, Rev. 1

Freescale Semiconductor 267

NOTE
The CANTFLG register is held in the reset state when the initialization
mode is active (INITRQ = 1 and INITAK = 1). This register is writable when
not in initialization mode (INITRQ = 0 and INITAK = 0).

Read: Anytime
Write: Anytime for TXEx flags when not in initialization mode; write of 1 clears flag, write of 0 is ignored

12.3.7 MSCAN Transmitter Interrupt Enable Register (CANTIER)

This register contains the interrupt enable bits for the transmit buffer empty interrupt flags.

7 6 5 4 3 2 1 0

R 0 0 0 0 0
TXE2 TXE1 TXE0

W

Reset: 0 0 0 0 0 1 1 1

= Unimplemented

Figure 12-10. MSCAN Transmitter Flag Register (CANTFLG)

Table 12-11. CANTFLG Register Field Descriptions

Field Description

2:0
TXE[2:0]

Transmitter Buffer Empty — This flag indicates that the associated transmit message buffer is empty, and thus
not scheduled for transmission. The CPU must clear the flag after a message is set up in the transmit buffer and
is due for transmission. The MSCAN sets the flag after the message is sent successfully. The flag is also set by
the MSCAN when the transmission request is successfully aborted due to a pending abort request (see
Section 12.3.8, “MSCAN Transmitter Message Abort Request Register (CANTARQ)”). If not masked, a transmit
interrupt is pending while this flag is set.
Clearing a TXEx flag also clears the corresponding ABTAKx (see Section 12.3.9, “MSCAN Transmitter Message
Abort Acknowledge Register (CANTAAK)”). When a TXEx flag is set, the corresponding ABTRQx bit is cleared
(see Section 12.3.8, “MSCAN Transmitter Message Abort Request Register (CANTARQ)”).
When listen-mode is active (see Section 12.3.2, “MSCAN Control Register 1 (CANCTL1)”) the TXEx flags cannot
be cleared and no transmission is started.
Read and write accesses to the transmit buffer are blocked, if the corresponding TXEx bit is cleared (TXEx = 0)
and the buffer is scheduled for transmission.
0 The associated message buffer is full (loaded with a message due for transmission)
1 The associated message buffer is empty (not scheduled)

7 6 5 4 3 2 1 0

R 0 0 0 0 0
TXEIE2 TXEIE1 TXEIE0

W

Reset: 0 0 0 0 0 0 0 0

= Unimplemented

Figure 12-11. MSCAN Transmitter Interrupt Enable Register (CANTIER)

Chapter 12 Freescale’s Controller Area Network (S08MSCANV1)

MC9S08DZ128 Series Data Sheet, Rev. 1

Freescale Semiconductor 285

12.5.2 Message Storage

Figure 12-38. User Model for Message Buffer Organization

MSCAN facilitates a sophisticated message storage system which addresses the requirements of a broad
range of network applications.

MSCAN

Rx0
Rx1

CAN

Receive / Transmit

Engine

CPU12

Memory Mapped

I/O

CPU bus

MSCAN

Tx2 TXE2

PRIO

Receiver

Transmitter

R
xB

G

T
xB

G

Tx0 TXE0

PRIOT
xB

G

Tx1

PRIO

TXE1

T
xF

G

CPU bus

Rx2
Rx3

Rx4
RXF

R
xF

G

Chapter 12 Freescale’s Controller Area Network (S08MSCANV1)

MC9S08DZ128 Series Data Sheet, Rev. 1

Freescale Semiconductor 301

12.5.5.5 MSCAN Initialization Mode

In initialization mode, any on-going transmission or reception is immediately aborted and synchronization
to the CAN bus is lost, potentially causing CAN protocol violations. To protect the CAN bus system from
fatal consequences of violations, the MSCAN immediately drives the TXCAN pin into a recessive state.

NOTE
The user is responsible for ensuring that the MSCAN is not active when
initialization mode is entered. The recommended procedure is to bring the
MSCAN into sleep mode (SLPRQ = 1 and SLPAK = 1) before setting the
INITRQ bit in the CANCTL0 register. Otherwise, the abort of an on-going
message can cause an error condition and can impact other CAN bus
devices.

