

Welcome to E-XFL.COM

Understanding Embedded - Microprocessors

Embedded microprocessors are specialized computing chips designed to perform specific tasks within an embedded system. Unlike general-purpose microprocessors found in personal computers, embedded microprocessors are tailored for dedicated functions within larger systems, offering optimized performance, efficiency, and reliability. These microprocessors are integral to the operation of countless electronic devices, providing the computational power necessary for controlling processes, handling data, and managing communications.

Applications of **Embedded - Microprocessors**

Embedded microprocessors are utilized across a broad spectrum of applications, making them indispensable in

Details

Product Status	Obsolete
Core Processor	Z80180
Number of Cores/Bus Width	1 Core, 8-Bit
Speed	6MHz
Co-Processors/DSP	-
RAM Controllers	DRAM
Graphics Acceleration	No
Display & Interface Controllers	-
Ethernet	-
SATA	-
USB	-
Voltage - I/O	5.0V
Operating Temperature	0°C ~ 70°C (TA)
Security Features	-
Package / Case	80-BQFP
Supplier Device Package	80-QFP
Purchase URL	https://www.e-xfl.com/product-detail/zilog/z8018006fsc

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

ix

List of Figures

Z80180, Z8S180, Z8I	.180 MPU Operation 1
Figure 1.	64-Pin DIP
Figure 2.	68-Pin PLCC
Figure 3.	80-Pin QFP
Figure 4.	Z80180/Z8S180/Z8L180 Block Diagram
Figure 5.	Operation Mode Control Register
Figure 6.	M1 Temporary Enable Timing16
Figure 7.	I/O Read and Write Cycles with IOC = 1 Timing Diagram
Figure 8.	I/O Read and Write cycles with IOC = 0 Timing Diagram
Figure 9.	Op Code Fetch (without Wait State) Timing Diagram19
Figure 10.	Op Code Fetch (with Wait State) Timing Diagram20
Figure 11.	Memory Read/Write (without Wait State) Timing Diagram
Figure 12.	Memory Read/Write (with Wait State) Timing Diagram
Figure 13.	I/O Read/Write Timing Diagram
Figure 14.	Instruction Timing Diagram
Figure 15.	RESET Timing Diagram
Figure 16.	Bus Exchange Timing During Memory Read
Figure 17.	Bus Exchange Timing During CPU Internal Operation27
Figure 18.	WAIT Timing Diagram
Figure 19.	Memory and I/O Wait State Insertion (DCNTL – DMA/Wait Control Register)
Figure 20.	HALT Timing Diagram

UM005003-0703

Z8018x Family MPU User Manual

х

Figure 21.	SLEEP Timing Diagram	. 35
Figure 22.	I/O Address Relocation	. 43
Figure 23.	Logical Address Mapping Examples	. 55
Figure 24.	Physical Address Transition	. 56
Figure 25.	MMU Block Diagram	. 56
Figure 26.	I/O Address Translation	. 57
Figure 27.	Logical Memory Organization	. 58
Figure 28.	Logical Space Configuration	. 59
Figure 29.	Physical Address Generation	. 64
Figure 30.	Physical Address Generation 2	. 64
Figure 31.	Interrupt Sources	. 65
Figure 32.	TRAP Timing Diagram -2nd Op Code Undefined	. 71
Figure 33.	TRAP Timing - 3rd Op Code Undefined	. 72
Figure 34.	NMI Use	. 74
Figure 35.	NMI Timing	. 75
Figure 36.	INT0 Mode 0 Timing Diagram	. 76
Figure 37.	INT0 Mode 1 Interrupt Sequence	. 77
Figure 38.	INT0 Mode 1 Timing	. 78
Figure 39.	INT0 Mode 2 Vector Acquisition	. 79
Figure 40.	INT0 Interrupt Mode 2 Timing Diagram	. 80
Figure 41.	INT1, INT2 Vector Acquisition	. 81
Figure 42.	RETI Instruction Sequence	. 84
Figure 43.	INT1, INT2 and Internal Interrupts Timing Diagram	. 86
Figure 44.	Refresh Cycle Timing Diagram	. 87
Figure 45.	DMAC Block Diagram	. 93
Figure 46.	DMA Timing Diagram-CYCLE STEAL Mode	106
Figure 47.	CPU Operation and DMA Operation DREQ0	
	is Programmed for Level-Sense	107
Figure 48.	CPU Operation and DMA Operation DREQ0	100
	is Programmed for Edge-Sense	108