In initialization mode, the MSCAN is stopped. However, interface registers remain accessible. This mode
is used to reset the CANCTL0, CANRFLG, CANRIER, CANTFLG, CANTIER, CANTARQ,
CANTAAK, and CANTBSEL registers to their default values. In addition, the MSCAN enables the
configuration of the CANBTR0, CANBTR1 bit timing registers; CANIDAC; and the CANIDAR,
CANIDMR message filters. See Section 12.3.1, “MSCAN Control Register 0 (CANCTL0),” for a detailed
description of the initialization mode.

Figure 12-46. Initialization Request/Acknowledge Cycle

Due to independent clock domains within the MSCAN, INITRQ must be synchronized to all domains by
using a special handshake mechanism. This handshake causes additional synchronization delay (see
Section Figure 12-46., “Initialization Request/Acknowledge Cycle”).

If there is no message transfer ongoing on the CAN bus, the minimum delay will be two additional bus
clocks and three additional CAN clocks. When all parts of the MSCAN are in initialization mode, the
INITAK flag is set. The application software must use INITAK as a handshake indication for the request
(INITRQ) to go into initialization mode.

NOTE
The CPU cannot clear INITRQ before initialization mode (INITRQ = 1 and
INITAK = 1) is active.

SYNC

SYNC

Bus Clock Domain CAN Clock Domain

CPU
Init Request

INIT
Flag

INITAK
Flag

INITRQ

sync.
INITAK

sync.
INITRQ

INITAK

Chapter 12 Freescale’s Controller Area Network (S08MSCANV1)

MC9S08DZ128 Series Data Sheet, Rev. 1

302 Freescale Semiconductor

12.5.5.6 MSCAN Power Down Mode

The MSCAN is in power down mode (Table 12-36) when

• CPU is in stop mode

or

• CPU is in wait mode and the CSWAI bit is set

When entering the power down mode, the MSCAN immediately stops all ongoing transmissions and
receptions, potentially causing CAN protocol violations. To protect the CAN bus system from fatal
consequences of violations to the above rule, the MSCAN immediately drives the TXCAN pin into a
recessive state.

NOTE
The user is responsible for ensuring that the MSCAN is not active when
power down mode is entered. The recommended procedure is to bring the
MSCAN into Sleep mode before the STOP or WAIT instruction (if CSWAI
is set) is executed. Otherwise, the abort of an ongoing message can cause an
error condition and impact other CAN bus devices.

In power down mode, all clocks are stopped and no registers can be accessed. If the MSCAN was not in
sleep mode before power down mode became active, the module performs an internal recovery cycle after
powering up. This causes some fixed delay before the module enters normal mode again.

12.5.5.7 Programmable Wake-Up Function

The MSCAN can be programmed to wake up the MSCAN as soon as CAN bus activity is detected (see
control bit WUPE in Section 12.3.1, “MSCAN Control Register 0 (CANCTL0)”). The sensitivity to
existing CAN bus action can be modified by applying a low-pass filter function to the RXCAN input line
while in sleep mode (see control bit WUPM in Section 12.3.2, “MSCAN Control Register 1
(CANCTL1)”).

This feature can be used to protect the MSCAN from wake-up due to short glitches on the CAN bus lines.
Such glitches can result from—for example—electromagnetic interference within noisy environments.

12.5.6 Reset Initialization

The reset state of each individual bit is listed in Section 12.3, “Register Definition,” which details all the
registers and their bit-fields.

12.5.7 Interrupts

This section describes all interrupts originated by the MSCAN. It documents the enable bits and generated
flags. Each interrupt is listed and described separately.

Chapter 12 Freescale’s Controller Area Network (S08MSCANV1)

MC9S08DZ128 Series Data Sheet, Rev. 1

304 Freescale Semiconductor

Section 12.3.4.1, “MSCAN Receiver Flag Register (CANRFLG)” and Section 12.3.5, “MSCAN
Receiver Interrupt Enable Register (CANRIER)”).

12.5.7.6 Interrupt Acknowledge

Interrupts are directly associated with one or more status flags in either the Section 12.3.4.1, “MSCAN
Receiver Flag Register (CANRFLG)” or the Section 12.3.6, “MSCAN Transmitter Flag Register
(CANTFLG).” Interrupts are pending as long as one of the corresponding flags is set. The flags in
CANRFLG and CANTFLG must be reset within the interrupt handler to handshake the interrupt. The flags
are reset by writing a 1 to the corresponding bit position. A flag cannot be cleared if the respective
condition prevails.

NOTE
It must be guaranteed that the CPU clears only the bit causing the current
interrupt. For this reason, bit manipulation instructions (BSET) must not be
used to clear interrupt flags. These instructions may cause accidental
clearing of interrupt flags which are set after entering the current interrupt
service routine.

12.5.7.7 Recovery from Stop or Wait

The MSCAN can recover from stop or wait via the wake-up interrupt. This interrupt can only occur if the
MSCAN was in sleep mode (SLPRQ = 1 and SLPAK = 1) before entering power down mode, the wake-up
option is enabled (WUPE = 1), and the wake-up interrupt is enabled (WUPIE = 1).

12.6 Initialization/Application Information

12.6.1 MSCAN initialization

The procedure to initially start up the MSCAN module out of reset is as follows:

1. Assert CANE

2. Write to the configuration registers in initialization mode

3. Clear INITRQ to leave initialization mode and enter normal mode

If the configuration of registers which are writable in initialization mode needs to be changed only when
the MSCAN module is in normal mode:

1. Bring the module into sleep mode by setting SLPRQ and awaiting SLPAK to assert after the CAN
bus becomes idle.

2. Enter initialization mode: assert INITRQ and await INITAK

3. Write to the configuration registers in initialization mode

4. Clear INITRQ to leave initialization mode and continue in normal mode

Chapter 13 Serial Peripheral Interface (S08SPIV3)

MC9S08DZ128 Series Data Sheet, Rev. 1

318 Freescale Semiconductor

13.5 Functional Description
An SPI transfer is initiated by checking for the SPI transmit buffer empty flag (SPTEF = 1) and then
writing a byte of data to the SPI data register (SPIxD) in the master SPI device. When the SPI shift register
is available, this byte of data is moved from the transmit data buffer to the shifter, SPTEF is set to indicate
there is room in the buffer to queue another transmit character if desired, and the SPI serial transfer starts.

During the SPI transfer, data is sampled (read) on the MISO pin at one SPSCK edge and shifted, changing
the bit value on the MOSI pin, one-half SPSCK cycle later. After eight SPSCK cycles, the data that was in
the shift register of the master has been shifted out the MOSI pin to the slave while eight bits of data were
shifted in the MISO pin into the master’s shift register. At the end of this transfer, the received data byte is
moved from the shifter into the receive data buffer and SPRF is set to indicate the data can be read by
reading SPIxD. If another byte of data is waiting in the transmit buffer at the end of a transfer, it is moved
into the shifter, SPTEF is set, and a new transfer is started.

Normally, SPI data is transferred most significant bit (MSB) first. If the least significant bit first enable
(LSBFE) bit is set, SPI data is shifted LSB first.

When the SPI is configured as a slave, its SS pin must be driven low before a transfer starts and SS must
stay low throughout the transfer. If a clock format where CPHA = 0 is selected, SS must be driven to a
logic 1 between successive transfers. If CPHA = 1, SS may remain low between successive transfers. See
Section 13.5.1, “SPI Clock Formats” for more details.

Because the transmitter and receiver are double buffered, a second byte, in addition to the byte currently
being shifted out, can be queued into the transmit data buffer, and a previously received character can be
in the receive data buffer while a new character is being shifted in. The SPTEF flag indicates when the
transmit buffer has room for a new character. The SPRF flag indicates when a received character is
available in the receive data buffer. The received character must be read out of the receive buffer (read
SPIxD) before the next transfer is finished or a receive overrun error results.

In the case of a receive overrun, the new data is lost because the receive buffer still held the previous
character and was not ready to accept the new data. There is no indication for such an overrun condition
so the application system designer must ensure that previous data has been read from the receive buffer
before a new transfer is initiated.