Z8018x Family MPU User Manual

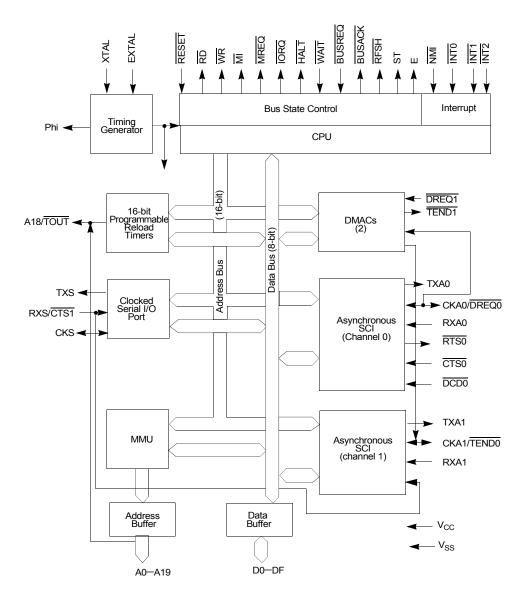


Figure 4. Z80180/Z8S180/Z8L180 Block Diagram

The external bus is IDLE while the CPU computes the effective address. Finally, the computed memory location is written with the contents of the CPU register (g).

RESET Timing

Figure 15 depicts the Z8X180 hardware RESET timing. If the $\overline{\text{RESET}}$ pin is Low for six or more clock cycles, processing is terminated and the Z8X180 restarts execution from (logical and physical) address 00000H.

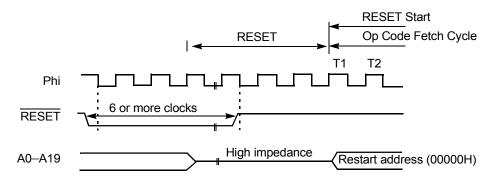


Figure 15. RESET Timing Diagram

BUSREQ/BUSACK Bus Exchange Timing

The Z8X180 can coordinate the exchange of control, address and data bus ownership with another bus master. The alternate bus master can request the bus release by asserting the BUSREQ (Bus Request) input Low. After the Z8X180 releases the bus, it relinquishes control to the alternate bus master by asserting the BUSACK (Bus Acknowledge) output Low.

The bus may be released by the Z8X180 at the end of each machine cycle. In this context, a machine cycle consists of a minimum of three clock cycles (more if wait states are inserted) for Op Code fetch, memory read/ write, and I/O read/write cycles. Except for these cases, a machine cycle corresponds to one clock cycle.

• Data Bus, 3-state

SLEEP mode is exited in one of two ways as described below.

- RESET Exit from SLEEP mode. If the RESET input is held Low for at least six clock cycles, it exits SLEEP mode and begins the normal RESET sequence with execution starting at address (logical and physical) 00000H.
- Interrupt Exit from SLEEP mode. The SLEEP mode is exited by detection of an external (NMI, INT0, INT2) or internal (ASCI, CSI/O, PRT) interrupt.

In case of $\overline{\text{NMI}}$, SLEEP mode is exited and the CPU begins the normal $\overline{\text{NMI}}$ interrupt response sequence.

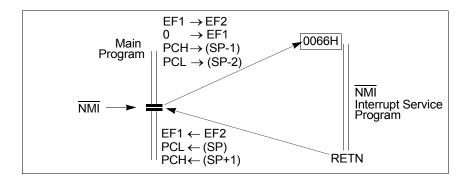
In the case of all other interrupts, the interrupt response depends on the state of the global interrupt enable flag IEF1 and the individual interrupt source enable bit.

If the individual interrupt condition is disabled by the corresponding enable bit, occurrence of that interrupt is ignored and the CPU remains in the SLEEP mode.

Assuming the individual interrupt condition is enabled, the response to that interrupt depends on the global interrupt enable flag (IEF1). If interrupts are globally enabled (IEF1 is 1) and an individually enabled interrupt occurs, SLEEP mode is exited and the appropriate normal interrupt response sequence is executed.