13.5.1 SPI Clock Formats

To accommodate a wide variety of synchronous serial peripherals from different manufacturers, the SPI
system has a clock polarity (CPOL) bit and a clock phase (CPHA) control bit to select one of four clock
formats for data transfers. CPOL selectively inserts an inverter in series with the clock. CPHA chooses
between two different clock phase relationships between the clock and data.

Figure 13-10 shows the clock formats when CPHA = 1. At the top of the figure, the eight bit times are
shown for reference with bit 1 starting at the first SPSCK edge and bit 8 ending one-half SPSCK cycle after
the sixteenth SPSCK edge. The MSB first and LSB first lines show the order of SPI data bits depending
on the setting in LSBFE. Both variations of SPSCK polarity are shown, but only one of these waveforms
applies for a specific transfer, depending on the value in CPOL. The SAMPLE IN waveform applies to the
MOSI input of a slave or the MISO input of a master. The MOSI waveform applies to the MOSI output

Chapter 14 Serial Communications Interface (S08SCIV4)

MC9S08DZ128 Series Data Sheet, Rev. 1

Freescale Semiconductor 325

14.1.2 Features

Features of SCI module include:

• Full-duplex, standard non-return-to-zero (NRZ) format

• Double-buffered transmitter and receiver with separate enables

• Programmable baud rates (13-bit modulo divider)

• Interrupt-driven or polled operation:

— Transmit data register empty and transmission complete

— Receive data register full

— Receive overrun, parity error, framing error, and noise error

— Idle receiver detect

— Active edge on receive pin

— Break detect supporting LIN

• Hardware parity generation and checking

• Programmable 8-bit or 9-bit character length

• Receiver wakeup by idle-line or address-mark

• Optional 13-bit break character generation / 11-bit break character detection

• Selectable transmitter output polarity

14.1.3 Modes of Operation

See Section 14.3, “Functional Description,” For details concerning SCI operation in these modes:

• 8- and 9-bit data modes

• Stop mode operation

• Loop mode

• Single-wire mode

Chapter 14 Serial Communications Interface (S08SCIV4)

MC9S08DZ128 Series Data Sheet, Rev. 1

Freescale Semiconductor 329

14.2.2 SCI Control Register 1 (SCIxC1)

This read/write register is used to control various optional features of the SCI system.

7 6 5 4 3 2 1 0

R
SBR7 SBR6 SBR5 SBR4 SBR3 SBR2 SBR1 SBR0

W

Reset 0 0 0 0 0 1 0 0

Figure 14-5. SCI Baud Rate Register (SCIxBDL)

Table 14-3. SCIxBDL Field Descriptions

Field Description

7:0
SBR[7:0]

Baud Rate Modulo Divisor — These 13 bits in SBR[12:0] are referred to collectively as BR, and they set the
modulo divide rate for the SCI baud rate generator. When BR = 0, the SCI baud rate generator is disabled to
reduce supply current. When BR = 1 to 8191, the SCI baud rate = BUSCLK/(16×BR). See also BR bits in
Table 14-2.

7 6 5 4 3 2 1 0

R
LOOPS SCISWAI RSRC M WAKE ILT PE PT

W

Reset 0 0 0 0 0 0 0 0

Figure 14-6. SCI Control Register 1 (SCIxC1)

Table 14-4. SCIxC1 Field Descriptions

Field Description

7
LOOPS

Loop Mode Select — Selects between loop back modes and normal 2-pin full-duplex modes. When
LOOPS = 1, the transmitter output is internally connected to the receiver input.
0 Normal operation — RxD and TxD use separate pins.
1 Loop mode or single-wire mode where transmitter outputs are internally connected to receiver input. (See

RSRC bit.) RxD pin is not used by SCI.

6
SCISWAI

SCI Stops in Wait Mode
0 SCI clocks continue to run in wait mode so the SCI can be the source of an interrupt that wakes up the CPU.
1 SCI clocks freeze while CPU is in wait mode.

5
RSRC

Receiver Source Select — This bit has no meaning or effect unless the LOOPS bit is set to 1. When
LOOPS = 1, the receiver input is internally connected to the TxD pin and RSRC determines whether this
connection is also connected to the transmitter output.
0 Provided LOOPS = 1, RSRC = 0 selects internal loop back mode and the SCI does not use the RxD pins.
1 Single-wire SCI mode where the TxD pin is connected to the transmitter output and receiver input.