If interrupts are globally disabled (IEF1 is 0) and an individually enabled interrupt occurs, SLEEP mode is exited and instruction execution begins with the instruction following the SLP instruction. This feature provides a technique for synchronization with high speed external events without incurring the latency imposed by an interrupt response sequence.

Figure 21 depicts SLEEP timing.



50

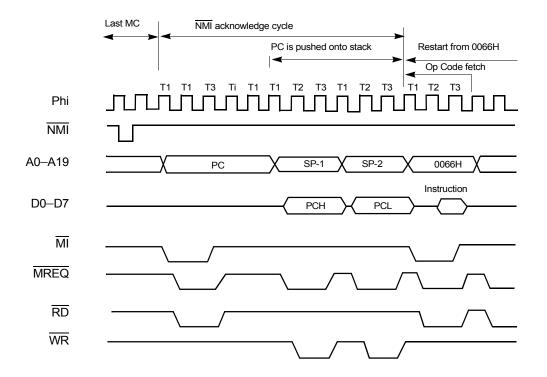

			A	ldress	
	Register	Mnemonic	Binary	Hex	Page
DMA	DMA Source Address Register Ch 0L	SAR0L	XX100000	20H	93
	DMA Source Address Register Ch 0H	SAR0H	XX100001	21H	93
	DMA Source Address Register Ch 0B	SAR0B	XX100010	22H	93
	DMA Destination Address Register Ch 0L	DAR0L	XX100011	23H	94
	DMA Destination Address Register Ch 0H	DAR0H	XX100100	24H	94
	DMA Destination Address Register Ch 0B	DAR0B	XX100101	25H	94
	DMA Byte Count Register Ch 0L	BCR0L	XX100110	26H	94
	DMA Byte Count Register Ch 0H	BCR0H	XX100111	27H	94
	DMA Memory Address Register Ch 1L	MAR1L	XX101000	28H	94
	DMA Memory Address Register Ch 1H	MAR1H	XX101001	29H	94
	DMA Memory Address Register Ch 1B	MAR1B	XX101010	2AH	94
	DMA I/O Address Register Ch 1L	IAR1L	XX101011	2BH	102
	DMA I/O Address Register Ch 1H	IAR1H	XX101100	2CH	102
	DMA I/O Address Register Ch 1	IAR1B	XX101101	2DH	94
	DMA Byte Count Register Ch 1L	BCR1L	XX101110	2EH	94
	DMA Byte Count Register Ch 1H	BCR1H	XX101111	2FH	94
	DMA Status Register	DSTAT	XX110000	30H	95
	DMA Mode Register	DMODE	XX110001	31H	97
	DMA/WAIT Control Register	DCNTL	XX110010	32H	101

Table 7. I/O Address Map (Z8S180/Z8L180-Class Processors Only) (Continued)

Bit Position	Bit/Field	R/W	Value	Description
0	DME	R		DMA Main Enable — A DMA operation is only enabled when its DE bit DE0 for channel 0, DE1 for channel 1) and the DME bit are set to 1. When NMI occurs, DME is reset to 0, thus disabling DMA activity during the NMI interrupt service routine. To restart DMA, DE0 and/or DE1 must be written with 1 (even if the contents are already 1). This action automatically sets DME to 1, allowing DMA operations to continue. DME cannot be directly written. It is cleared to 0 by NMI or indirectly set to 1 by setting DE0 and/or DE1 to 1.DME is cleared to 0 during RESET.

DMA Mode Register (DMODE)

DMODE is used to set the addressing and transfer mode for channel 0. DMA Mode Register (DMODE: 31H)

Bit	7	6	5	4	3	2	1	0
Bit/Field	?		DM1	DM0	SM1	SM0	MMOD	?
R/W	?		R/W	R/W	R/W	R/W	R/W	?
Reset	eset ?		0	0	0	0	0	?
Note: $R = Read$ W = Write X = Indeterminate ? = Not Applicable								

Bit Position	Bit/Field	R/W	Value	Description
5-4	DM1:0	R/W		Destination Mode Channel 0 — Specifies whether the destination for channel 0 transfers is memory, I/O or memory mapped I/O and the corresponding address modifier. Reference Table 12.

DREQ0 for ASCI transmission and reception respectively. To initiate memory to/from ASCI DMA transfer, perform the following operations:

- 1. Load the source and destination addresses into SAR0 and DAR0 Specify the I/O (ASCI) address as follows:
 - a. Bits A0–A7 must contain the address of the ASCI channel transmitter or receiver (I/O addresses 6H-9H).
 - b. Bits A8–A15 must equal 0.
 - c. Bits SAR17–SAR16 must be set according to Table 16 to enable use of the appropriate ASCI status bit as an internal DMA request.

Table 16.DMA Transfer Request

SAR18	SAR17	SAR16	DMA Transfer Request		
Х	0	0	DREQ0		
Х	0	1	RDRF (ASCI channel 0)		
Х	1	0	RDRF (ASCI channel 1)		
Х	1	1	Reserved		
Note: X = Don't care					

DAR18	DAR17	DAR16	DMA Transfer Request			
X	0	0	DREQ0			
Х	0	1	TDRE (ASCI channel O)			
Х	1	0	TDRE (ASCI channel 1)			
Х	1	1	Reserved			
Note: X = Don't care						

Bit Position	Bit/Field	R/W	Value	Description
5	PE	R		Parity Error — PE is set to 1 when a parity error is detected on an incoming data byte and ASCI parity detection is enabled (the MOD1 bit of CNTLA is set to 1). PE is cleared to 0 when the EFR bit (Error Flag Reset) of CNTLA is written to 0, when DCD0 is High, in IOSTOP mode, and during RESET.
4	FE	R		Framing Error — If a receive data byte frame is delimited by an invalid stop bit (that is, 0, should be 1), FE is set to 1. FE is cleared to 0 when the EFR bit (Error Flag Reset) of CNTLA is written to 0, when DCD0 is High, in IOSTOP mode, and during RESET.
3	RIE	R/W		Receive Interrupt Enable — RIE must be set to 1 to enable ASCI receive interrupt requests. When RIE is 1, if any of the flags RDRF, OVRN, PE, or FE become set to 1, an interrupt request is generated. For channel 0, an interrupt is also generated by the transition of the external DCD0 input from Low to High.
2	DCD0	R		Data Carrier Detect — Channel 0 has an external $\overline{DCD0}$ input pin. The $\overline{DCD0}$ bit is set to 1 when the $\overline{DCD0}$ input is HIGH. It is cleared to 0 on the first read of (STAT0, following the $\overline{DCD0}$ input transition from HIGH to LOW and during RESET. When $\overline{DCD0}$ is 1, receiver unit is reset and receiver operation is inhibited.
1	TDRE	R		Transmit Data Register Empty — TDRE = 1 indicates that the TDR is empty and the next transmit data byte is written to TDR. After the byte is written to TDR, TDRE is cleared to 0 until the ASCI transfers the byte from TDR to the TSR and then TDRE is again set to 1. TDRE is set to 1 in IOSTOP mode and during RESET. When the external $\overline{\text{CTS}}$ input is High, TDRE is reset to 0.

pins are initialized as ASCI data clock inputs. If SS2, SS1 and SS0 are reprogrammed (any other value than SS2, SS1, SS0 = 1) these pins become ASCI data clock inputs. However, if DMAC channel 0 is configured to perform memory to/from I/O (and memory mapped I/O) transfers the CKA0/ $\overline{\text{DREQ0}}$ pin reverts to DMA control signals regardless of SS2, SS1, SS0 programming.

Also, if the CKA1D bit in the CNTLA register is 1, then the CKA1/ TEND0 reverts to the DMA Control output function regardless of SS2, SS1 and SS0 programming. Final data clock rates are based on $\overline{\text{CTS}}/\text{PS}$ (prescale), DR, SS2, SS1, SS0 and the Z8X180 system clock frequency (Reference Table 19).

SS2	SS1	SS0	Divide Ratio
0	0	0	÷ 1
0	0	1	÷ 2
0	1	0	÷ 4
0	1	1	÷ 8
1	0	0	÷ 16
1	0	1	÷ 32
1	1	0	÷ 64
1	1	1	external clock

Each ASCI channel control register B configures multiprocessor mode, parity and baud rate selection.

186

Z80180 DC CHARACTERISTICS

 V_{CC} = 5V ± 10%, V_{SS} = OV, Ta = 0° to +70°C, unless otherwise noted.)