4
M

9-Bit or 8-Bit Mode Select
0 Normal — start + 8 data bits (LSB first) + stop.
1 Receiver and transmitter use 9-bit data characters

start + 8 data bits (LSB first) + 9th data bit + stop.

Chapter 15 Real-Time Counter (S08RTCV1)

MC9S08DZ128 Series Data Sheet, Rev. 1

344 Freescale Semiconductor

Figure 15-1. MC9S08DZ128 Block Diagram with RTC Highlighted

ANALOG COMPARATOR
(ACMP1)

ACMP1O
ACMP1-
ACMP1+

VSS

VDD

IIC MODULE (IIC1)

SERIAL PERIPHERAL
 INTERFACE MODULE (SPI1)

USER MEMORY

MC9S08DZ128 = 128K_2K_8K

HCS08 CORE

CPU

BDC

6-CHANNEL TIMER/PWM
MODULE (TPM1)

HCS08 SYSTEM CONTROL
RESETS AND INTERRUPTS

MODES OF OPERATION
POWER MANAGEMENT

VOLTAGE
REGULATOR

COP

IRQ

LVD

OSCILLATOR

MULTI-PURPOSE
CLOCK

RESET

VREFL

VREFH

ANALOG-TO-DIGITAL
CONVERTER (ADC)

24-CHANNEL,12-BIT

BKGD/MS

INTERFACE (SCI1)
SERIAL COMMUNICATIONS

SDA1
SCL1

MISO1

SS1
SPSCK1

TxD1
RxD1

XTAL
EXTAL

8

2-CHANNEL TIMER/PWM
MODULE (TPM2)

REAL-TIME COUNTER (RTC)

DEBUG MODULE (DBG)

IR
Q

PTA3/PIA3/ADP3/ACMP1O
PTA4/PIA4/ADP4
PTA5/PIA5/ADP5

PTA2/PIA2/ADP2/ACMP1-
PTA1/PIA1/ADP1/ACMP1+
PTA0/PIA0/ADP0/MCLK

PO
RT

 A

PTA6/PIA6/ADP6
PTA7/PIA7/ADP7/IRQ

MOSI1

PTB3/PIB3/ADP11
PTB4/PIB4/ADP12
PTB5/PIB5/ADP13

PTB2/PIB2/ADP10
PTB1/PIB1/ADP9
PTB0/PIB0/ADP8

PO
RT

 B

PTB6/PIB6/ADP14
PTB7/PIB7/ADP15

PTC3/ADP19
PTC4/ADP20
PTC5/ADP21

PTC2/ADP18
PTC1/ADP17
PTC0/ADP16

PO
RT

 C

PTC6/ADP22
PTC7/ADP23

PTD3/PID3/TPM1CH1
PTD4/PID4/TPM1CH2
PTD5/PID5/TPM1CH3

PTD2/PID2/TPM1CH0
PTD1/PID1/TPM2CH1
PTD0/PID0/TPM2CH0

PO
RT

 D

PTD6/PID6/TPM1CH4
PTD7/PID7/TPM1CH5

PTE3/SPSCK1
PTE4/SCL1/MOSI1
PTE5/SDA1/MISO1

PTE2/SS1
PTE1/RxD1
PTE0/TxD1

PO
RT

 E
PTE6/TxD2/TXCAN
PTE7/RxD2/RXCAN

PTF3/TPM2CLK/SDA1
PTF4/ACMP2+
PTF5/ACMP2-

PTF2/TPM1CLK/SCL1
PTF1/RxD2
PTF0/TxD2

PO
RT

 F

PTF6/ACMP2O
PTF7

PTG1/XTAL
PTG2
PTG3PO

RT
 G

PTG4
PTG5

PTG0/EXTAL

VSSA

VDDA

BKP

INT

ANALOG COMPARATOR
(ACMP2)