Table 28. Z80180 DC Characteristics

Symbol	Item	Condition	Minimum	Typical	Maximum	Unit
VIH1	Input High Voltage RESET, EXTAL NMI		V _{CC} –0.6	_	V _{CC} +0.3	V
VIH2	Input High Voltage except RESET, EXTAL NMI		2.0		V _{CC} +0.3	V
VIL1	Input Low Voltage RESET, EXTAL NMI		-0.3		0.6	V
VIL2	Input Low Voltage except RESET, EXTAL NMI		-0.3		0.8 Standard 7 TL _{VIL}	V
VOH	Output High Voltage all outputs	$IOH = -200 \ \mu A$ $IOH = -20 \ \mu A$	2.4 V _{CC} -1.2	_	_	V V
VOL	Output Low Voltage all outputs	IOL = 2.2 mA	_	_	0.45	V
I _{IL}	Input Leakage Current all inputs except XTAL, EXTAL	$V_{IN} = 0.5 \sim V_{CC} - 0.5$	-	_	1.0	μΑ
ITL	Three-State Leakage Current		_	_	1.0	μA
ICC	Power Dissipation* (Normal Operation)	f = 6 MHz f = 8 MHz f = 33 MHz	_ _ _	15 20 25	40 50 60	mA mA mA

															F	lags		
					Add	Iressi	ng						7	6	4	2	1	0
Operation Name	Mnemonics	Op Code	Immed	Ext	Ind	Reg	Regl	Imp	Rel	Bytes	States	Operation	s	z	н	P/V	N	с
Jump	JR Zj	00 101 000							D	2	6	continue : Z = 0	•	•	•	•	•	•
		<j-2></j-2>								2	8	PC _R , + j→PC _R : Z = 1						
	JR NZj	00 100 000							D	2	6	continue : Z = 1						
		<j-2></j-2>								2	8	$PC_R + j \rightarrow PC_R : Z = 0$						
Return	RET	11001001						D		1	9	(SP) _M →PCLr	•	•	•	•	•	•
												(SP + 1) _M →PCHr						
												SP _R + 2→SP _R						
	RET f	11f 000							D	1	5 (f : false)	continue : f is false	•	•	•	•	•	•
										1	10 (f : true)	RET : f is true						
	RETI	11101101						D		2	12 (R0,R1)	(SP) _M →PCLr	•	•	•	•	•	•
		01001101									ZZ(z)	(SP + 1) _M →PCHr						
												SP _R + 2→SP _R						
	RETN	11101101						D		2	12	(SP) _M →PCLr	•	•	•	•	•	•
		01000101										(SP + 1) _M →PCHr						
												SP _R + 2→SP _R						
												IEF2→IEF1						
Restart	RST v	11 v 111						D		1	11	PCHr→(SP-1) _M	•	•	•	•	•	•
												PCLr→(SP-2) _M						
												0→PCHr						
												v→PCLr						
												SP _R -2→SP _R						

Table 45. Program Control Instructions (Continued)

257

Instruction	Machine Cycle	States	Address	Data	RD	WR	MREQ	IORQ	<u>M1</u>	HALT	ST
	MC1	T1T2T3	1st Op Code Address	1st Op Code	0	1	0	1	0	1	0
EX (SP),IX EX (SP),IY	MC2	T1T2T3	2nd Op Code Address	2nd Op Code	0	1	0	1	0	1	1
	MC3	T1T2T3	SP	DATA	0	1	0	1	1	1	1
	MC4	T1T2T3	SP+1	DATA	0	1	0	1	1	1	1
	MC5	Ti	*	Z	1	1	1	1	1	1	1
	MC6	T1T2T3	SP+1	IXH IYH	1	0	0	1	1	1	1
	MC7	T1T2T3	SP	IXL IYL	1	0	0	1	1	1	1
	MC1	T1T2T3	1st Op Code Address	1st Op Code	0	1	0	1	0	1	0
HALT	—	_	Next Op Code Address	Next Op Code	0	1	0	1	0	0	0
IM0 IM1	MC1	T1T2T3	1st Op Code Address	1st Op Code	0	1	0	1	0	1	0
IM2	MC2	T1T2T3	2nd Op Code Address	2nd Op Code	0	1	0	1	0	1	1
INC g	MC1	T1T2T3	1st Op Code Address	1st Op Code	0	1	0	1	0	1	0
DEC g	MC2	Ti	*	Z	1	1	1	1	1	1	1
	MC1	T1T2T3	1st Op Code Address	1st Op Code	0	1	0	1	0	1	0
INC (HL) DEC (HL)	MC2	T1T2T3	HL	DATA	0	1	0	1	1	1	1
	MC3	Ti	*	Z	1	1	1	1	1	1	1
	MC4	T1T2T3	HL	DATA	1	0	0	1	1	1	1