ACMP2O
ACMP2-
ACMP2+

INTERFACE (SCI2)
SERIAL COMMUNICATIONS TxD2

RxD2

NETWORK (MSCAN)
CONTROLLER AREA

TXCAN
RxCAN

ADP7-ADP0

ADP15-ADP8
ADP23-ADP16

6
TPM1CH5 -

TPM2CH1,
TPM2CH0

TPM2CLK

TPM1CLK
TPM1CH0

PTG6/SCL2
PTG7/SDA2

FLASH _EEPROM _RAM

MC9S08DZ96 = 96K_2K_6K
MC9S08DV128 = 128K_0K_6K

MC9S08DV96 = 96K_0K_4K

PTH3/MISO2
PTH4
PTH5

PTH2/MOSI2
PTH1/SPSCK2

PTH0/SS2

PO
RT

 H

PTH6
PTH7

PTJ3/PIJ3/TMP3CH3
PTJ4/PIJ4
PTJ5/PIJ5

PTJ2/PIJ2/TPM3CH2
PTJ1/PIJ1/TPM3CH1
PTJ0/PIJ0/TMP3CH0

PO
RT

 J

PTJ6/PIJ6
PTJ7/PIJ7/TPM3CLK

PTK3
PTK4
PTK5

PTK2
PTK1
PTK0

PO
RT

 K

PTK6
PTK7

PTL3
PTL4
PTL5

PTL2
PTL1
PTL0

PO
RT

 L

PTL6
PTL7

IIC MODULE (IIC2)
SDA2
SCL2

4-CHANNEL TIMER/PWM
MODULE (TPM3)

4

TPM3CH3

TPM3CLK

TPM3CH0 -

SERIAL PERIPHERAL
 INTERFACE MODULE (SPI2)

MISO2

SS2
SPSCK2

MOSI2

(XOSC)

GENERATOR
(MCG)

●

●

●

●

●

●

●

●

●

●

- In 48-pin package, VDDA and VREFH are internally connected to each other and VSSA and VREFL are internally connected to each other.
- Pin not connected in 64-pin and 48-pin packages ● - Pin not available in the 48-pin package

●

●

●

●

Chapter 18 Debug Module (S08DBGV3) (128K)

MC9S08DZ128 Series Data Sheet, Rev. 1

Freescale Semiconductor 411

18.4.2 Breakpoints

A breakpoint request to the CPU at the end of a trace run can be created if the BRKEN bit in the DBGC
register is set. The value of the BEGIN bit in DBGT register determines when the breakpoint request to
the CPU will occur. If the BEGIN bit is set, begin-trigger is selected and the breakpoint request will not
occur until the FIFO is filled with 8 words. If the BEGIN bit is cleared, end-trigger is selected and the
breakpoint request will occur immediately at the trigger cycle.

When traditional hardware breakpoints from comparators A or B are desired, set BEGIN=0 to select an
end-trace run and set the trigger mode to either 0x0 (A-only) or 0x1 (A OR B) mode.

There are two types of breakpoint requests supported by the DBG module, tag-type and force-type. Tagged
breakpoints are associated with opcode addresses and allow breaking just before a specific instruction
executes. Force breakpoints are not associated with opcode addresses and allow breaking at the next
instruction boundary. The TAG bit in the DBGC register determines whether CPU breakpoint requests will
be a tag-type or force-type breakpoints. When TAG=0, a force-type breakpoint is requested and it will take
effect at the next instruction boundary after the request. When TAG=1, a tag-type breakpoint is registered
into the instruction queue and the CPU will break if/when this tag reaches the head of the instruction queue
and the tagged instruction is about to be executed.

18.4.2.1 Hardware Breakpoints

Comparators A, B, and C can be used as three traditional hardware breakpoints whether the on-chip ICE
real-time capture function is required or not. To use any breakpoint or trace run capture functions set
DBGEN=1. BRKEN and TAG affect all three comparators. When BRKEN=0, no CPU breakpoints are
enabled. When BRKEN=1, CPU breakpoints are enabled and the TAG bit determines whether the
breakpoints will be tag-type or force-type breakpoints. To use comparators A and B as hardware
breakpoints, set DBGT=0x81 for tag-type breakpoints and 0x01 for force-type breakpoints. This sets up
an end-type trace with trigger mode “A OR B”.

Comparator C is not involved in the trigger logic for the on-chip ICE system.