Table 51. Bus and Control Signal Condition in Each Machine Cycle (Continued)

UM005003-0703

Instruction	Machine Cycle	States	Address	Data	RD	WR	MREQ	IORQ	<u>M1</u>	HALT	ST
	MC1	T1T2T3	1st Op Code Address	1st Op Code	0	1	0	1	0	1	0
OTIM**	MC2	T1T2T3	2nd Op Code Address	2nd Op Code	0	1	0	1	0	1	1
OTDM**	MC3	Ti	*	Z	1	1	1	1	1	1	1
	MC4	T1T2T3	HL	DATA	0	1	0	1	1	1	1
	MC5	T1T2T3	C to A0~A7 00H to A8~A15	DATA	1	0	1	0	1	1	1
	MC6	Ti	*	Z	1	1	1	1	1	1	1
	MC1	T1T2T3	1st Op Code Address	1st Op Code	0	1	0	1	0	1	0
OTIMR**	MC2	T1T2T3	2nd Op Code Address	2nd Op Code	0	1	0	1	0	1	1
OTDMR**	MC3	Ti	*	Z	1	1	1	1	1	1	1
(If Br≠0)	MC4	T1T2T3	HL	DATA	0	1	0	1	1	1	1
	MC5	T1T2T3	C to A0~A7 00H to A8~A15	DATA	1	0	1	0	1	1	1
	MC6~M C8	TiTiTi	*	Z	1	1	1	1	1	1	1

 Table 51.
 Bus and Control Signal Condition in Each Machine Cycle (Continued)

281

Operating Modes Summary

Т

Г

REQUEST ACCEPTANCES IN EACH OPERATING MODE

Т

Current Status Request	Normal Operation (CPU mode and IOSTOP Mode)	WAIT State	Refresh Cycle	Interrupt Acknowledge Cycle	DMA Cycle	BUS RELEASE Mode	SLEEP Mode	SYSTEM STOP Mode
WAIT	Acceptable	Acceptable	Not acceptable	Acceptable	Acceptable	Not acceptable	Not acceptable	Not acceptable
Refresh Request Request of Refresh by the on-chip Refresh Controller	Refresh cycle begins at the end of Machine Cycle (MC)	Not acceptable	Not acceptable	Refresh cycle begins at the end MC	Refresh cycle begins at the end of MC	Not acceptable	Not acceptable	Not acceptable
DREQ0 DREQ1	DMA cycle begins at the end of MC	DMA cycle begins at the end of MC	Acceptable Refresh cycle precedes. DMA cycle begins at the end of one MC	Acceptable DMA cycle begins at the end of MC.	Acceptable Refer to "DMA Controller" for details.	Acceptable *After BUS RELEASE cycle, DMA cycle begins at the end of one MC	Not acceptable	Not acceptable
BUSREQ	Bus is released at the end of MC	Not acceptable	Not acceptable	Bus is released at the end of MC	Bus is released at the end of MC	Continue BUS RELEASE mode	Acceptable	Acceptable
Interrupt INTO, INT1, INT2	Accepted after executing the current instruction.	Accepted after executing the current instruction	Not acceptable	Not acceptable	Not acceptable	Not acceptable	Acceptable Return from SLEEP mode to normal operation.	Acceptable Return from SYSTEM STOP mode to normal operation

 Table 53.
 Request Acceptances in Each Operating Mode
 T

1

т

Т

293

I/O Registers

INTERNAL I/O REGISTERS

By programming IOA7 and IOA6 as the I/O control register, internal I/O register addresses are relocatable within ranges from 0000H to 00FFH in the I/O address space.