18.4.3 Trigger Selection

The TRGSEL bit in the DBGT register is used to determine the triggering condition of the on-chip ICE
system. TRGSEL applies to both trigger A and B except in the event only trigger modes. By setting the
TRGSEL bit, the comparators will qualify a match with the output of opcode tracking logic. The opcode
tracking logic is internal to each comparator and determines whether the CPU executed the opcode at the
compare address. With the TRGSEL bit cleared a comparator match is all that is necessary for a trigger
condition to be met.

NOTE
If the TRGSEL is set, the address stored in the comparator match address
registers must be an opcode address for the trigger to occur.

Chapter 18 Debug Module (S08DBGV3) (128K)

MC9S08DZ128 Series Data Sheet, Rev. 1

416 Freescale Semiconductor

in the DBGCNT register at the end of a trace run, the number of valid words can be determined. The FIFO
data is read by optionally reading the DBGFX and DBGFH registers followed by the DBGFL register.
Each time the DBGFL register is read the FIFO is shifted to allow reading of the next word however the
count does not decrement. In event-only trigger modes where the FIFO will contain only the data bus
values stored, to read the FIFO only DBGFL needs to be accessed.

The FIFO is normally only read while ARM and ARMF=0, however reading the FIFO while the DBG
module is armed will return the data value in the oldest location of the FIFO and the TBC will not allow
the FIFO to shift. This action could cause a valid entry to be lost because the unexpected read blocked the
FIFO advance.

If the DBG module is not armed and the DBGFL register is read, the TBC will store the current opcode
address. Through periodic reads of the DBGFX, DBGFH, and DBGFL registers while the DBG module
is not armed, host software can provide a histogram of program execution. This is called profile mode.
Since the full 17-bit address and the signal that indicates whether an address is in paged extended memory
are captured on each FIFO store, profile mode works correctly over the entire extended memory map.

18.4.6 Interrupt Priority

When TRGSEL is set and the DBG module is armed to trigger on begin- or end-trigger types, a trigger is
not detected in the condition where a pending interrupt occurs at the same time that a target address reaches
the top of the instruction pipe. In these conditions, the pending interrupt has higher priority and code
execution switches to the interrupt service routine.

When TRGSEL is clear and the DBG module is armed to trigger on end-trigger types, the trigger event is
detected on a program fetch of the target address, even when an interrupt becomes pending on the same
cycle. In these conditions, the pending interrupt has higher priority, the exception is processed by the core
and the interrupt vector is fetched. Code execution is halted before the first instruction of the interrupt
service routine is executed. In this scenario, the DBG module will have cleared ARM without having
recorded the change-of-flow that occurred as part of the interrupt exception. Note that the stack will hold
the return addresses and can be used to reconstruct execution flow in this scenario.

When TRGSEL is clear and the DBG module is armed to trigger on begin-trigger types, the trigger event
is detected on a program fetch of the target address, even when an interrupt becomes pending on the same
cycle. In this scenario, the FIFO captures the change of flow event. Because the system is configured for
begin-trigger, the DBG remains armed and does not break until the FIFO has been filled by subsequent
change of flow events.

18.5 Resets
The DBG module cannot cause an MCU reset.

There are two different ways this module will respond to reset depending upon the conditions before the
reset event. If the DBG module was setup for an end trace run with DBGEN=1 and BEGIN=0, ARM,
ARMF, and BRKEN are cleared but the reset function on most DBG control and status bits is overridden
so a host development system can read out the results of the trace run after the MCU has been reset. In all
other cases including POR, the DBG module controls are initialized to start a begin trace run starting from
when the reset vector is fetched. The conditions for the default begin trace run are:

Appendix B Ordering Information and Mechanical Drawings

MC9S08DZ128 Series Data Sheet, Rev. 1

448 Freescale Semiconductor

B.2 Mechanical Drawings
The following pages are mechanical drawings for the packages described in the following table:

Table B-2. Package Descriptions

Pin Count Type Abbreviation Designator Document No.

100 Low-profile Quad Flat Package LQFP LL 98ASS23308W

64 Low-profile Quad Flat Package LQFP LH 98ASS23234W

48 Low-profile Quad Flat Package LQFP LF 98ASH00962A