Register	Mnemoni	cs Ad	dress				Re	mark	S			
ASCI Control Register A Channel 0:	CNTLA0	0	0	bit	MPE	RE	TE	RTS0	MPBR/ EFR	MOD2	MOD1	MOD0
				during RESET R/W	0 R/W	0 R/W	0 R/W	l R/W	invalid R/W	0 R/W	0 R/W	0 R/W
							Tr Receive En cessor Ena	ansmit En able	Error uest to Se	r Flåg Re	or Bit Rec	ODE Select eive/
ASCI Control Register A Channel 1:	CNTLA1	0	1	bit during RESET	MPE 0	RE 0	TE 0	CKA1E	MPBR EFR invalid	/ MOD	2 MODI 0	MOD0
				R/W	R/W		R/W	ransmit Er able	En KAl Disa	ror Flag I	ssor Bit R	R/W MODE Seld
				0 0 1 5 0 1 0 5 0 1 1 5 1 0 0 5 1 0 1 5 1 0 1 5 1 1 0 5	Start + 7 bi Start + 8 bi Start + 8 bi Start + 8 bi	it Data + 2 it Data + F it Data + F it Data + 1 it Data + 2 it Data + F	2 Stop Parity + 1 S Parity + 2 S Stop	Stop				

Table 57. Internal I/O Registers

Register	Mnemoni	es Ad	ldress				Rer	nark	s			
ASCI Transmit Data Register Channel 0:	TDR0	0	6									
ASCI Transmit Data Register Channel 1:	TDR1	0	7									
ASCI Receive Data Register Channel 0:	TSR0	0	8									
ASCI Receive Data Register Channel 1:	TSR1	0	9									
CSI/O Control Register:	CNTR	0	А	bit	EF	EIE	RE	TE	_	SS2	SS1	SS0
				during RESET	0	0	0	0	1	1	1	1
				R/W	R	R/W	R/W	R/W		R/W	R/W	R/W
						End Flag		Ti Receive Er upt Enable		Enable	Ľs	peed Sel
				SS	210	Baud R	ate	SS2	1 0	Baud R	ate	
					000	Phi ÷	20		0 0		320	
					001 010	÷	40 80		0 1 1 0		640 280	
					011	÷	160		11	External		20)

frequency < ÷ 20)

Table 57.	Internal I/O Registers	(Continued)
-----------	------------------------	-------------

300

Register	Mnemonics	Addre	SS			Re	marl	KS			
MMU Common Base	CBR	3 8							1	1	1
Register:			bit	CB7	CB6	CB5	CB4	CB3	CB2	CB1	CB0
			during RESET	0	0	0	0	0	0	0	0
			R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
								Y	MMU Co	mmon Ba	ise Regi
MMU Bank Base Register	BBR	3 9		BB7	BB6	BB5	BB4	BB3	BB2	BB1	BB0
			bit during RESET	0	0	0	0	0	0	0	0
			R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
								\sim		I	
		2							MMU Bai	nk Base R	legister
MMU Common/Bank Register	CBAR	3 A	bit	CA3	CA2	CA1	CA0	BA3	BA2	BA1	BA0
			during RESET	1	1	1	1	0	0	0	0
			R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
							I Commo	n Area Re	gister		U Bank Registe
						MMU	Commo				
	OMCR	3 E	bit	MIE	MITE		_			_	_
	OMCR	3 E	bit during RESET	MIE	MITE 1		1		1	 1	- 1
	OMCR	3 E				ĪOC	_	_	_		
	OMCR	3 E	during RESET	1	1 W	IOC 1 R/W	l I/O Comp	l	_		
	OMCR	3 E	during RESET	l R/W	1 W	IOC 1 R/W MI Temp	l I/O Comp	l	_		
Register			during RESET	l R/W	1 W	IOC 1 R/W MI Temp	l I/O Comp	l	_		
Register	OMCR ICR	3 E 3 F	during RESET R/W	l R/W	1 W	IOC 1 R/W MI Temp	l I/O Comp	l	_		
Register			during RESET R/W bit	l R/W	1 W MI Enable	I I R/W MI Temp	1 I/O Comp orary Ena	l patibility ble	1	1	1
Operation Mode Control Register I/O Control Register:			during RESET R/W	1 R/W 	1 W MI Enable	IOC 1 R/W MT Temp IOSTP	I/O Comp orary Ena	l patibility ble 		1	-

Table 57. Internal I/O Registers (Continued)

I/O Address